Ensemble Machine Learning-Based Approach for Predicting of FRP–Concrete Interfacial Bonding
Abstract
:1. Introduction
2. Bond Behavior between FRP and Concrete
2.1. Bond Strength Influenced by the Composite Behavior
2.2. Data Preparation from the Single-Lap Shear Bond Tests
2.3. Existing Bond Strength Models
3. Proposed Methodology
3.1. CatBoost
Algorithm 1: CatBoost |
input: { (Xk, yk)} ∀ K = 1 to n, I ← random permutation of [1, n]; Ti ← 0 for i = 1.n; for t ← 1 to I do for i ← 1 to n do ri ← yi − Tσ (i) − 1 (xi); for i ← 1 to n do ΔT ← LearnTree (xj, rj): (j) ≤ i); Ti ← Ti + ΔT return Tn |
3.2. XGBoost
3.3. Histogram Gradient Boosting
3.4. Random Forest
4. Datasets and Performance Metrics for Model Evaluation
4.1. Root Mean Square Error
4.2. R-Squared Measure
4.3. Covariance
4.4. Integral Absolute Error
4.5. Explained Variance Score
4.6. Mean Squared Error
4.7. Mean Absolute Error
4.8. Residual Error
5. Results and Discussion
5.1. Comparative Study of CatBoost with Other Ensemble Approaches
5.2. Comparative Study of the Ensemble Approach with ANN
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, Y.W.; Wu, Y.F. General model for constitutive relationships of concrete and its composite structures. Compos. Struct. 2012, 94, 580–592. [Google Scholar] [CrossRef]
- Chen, C.; Li, X.; Zhao, D.B.; Huang, Z.Y.; Sui, L.; Xing, F.; Zhou, Y. Mechanism of surface preparation on FRP-concrete bond performance: A quantitative study. Compos. Part B 2019, 163, 193–206. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, M.; Sui, L.; Xing, F.; Hu, B.; Huang, Z.; Yun, Y. Shear strength components of adjustable hybrid bonded CFRP shear-strengthened RC beams. Compos. Part B Eng. 2019, 163, 193–206. [Google Scholar] [CrossRef]
- Smith, S.T.; Teng, J.G. FRP-strengthened RC beams. I: Review of debonding strength models. Eng. Struct. 2002, 24, 385–395. [Google Scholar] [CrossRef]
- Kim, B.; Yuvaraj, N.; Park, H.; Sri Preethaa, K.R.; Pandian, R.; Lee, D.-E. Investigation of steel frame damage based on computer vision and deep learning. Autom. Constr. 2021, 132, 103941. [Google Scholar] [CrossRef]
- Li, P.D.; Sui, L.L.; Xing, F.; Zhou, Y. Static and cyclic response of low-strength recycled aggregate concrete strengthened using fiber-reinforced polymer. Compos. Part B Eng. 2019, 160, 37–49. [Google Scholar] [CrossRef]
- Kotynia, R. Debonding Phenomena in FRP–Strengthened Concrete Members. Brittle Matrix Compos. 2006, 109–122. [Google Scholar] [CrossRef]
- Toutanji, H.; Saxena, P.; Zhao, L.; Ooi, T. Prediction of interfacial bond failure of FRP–concrete surface. J. Compos. Constr. 2007, 11, 427–436. [Google Scholar] [CrossRef]
- Chaallal, O.; Nollet, M.-J.; Perraton, D. Strengthening of reinforced concrete beams with externally bonded fiber-reinforced-plastic plates: Design guidelines for shear and flexure. Can. J. Civ. Eng. 1998, 25, 692–704. [Google Scholar] [CrossRef]
- Khalifa, A.; Gold, W.J.; Nanni, A.; Mi, A.A. Contribution of externally bonded FRP to shear capacity of RC flexural members. J. Compos. Constr. 1998, 2, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.X.; Yue, Q.R.; Hu, Y.C. Experimental study on bond performance between carbon fiber sheets and concrete. J. Build. Struct. 2001, 22, 36–42. [Google Scholar]
- Yuan, H.; Wu, Z.S.; Yoshizawa, H. Theoretical solutions on interfacial stress transfer of externally bonded steel/composite laminates. Doboku Gakkai Ronbunshu 2001, 2001, 27–39. [Google Scholar] [CrossRef] [Green Version]
- Teng, J.G.; Chen, J.F.; Smith, S.T.; Lam, L. FRP: Strengthened RC Structures; Wiley: Hoboken, NJ, USA, 2002; p. 266. [Google Scholar]
