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Abstract: Developments in fiber-reinforced polymer (FRP) composite materials have created a huge
impact on civil engineering techniques. Bonding properties of FRP led to its wide usage with concrete
structures for interfacial bonding. FRP materials show great promise for rehabilitation of existing
infrastructure by strengthening concrete structures. Existing machine learning-based models for
predicting the FRP–concrete bond strength have not attained maximum performance in evaluating
the bond strength. This paper presents an ensemble machine learning approach capable of predicting
the FRP–concrete interfacial bond strength. In this work, a dataset holding details of 855 single-lap
shear tests on FRP–concrete interfacial bonds extracted from the literature is used to build a bond
strength prediction model. Test results hold data of different material properties and geometrical
parameters influencing the FRP–concrete interfacial bond. This study employs CatBoost algorithm,
an improved ensemble machine learning approach used to accurately predict bond strength of FRP–
concrete interface. The algorithm performance is compared with those of other ensemble methods
(i.e., histogram gradient boosting algorithm, extreme gradient boosting algorithm, and random
forest). The CatBoost algorithm outperforms other ensemble methods with various performance
metrics (i.e., lower root mean square error (2.310), lower covariance (21.8%), lower integral absolute
error (8.8%), and higher R-square (96.1%)). A comparative study is performed between the proposed
model and best performing bond strength prediction models in the literature. The results show that
FRP–concrete interfacial bonding can be effectively predicted using proposed ensemble method.

Keywords: bond strength; ensemble methods; machine learning; shear bond test; boosting algorithms

1. Introduction

The fiber-reinforced polymer (FRP) bonding technique is used for compacting and
rehabilitating civil structures. FRPs are widely used because they are lightweight and have
high corrosion resistance, strength, and elastic modulus [1]. In recent years, externally
bonded FRP sheets have been used to fortify reinforced concrete (RC) structures and in the
repairing, retrofitting, and rebuilding processes in structural engineering [2]. FRP–concrete
composite structures also help reduce the risk of steel rebar corrosion by preventing
the penetration of destructive Cl ions from the external environment into concrete [3].
Although FRPs are used to improve bonding with concrete, premature failures, such
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as FRP debonding from concrete mainly at or near the sheet ends or the separation of
sheets from RC beams, may occur. The reasons for the FRP–concrete failures include FRP
rupture, shear failure, compressive concrete crushing, concrete cover separation, interfacial
debonding at the plate ends, and interfacial debonding caused by intermediate cracks [4].
Hence, these failure modes signify the necessity of studying the bond strength between
the FRP and concrete. Many studies focused on the bond strength between the FRP and
interfacial concrete and its importance. The load and resistance reduction factor approach
was implemented to assess the bond strength of various design models based on the
error models and the reliability index of FRP and RC beams. The approach was found
uneconomical, with partial safety factors that were not fit for all design models [5]. The
bond strength varies based on the FRP width, breadth, elastic modulus, and interfacial
concrete composition. Stress–strain models were built to measure the bond strength of
the FRP with lightweight and normal concrete. These models cannot measure the bond
strength of full, lightweight aggregated concrete models [6]. Different types of FRP plate
debonding strength models exist, and they are classified based on theoretical analysis.
The generic flexural mechanisms involved in shear deformation and prediction models
play a vital role in detecting the debonding mechanisms of the peripheral FRP in flexural
strengthened RC members. Meanwhile, simple prediction models were developed to detect
the debonding mechanisms of external FRP in flexural strengthened RC members [7]. The
effects of various parameters (e.g., axial stiffness, thickness, and width of external FRP
plate, compressive and tensile strengths of concrete) were analyzed in the literature. A
simple shear test was analytically applied to predict the interfacial debonding between FRP
and concrete [8]. Models based on the average bond stress on concrete were developed
to calculate the bond strength, but the predictions were relatively inaccurate because the
actual bond length of the FRP was not measured. The bond length was later proven
to significantly affect the strength of the FRP–concrete interface. The strength increased
with the length and reached a threshold value, called the effective bond length, beyond
which there was no improvement [9–11]. An effective method based on the width of
the delaminated sheet was proposed to predict the bond strength between the FRP sheet
and concrete. The method was found effective for FRP continuous sheets but not for
stripped structures. Many researchers had given predictive equations considering the
nonlinear bond-slip behavior at the FRP–concrete interface in cracked zones. Nonlinear
interfacial expressions were derived to analytically estimate the interfacial shear–stress
distribution, bonding capacity, and initiation and propagation of interfacial cracks [12].
Based on theories and experiments, many empirical and theoretical models were developed
to estimate the bond strength [13]. Empirical approaches and fracture mechanics-based
models were built to estimate the bond strength and proven to have a considerably higher
accuracy. A more accurate and rational model was proposed to calculate the bond strength
of the FRP–concrete interface considering three main parameters based on a statistical
analysis [14]. The bond strength theoretically varied based on the interfacial concrete
behavior and with the width, thickness, and elastic modulus of FRP sheets [15]. Accordingly,
experiments on the interfacial bonding parameters were conducted, deriving a closed-form
solution for identifying parameters and configurations through analytical reasoning [16].
An analytical procedure for the deflection prediction of FRP–concrete structures based
on the stiffness matrix was also proposed [17]. The high abilities of the soft computing
methods to solve complicated problems has been widely explored and in the domain of
structural engineering [18]. A higher number of models for predicting the bond strength
based on fracture mechanics and empirical approaches were introduced. These models
were built on the experimental datasets of previous models; thus, they failed to provide
reliable predictions. An adaptive neuro-fuzzy inference system (ANFIS) is proposed for
identifying the bond strength of fiber-reinforced polymer strip-to-concrete joints [19]. The
models built through regression analysis also failed to perform an accurate prediction due
to the unknown multivariable interrelationships of the FRP–concrete interface, thereby
requiring reevaluation and verification with a large database [20]. The group method of data
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handling (GMDH) networks was investigated to measure the bond strength and perform a
comparison with multiple linear and nonlinear regression models [21]. The GMDH model
proved to outperform other models and improve accuracy [22]. An artificial neural network
(ANN)-based model was built to predict the bond strength of concrete [23]. Experiments on
integrating ANN with fuzzy logic to calculate the bond strength of steel bars with concrete
were conducted, and works proved the ANN-based model to be more capable of accurately
predicting the ultimate bond strength than the FL-based model [24]. An investigation on
ANN models was performed to forecast the shear capacity of FRP-RC beams devoid of shear
reinforcement. A parametric analysis was attempted to establish the relationship between
the variables influencing the shear capacity, but this resulted in a few inconsistencies. Many
studies using ANNs based on different civil structures were performed, and comparisons
with earlier neural network-based models were made, revealing an accurate prediction
by ANN models in spite of their complexity and fluctuating nature [25]. Models built
using ANNs and genetic algorithms (GAs) adapt and produce the relationship between
variables based on the training data. A simple model based on the gene expression
program (GEP) approach was employed to assess the concrete shear capacity of FRP-RC
slender beams exclusive of stirrups [26]. A novel prediction model applying the GEP
to estimate the bond strength of concrete and fiber-reinforced polymer was employed,
producing an improved accuracy compared to earlier models [27]. Backpropagation neural
networks (BPPN) were implemented to forecast the shear resistance of retrofitted FRP-RC
beams. A BPPN model for predicting the bond strength using a published experimental
database was employed, and the performance was compared with those of common
existing analytical models [28]. An intelligent technique like the fuzzy logic-based inference
system was established to measure the shear competence of FRP-RC beams [29]. The
BPPN model proved to provide an efficient alternative method compared to those in the
experimental results and other existing analytical models. The neural network and neuro-
fuzzy approaches for predicting the bonding strength of FRP composites were implemented.
Consequently, these models were found to be difficult to use as empirical formulas [30].
ANN- and GA-based models were also employed to calculate the ultimate concrete bond
strength of glass-based FRP bars, and they obtained a more enhanced prediction than
linear regression models [31]. The effectiveness of ANN and support vector machine
algorithms was utilized to analyze the bond behavior of FRP systems [32]. ANN- and fuzzy
logic-based inference systems with an adaptive network were developed to measure the
strength of GPC samples. A biogeography-based program was introduced to predict the
shear strength of FRP-RC beams and devised to perform better than those presented by
investigational results [33]. The model was more accurate and robust than other guideline
models. Meanwhile, the regression analysis model was recommended to predict the
cohesion strength between concrete and FRP bars [34]. A multi-gene genetic program
prediction prototype was established to estimate the bonding strength between concrete
and FRP bars. The approach also utilized genetic algorithm and regression models to
express the competent prediction of FRP–concrete bond strength. However, the prototype
was very dynamic in nonlinear modeling, with the hypothesis that its input parameters are
not permanently reliable [35]. Compared to the working principles of individual machine
learning algorithms, ensemble algorithms yield an enhanced performance using their
integrated operating principles. Boosting algorithms help reduce the bias, which results
in an improved performance. Integrating additional new machine learning algorithms in
series would help fix the prediction errors made by previous models. The advancements in
the usage of machine learning algorithms across different domains allow the researchers
to provide artificial intelligence-based solutions for various real-time problems [36–38].
An experimental study on the evaluation of a variety of machine learning models for the
bond strength prediction was conducted. Accordingly, the recommended hybridization of
machine learning models was found as a suitable substitute for empirical models [39]. This
study aims to build an ensemble method-based bond strength predictive model that is to
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be trained from a large dataset of single-lap shear bond tests on FRP–concrete specimens
collected from the literature.