- Dai, J.; Ueda, T.; Sato, Y. Development of the nonlinear bond stress-slip model of fiber reinforced plastics sheet-concrete interfaces with a simple method. J. Compos. Constr. 2005, 9, 52–62. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Islam, S.M.; Said, H. A Three-Parameter Bond Strength Model for FRP—Concrete Interface. J. Reinf. Plast. Compos. 2009, 28, 2309–2323. [Google Scholar] [CrossRef]
- Wu, Y.F.; Jiang, C. Quantification of Bond-Slip Relationship for Externally Bonded FRP-to-Concrete Joints. J. Compos. Constr. 2013, 17, 673–686. [Google Scholar] [CrossRef]
- Kara, I.F.; Ashour, A.F.; Dundar, C. Deflection of concrete structures reinforced with FRP bars. Compos. Part B 2013, 44, 375–384. [Google Scholar] [CrossRef] [Green Version]
- Mirrashid, M.; Naderpour, H. Recent Trends in Prediction of Concrete Elements Behavior Using Soft Computing (2010–2020). Arch. Comput.Methods Eng. 2021, 28, 3307–3327. [Google Scholar] [CrossRef]
- Naderpour, H.; Mirrashid, M.; Nagai, K. An innovative approach for bond strength modeling in FRP strip-to-concrete joints using adaptive neuro–fuzzy inference system. Eng. Comput. 2020, 36, 1083–1100. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, S.; Huang, Z.; Sui, L.; Chen, Y. Explicit neural network model for predicting FRP-concrete interfacial bond strength based on a large database. Compos. Struct. 2020, 240, 111998. [Google Scholar] [CrossRef]
- Ivakhnenko, A.G.; Ivakhnenko, G.A. Problems of further development of the group method data handling algorithms Part 1. Pattern Recognit. Image Anal. 2000, 110, 187–194. [Google Scholar]
- Hamze-Ziabari, S.M.; Yasavoli, A. Predicting Bond Strength between FRP Plates and Concrete Sub-strate: Applications of GMDH and MNLR Approaches. J. Adv. Concr. Technol. 2017, 15, 644–661. [Google Scholar] [CrossRef] [Green Version]
- Dahou, Z.; Mehdi Sbartaï, Z.M.; Castel, A.; Ghomari, F. Artificial neural network model for steel-concrete bond prediction. Eng. Struct. 2009, 31, 1724–1733. [Google Scholar] [CrossRef]
- Golafshani, E.M.; Rahai, A.; Sebt, M.H.; Akbarpour, H. Prediction of bond strength of spliced steel bars in concrete using artificial neural network and fuzzy logic. Constr. Build. Mater. 2012, 36, 411–418. [Google Scholar] [CrossRef]
- Kalfat, R.; Al-Mahaidi, R. Improvement of FRP-to-concrete bond performance using bidirectional fiber patch anchors combined with FRP spike anchors. Compos. Struct. 2016, 155, 89–98. [Google Scholar] [CrossRef]
- Lee, S.; Lee, C. Prediction of shear strength of FRP-reinforced concrete flexural members without stirrups using artificial neural networks. Eng. Struct. 2014, 61, 99–112. [Google Scholar] [CrossRef]
- Saghi, H.; Behdani, M.; Saghi, R.; Ghaffari, A.R.; Hirdaris, S. Application of gene expression programming model to present a new model for bond strength of fiber reinforced polymer and concrete. J. Civ. Eng. Mater. App. 2020, 3, 15–29. [Google Scholar]
- Mashrei, M.A.; Seracino, R.; Rahman, M.S. Application of artificial neural networks to predict the bond strength of FRP-to-concrete joints. Constr. Build. Mater. 2013, 40, 812–821. [Google Scholar] [CrossRef]
- Nasrollahzadeh, K.; Basiri, M.M. Prediction of shear strength of FRP reinforced concrete beams using fuzzy inference system. Expert Syst. Appl. 2014, 41, 1006–1020. [Google Scholar] [CrossRef]
- Mansouri, I.; Kisi, O. Prediction of debonding strength for masonry elements retrofitted with FRP composites using neuro fuzzy and neural network approaches. Compos. Part B Eng. 2015, 70, 247–255. [Google Scholar] [CrossRef]
- Golafshani, E.M.; Rahai, A.; Sebt, M.H. Artificial neural network and genetic programming for predicting the bond strength of GFRP bars in concrete. Mater. Struct. 2015, 48, 1581–1602. [Google Scholar] [CrossRef]