2. Bond Behavior between FRP and Concrete

The deterioration of concrete structures due to increased loads or defective designs
threatens the structural safety. FRPs are used along with concrete to strengthen structures.
The most common challenge in using FRP with concrete is the premature debonding or
peeling of the FRP from the concrete. Hence, the essential aspects of the behavior of FRP to
concrete interfaces must be analyzed to enhance the interfacial bonding strength. Existing
theoretical and experimental studies have listed six essential parameters with a control over
the determination of the bond strength of FRP–concrete reinforcing members [40]. These
parameters are the bond length, concrete strength, FRP stiffness, FRP–concrete width ratio,
stiffness, and strength of adhesive. The positivity of the externally reinforcing members lies
with the cohesion of the FRP and the concrete material. The bond strength is influenced
by the surface preparation and the general concrete quality [41]. In addition, the bonding
concrete should be free from scattered layers and detached particles [42]. The bond strength
is influenced by composite action, interface stresses, and stress–strain distribution. Among
the different influencing factors, the composite behavior plays a vital role in deciding on
the bond strength.

2.1. Bond Strength Influenced by the Composite Behavior

Along with civil engineering materials, FRPs are primarily used as enhancement
substitutes for the infrastructure rehabilitation of concrete structures. Advancements in
the new styles of reinforcement nanoparticles have enabled the extensive usage of FRP
composites for strengthening civil structures. The perfect bonding between concrete and
steel reinforcement must be ensured to extend the durability of RC. The FRP thickness
influences the stress, which leads to a bonding failure that limits the width-to-thickness
ratio used in the FRP [43]. The strain compatibility derived from the bonding plays a vital
role in many design and analysis methods. Initially, the bond strength was believed to be
greatly affected by the surface preparation and the concrete composite quality. Maximum
importance is given to the methods used for the surface preparation and the composite
materials used [44]. Later studies in the literature have reported that strain compatibility
does not affect the bonding failure [45]. The failure mode is observed in bonding during an
increased composite behavior. The properties, characteristics, and major factors affecting
the bond strength are identified as the bond length, axial stiffness of the laminate, adhesive
compression strength, and concrete compressive strength. During the bonding process,
the strain can be transferred to the FRP, and slip will occur in the adhesive. The degree
to which the strain is transferred determines the overall resistance of the structure. The
composite behavior of the externally strengthened concrete beams must be maintained at
all stages up to failure [46]. The developments of new methods are utilized considering the
failure theories formulated on the homogenized description of composite materials. The
major pitfall in FRP strengthening occurs due to brittle failure modes. Thus, the behavior
of the bond between FRP and concrete surfaces is considerably subjective to the composite
behavior. Various studies have been conducted to justify the external reinforcement to the
concrete surface by the adhesive bond. The literature has shown that strain compatibility
is influenced by the section depth, which creates an interrogation by which the degree of
composite behavior influences. The external anchorage properties remain significant in
maintaining the composite behavior [47]. In a RC beam with CFRP bands and without a
supplementary dock, the composite action is terminated to 85% of the initial beam load [48].
The failure mode variation is observed with an increase in the composite behavior. The
adhesive properties and features are identified as a significant factor when developing a
composite action. Adhesives can allocate the stress, which relies on its association between
concrete and its laminates, stresses between layers, toughness, elasticity, and viscosity of
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the material. Low creep is also a required feature. The lack of any of these properties can
be harmful to the composite behavior.