- Coelho, M.R.F.; Sena-Cruz, J.M.; Neves, L.A.C.; Pereira, M.; Cortez, P.; Miranda, T. Using data mining algorithms to predict the bond strength of NSM FRP systems in concrete. Constr. Build. Mater. 2016, 126, 484–495. [Google Scholar] [CrossRef]
- Golafshani, E.M.; Ashour, A.F. A Feasibility Study of BBP for predicting shear capacity of FRP reinforced concrete beams without stirrups. Adv. Eng. Softw. 2016, 97, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Köroğlu, M.A. Artificial neural network for predicting the flexural bond strength of FRP bars in concrete. Sci. Eng. Compos. Mater. 2019, 26, 12–29. [Google Scholar] [CrossRef]
- Kim, B.; Tse, K.T.; Chen, Z.; Park, H.S. Multi-objective optimization of a structural link for a linked tall building system. J. Build. Eng. 2020, 31, 101382. [Google Scholar] [CrossRef]
- Amidi, Y.; Nazari, B.; Sadri, S.; Yousefi, A. Parameter Estimation in Multiple Dynamic Synaptic Coupling Model Using Bayesian Point Process StateSpace Modeling Framework. Neural Comput. 2021, 33, 1269–1299. [Google Scholar] [CrossRef] [PubMed]
- Gnanamanickam, J.; Natarajan, Y.; KR, S.P. A Hybrid Speech Enhancement Algorithm for Voice Assistance Application. Sensors 2021, 23, 7025. [Google Scholar] [CrossRef]
- Kim, B.; Lee, D.-E.; Sri Preethaa, K.R.; Yuvaraj, N.; Kwok, K.C.S. Predicting wind flow around buildings using deep learning. J. Wind. Eng. Ind. Aerodyn. 2021, 219, 104820. [Google Scholar] [CrossRef]
- Gao, J.; Koopialipoor, M.; Armaghani, D.J.; Ghabussi, A.; Baharom, S.; Morasaei, A.; Shariati, A.; Khorami, M.; Zhou, J. Evaluating the bond strength of FRP in concrete samples using machine learning methods. Smart Struct. Syst. 2020, 26, 403–418. [Google Scholar]
- Monti, M.; Renzelli, M.; Luciani, P. FRP adhesion in uncracked and cracked concrete zones. In Proceedings of the 6th International Symposium on FRP Reinforcement for Concrete Structures, Singapore, 8–10 July 2003; World Scientific Publishing: Singapore, 2003; pp. 183–192. [Google Scholar]
- Kim, B.; Yuvaraj, N.; Sri Preethaa, K.R. Enhanced pedestrian detection using optimized deep convolution neural network for smart building surveillance. Soft Comput. 2020, 24, 17081–17092. [Google Scholar] [CrossRef]
- Bilotta, A.; Ceroni, F.; Di, L.M.; Nigro, E.; Pecce, M.; Manfredi, G. Bond efficiency of EBR and NSM FRP systems for strengthening of concrete. J. Compos. Constr. ASCE 2011, 15, 757–772. [Google Scholar] [CrossRef]
- Hutchinson, A.R.; Rahimi, H. Behaviour of reinforced concrete beams with externally bonded fibre reinforced plastics. In Proceedings of the 5th International Conference on Structural Faults and Repairs, University of Edinburgh; Forde, Ed.; Engineering Technics Press: Edinburgh, UK, 1993; Volume 3, pp. 221–228. [Google Scholar]
- Fanning, P.J.; Kelly, O. Ultimate response of RC beams strengthened with CFRP plates. J. Compos. Constr. 2001, 5, 122–127. [Google Scholar] [CrossRef]
- Lu, X.Z.; Teng, J.G.; Ye, L.P.; Jiang, J.J. Bond–slip models for FRP sheets/plates bonded to concrete. Eng. Struct. 2005, 27, 920–937. [Google Scholar] [CrossRef]
- Faella, C.; Nigro, E.; Martinelli, E.; Sabatino, M.; Salerno, N.; Mantegazza, G. Aderenza tra calcestruzzo e lamine di FRP utilizzate come placcaggio di elementi inflessi. Parte I: Risultati sperimentali. In Proceedings of the XIV Congresso C.T.E., Mantova, Italy, 7–9 November 2002; pp. 7–8. [Google Scholar]
- Woo, S.K.; Lee, Y. Experimental study on interfacial behavior of CFRP-bonded concrete. KSCE J. Civ. Eng. 2010, 14, 385–393. [Google Scholar] [CrossRef]
- Dai, J.G.; Sato, Y.; Ueda, T. Improving the load transfer and effective bond length for FRP composites bonded to concrete. Proc. Jpn. Concr. Inst. 2002, 24, 1423–1428. [Google Scholar]
- Cogswell, M.; Ahmed, F.; Girshick, R.; Zitnick, L.; Batra, D. Reducing overfitting in deep networks by decorrelating representations. In Proceedings of the International Conference on Learning, Rome, Italy, 21 April 2016; pp. 1–12. [Google Scholar]
- Kim, B.; Yuvaraj, N.; Tse, K.T.; Lee, D.-E.; Hu, G. Pressure pattern recognition in buildings using an unsupervised machine-learning algorithm. J. Wind. Eng. Ind. Aerodyn. 2021, 214, 104629. [Google Scholar] [CrossRef]
- Kim, B.; Yuvaraj, N.; Sri Preethaa, K.R.; Arun Pandian, R. Surface crack detection using deep learning with shallow CNN architecture for enhanced computation. Neural Comput. Appl. 2021, 33, 9289–9305. [Google Scholar] [CrossRef]
- Friedman, J.; Hastie, T.; Tibshirani, R. Additive logistic regression: A statistical view of boosting. Ann. Stat. 2000, 28, 337–407. [Google Scholar] [CrossRef]
- Abbasi, R.A.; Javaid, N.; Ghuman, M.N.J.; Khan, Z.A.; Ur Rehman, S. Amanullah Short term load forecasting using XGBoost. In Proceedings of the Workshops of the International Conference Advances in Intelligent Systems and Computing, Kunibiki Messe, Matsue, Japan, 27 March 2019; pp. 1120–1131. [Google Scholar]
Parameters | Minimum | Maximum | Average | Total |
---|---|---|---|---|
Fc′ (MPa) | 8 | 74.67 | 40 | 8–75.5 |
Ef (GPa) | 22.5 | 425 | 205 | 22.5–425.1 |
tf (mm) | 011 | 1.4 | 0.5 | 0.08–4 |
Lf (mm) | 20 | 400 | 173 | 20–400 |
bf (mm) | 10 | 150 | 57 | 10–150 |
bc (mm) | 80 | 500 | 144 | 80–500 |
PU (kN) | 2.4 | 56.5 | 18 | 2.4–56.5 |
Total number of validated test results considered | 855 |
Sample Type | Parameter Details | |||||
---|---|---|---|---|---|---|
Cube | Width (mm) | |||||
Actual | 250 | 200 | 150 | 100 | 50 | |
Conversion coefficient | 0.90 | 0.95 | 1 | 1.05 | 1.10 | |
Cylinder (H = 300 mm; D = 150 mm) | Strength Grade | |||||
Actual | C20–C40 | C50 | C60 | C70 | C80 | |
Conversion coefficient | 0.80 | 0.83 | 0.86 | 0.875 | 0.89 |
Performance Metrics | Ensemble Methods | |||
---|---|---|---|---|
CatBoost | XGBoost | HGBoost | Random Forest | |
RMSE | 2.310 | 2.522 | 2.675 | 2.733 |
R-square | 0.961 | 0.954 | 0.948 | 0.946 |
IAE | 0.088 | 0.099 | 0.105 | 0.106 |
COV | 0.218 | 0.222 | 0.242 | 0.232 |
EVS | 0.959 | 0.947 | 0.938 | 0.925 |
MSE | 5.335 | 6.360 | 7.153 | 7.469 |
MAE | 1.498 | 1.645 | 1.678 | 1.708 |
RE | 2.123 | 2.353 | 2.370 | 2.472 |
Performance Measures | ML Methods | |
---|---|---|
ANN | CatBoost | |
RMSE | 3.97 | 2.31 |
R-square | 0.93 | 0.96 |
COV | 0.22 | 0.22 |
IAE | 0.16 | 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, B.; Lee, D.-E.; Hu, G.; Natarajan, Y.; Preethaa, S.; Rathinakumar, A.P. Ensemble Machine Learning-Based Approach for Predicting of FRP–Concrete Interfacial Bonding. Mathematics 2022, 10, 231. https://doi.org/10.3390/math10020231
Kim B, Lee D-E, Hu G, Natarajan Y, Preethaa S, Rathinakumar AP. Ensemble Machine Learning-Based Approach for Predicting of FRP–Concrete Interfacial Bonding. Mathematics. 2022; 10(2):231. https://doi.org/10.3390/math10020231
Chicago/Turabian StyleKim, Bubryur, Dong-Eun Lee, Gang Hu, Yuvaraj Natarajan, Sri Preethaa, and Arun Pandian Rathinakumar. 2022. "Ensemble Machine Learning-Based Approach for Predicting of FRP–Concrete Interfacial Bonding" Mathematics 10, no. 2: 231. https://doi.org/10.3390/math10020231
APA StyleKim, B., Lee, D. -E., Hu, G., Natarajan, Y., Preethaa, S., & Rathinakumar, A. P. (2022). Ensemble Machine Learning-Based Approach for Predicting of FRP–Concrete Interfacial Bonding. Mathematics, 10(2), 231. https://doi.org/10.3390/math10020231