2.2. Data Preparation from the Single-Lap Shear Bond Tests

Various studies employed several pull-off tests to assess the bond strength of the
concrete edge–FRP behavior. The pull-off tests (e.g., single-lap shear test, double-lap
shear test, and bending tests.) were performed on adhesive joints pulled at the end of
the FRP–concrete. The debonding that occurs at the joints was then measured. Although
the double-lap shear and bending tests have advantages, simulating the bonding strength
between the FRP and concrete has remained challenging. In the literature, a large number of
studies have proposed FRP–concrete bond strength predictive models using the single-lap
shear test due to its easier operations. The simplicity and the low cost involved in the
specimen manufacture have contributed to the widespread use of the single-lap shear
method for producing data on adhesively bonded joints. Figure 1 demonstrates the test
setup for the single-lap shear test arrangement of the FRP–concrete interface. The single-lap
shear test consists of rectangular adherends of a uniform size bonded together with an
overlapping length of 12% to 25% relative to the adherend length. The test aims to assess the
bond strength; thus, the yield point of the adherend in tension must not be exceeded. The
maximum permissible length of the adherend is denoted as L, representing the thickness
function. The adherend stiffness is estimated as follows through Equation (1)

L >
σ Y t
1.5τ

(1)

where σY is the adherend yield stress; t is the adherend thickness; and τ is the expected
average shear strength of the adhesive.
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Figure 1. Single-lap shear test: (a) single-lap shear test arrangement; (b) elevation view; and
(c) plan view.

Different material properties and geometric parameters involved in the single-lap
shear test influence the prediction of the ultimate bond strength Pu. The test datapoints for
the single-lap shear test herein were collected from 34 present studies to build a machine
learning-based bond strength prediction model. The material properties influencing the
bond strength include concrete cube strength, Fc; concrete cylinder strength, Fc′ ; concrete
strength, Ft; and elastic modulus, Ef, of the FRP sheets. The geometric parameter considers
the FRP sheet width, tf; FRP sheet thickness, bf; FRP bond length, Lf; and concrete substrate
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thickness, bc. A complete dataset with 855 reliable datapoints was prepared from 34
literature studies. Table 1 lists the different parameters considered for the data preparation
in this study and their range of values.

Table 1. Bond strength test database.

Parameters Minimum Maximum Average Total

Fc′ (MPa) 8 74.67 40 8–75.5
Ef (GPa) 22.5 425 205 22.5–425.1
tf (mm) 011 1.4 0.5 0.08–4
Lf (mm) 20 400 173 20–400
bf (mm) 10 150 57 10–150
bc (mm) 80 500 144 80–500
PU (kN) 2.4 56.5 18 2.4–56.5

Total number of validated test results considered 855

The compressive and tensile strengths of concrete are standardized to eradicate the
size conflicts of the samples in dissimilar international data. The ductile strength of concrete
ft is transformed based on the design requirement in the Chinese concrete code GB 50010-
2010, where Ft = 0.395 (Fc) 0.55. Table 2 lists the compressive strength conversion rules for
concrete cube and cylinder [49].

Table 2. Compressive strength conversion rules.

Sample Type Parameter Details

Cube

Width (mm)

Actual 250 200 150 100 50

Conversion
coefficient 0.90 0.95 1 1.05 1.10

Cylinder
(H = 300 mm; D = 150 mm)

Strength Grade

Actual C20–C40 C50 C60 C70 C80

Conversion
coefficient 0.80 0.83 0.86 0.875 0.89

2.3. Existing Bond Strength Models

Many predictive models were proposed based on the empirical relations standard-
ized with experimental data for measuring the bond strength between concrete and FRP
laminates. Models based on fracture mechanics theories and adopting simple assump-
tions based on calibrated experimental data were used. All models required a pull test
on a bonded FRP specimen [13]. In the literature, a large number of studies proposed
FRP–concrete bond strength predictive models using the single-lap shear test. This test
produces data on adhesively bonded joints. The simplicity and the low cost involved
in specimen manufacture have contributed to the widespread use of this method for as-
sessing FRP–concrete adhesive bonding. Different variants of the bond strength models
are available, and the evaluated test results are quoted in data sheets. Most of the bond
strength estimation models are categorized as average bond shear–stress-based models,
effective bond length-based models, and fracture mechanism-based bond strength models.
The parameters influencing the bond strength are based on the physical considerations
of concrete properties and the dereliction pattern observed during a shear bond test. The
primary physical parameters considered for evaluation are the compressive strength of
concrete, Fc′ , and the width of the concrete substrate, bc. In addition, the FRP sheet proper-
ties like stiffness, Kf; width, bf; elastic modulus, Ef; sheet thickness, tf; and bond length,
Lf, are considered for evaluation. The researchers implemented a backpropagation neural
network-based ANN model to predict the bond strength of the FRP–concrete interface.
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This ANN-based bond strength prediction model derived the width correction coefficient
bf/bc and stiffness Kf of the FRP. These derived values are used as an additional input
parameter while building a predictive model [49–52]. The ANN is a data-driven method
for identifying hidden outlines or fitting the non-linear interdependencies among complex
variables. Although the ANN was proven powerful in many prediction-based tasks, it
requires a huge volume of data for model training [51]. In the ANN-based network, a
huge amount of data is usually fed into the network to avoid overfitting [49]. However,
conducting many single-lap shear test assemblies and labeling data with such an amount
are impractical in a bond strength prediction project. New mechanisms have specified
that for a small-scale dataset, ANNs struggle to overtake ensemble-based approaches,
including random forest (RF), eXtreme-gradient boosting (XGBoost), and light-gradient
boosting machine (LightGBM) [53]. Boosting algorithms cumulate weak base classifiers
into an enhanced robust classifier and attain advanced outcomes on numerous machine
learning tasks. Boosting algorithms authorize numerous naive classifiers to model minor
datasets, avoiding the overfitting produced by complex classifiers. This study presents a set
of ensemble methods for enhancing the accuracy in predicting the FRP–concrete interfacial
bonding. The evaluation of the proposed ensemble methods is performed against the data
prepared through single-lap shear bond tests on FRP−concrete specimens presented in the
literature. The proposed ensemble methods are then validated against experimental data
and existing models.

3. Proposed Methodology

This section introduces the proposed method through which the proposed model
for the bond strength estimation takes the training data as the initial input and generates
a random subset for the n number of training data. Let the bond strength test database
be represented by D and by D = {(Xi + Yi), i = 1, 2 . . . ., N}. The independent vari-
able Xi represents the parameters influencing the bond strength (Table 1) and given as
Xi = (xi1, xi2, xi3, xi4, xi5, xi6). The bond strength Pu is represented as a dependent vari-
able (Yi) evaluated from the single-lap shear, where Yi ε {2.4–56.5} (Table 1). In this study,
CatBoost is applied as an ensemble method to build a bond strength prediction model.
The CatBoost algorithm generates a set of regression trees from the random subset and
splits the internal nodes of the regression tree. The results are then aggregated for model
building. The proposed CatBoost bond strength prediction model is validated with the test
data for the bond strength prediction. To further validate the performance of the proposed
model as compared to other ensemble methods, a comparative study is performed on
various ensemble classifiers, namely RF, extreme-gradient boosting (XGBoost) algorithm,
and histogram gradient boosting (HGBoost) algorithm. Section 4 presents a comparison
of how CatBoost works compared with the existing ANN model. Figure 2 illustrates the
ensemble classifier-based bond strength prediction model.

Classic regression models like logistic regression, polynomial regression, and ANN
are historically used to predict a continuous value. These algorithms have the limitation
of performing with smaller datasets, as there is a higher possibility of underfitting to
smaller datapoints during training. In this proposed research, boosting algorithms are
implemented, which can efficiently do deep learning concepts, such as optimization and
regularization on the random forest models. Further, CatBoost algorithm is introduced
with a novel sampling approach called Minimal Variance Sampling (MVS) to regularize the
boosting models. With MVS technique, the number of examples needed for each iteration
of boosting decreases, and the quality of the model improves significantly compared to
the other gradient boosting models. The features for each boosting tree are sampled to
maximize the accuracy of split scoring. By leveraging the sophistication of CatBoost, a
modified training cycle is implemented to take account of cross-validation datapoints.
Furthermore, model save checkpoint are implemented to optimize new training datapoints.
Save checkpoints provide better adaptability for using the CatBoost algorithm for training.
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The internal work of the ensemble classifier for building a prediction model is presented in
the subsequent section.
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3.1. CatBoost

CatBoost is an unbiased gradient boosting algorithm with categorical features. Its
important features are categorical features and a novel order-boosting scheme without
predicting shift. It provides different categorical features with different solutions. Its
procedure is optimized and applied in tree splitting instead of processing in the pre-
processing stage. The features are with a minimum number of classes; thus, the classifier
integrates one hot encoding, which alters the categorical features into numeric features
with a number of occurrences. For composite features, the classes are swapped with the
average target. To avoid overfitting, the average sample xσi,k is calculated with the target
values of the illustrations before xσi,k in an arbitrary permutation σ = (σ1, σ2, . . . .σn) of the
dataset given in Equation (2).

xσi,k =
∑i−1

j=1

[
xσi,k = xσj,k

]
yσj + a ∗ p

∑i−1
j=1

[
xσi,k = xσj,k

]
+ a

(2)

where xσi,k = xσj,k will use value 1 when the circumstance is fulfilled; p denotes the prior
value; and a represents the weights of the prior value. The average of the entire dataset,
P, is used to perform the regression task and compute the prior probability. This feature
transformation will indicate the info loss of the interaction among categorical characters.
Hence, CatBoost considers the previous combination of features in the current state with
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the rest of the categorical features. To prevent overfitting, CatBoost is enabled with a
configurable boosting arrangement based on a similar ordering principle functional to
the categorical characteristics. It works with unaware trees, which also utilize the same
splitting measures for the entire tree construction. These trees are proportionally stable,
have no overfitting, and are quicker in absorbing in the prediction stages. In this work,
CatBoost was applied with the ordered boosting mode for an efficient tree construction.
In the tree construction process using ordered boosting, for one random permutation σ
of the training data, n different trees will be constructed as T1, . . . , Tn such that the tree
Ti is constructed using the first i examples in the permutations. The tree Tj-1 is used to
obtain the residual for the jth sample of the training data. The tree constructed at each
permutation on the training data serves as a model for the data prediction.

During tree construction using the ordered boosting mode in the training data, Cat-
Boost initially generates a p + 1 independent random permutation. The σ =

(
σ1, σ2, . . . .σp

)
permutations are used to define the split evaluation in the internal nodes of the tree con-
struction. The σ0 permutation is used to choose the leaf values lj of the constructed tree.
During the training process, CatBoost preserves the supportive tree Tr,j, where Tq,j (i) is the
present prediction for the ith instance based on the initial j instances in the variation σr. A
tree is then constructed based on it. Algorithm 1 explains how CatBoost works.

Algorithm 1: CatBoost

input: { (Xk, yk)} ∀ K = 1 to n, I
σ← random permutation of [1, n];
Ti← 0 for i = 1.n;
for t← 1 to I do
for i← 1 to n do
ri ← yi − Tσ (i) − 1 (xi);
for i← 1 to n do
∆T← LearnTree (xj, rj): σ (j) ≤ i);
Ti ← Ti + ∆T
return Tn

CatBoost algorithm effectively trains a random forest-based boosting model. CatBoost
algorithm introduces a unique system for training called Minimal Variance Sample (MVS), a
weighed sampling version of the sampling technique for regularization. CatBoost algorithm
consists of the parameters needed to construct each decision tree and the parameters to
configure the random forest model. It also requires specific hyper-parameters to build
the boosting methodology, which will train the model. While training, the CatBoost
algorithm takes the hyper-parameters for the boosting model training and optimizes it. The
trained model is validated, and the applied parameters are saved. The saved parameter
supports defining the threshold parameters used to construct the random forest model.
The hyper-parameters of the CatBoost algorithm are saved and further optimized with
more datapoints.

3.2. XGBoost

eXtreme-gradient boosting (XGBoost) is widely used as a gradient boosting method,
and it is an effective ML algorithm. The XGBoost system is planned as a mountable and
accurate tree boosting technique. XGBoost operates with the characteristics of reformula-
tion of the objective task to include regularization expression, parallel tree learning with
cache-conscious column block, estimated crack findings based on one-sided quantile draw,
and sparsity conscious of the split function. XGBoost enhances the computing and memory
capacities to quickly boost the learning process to the maximum. Even though XGBoost in-
cludes adaptations to reduce overfitting and other types of extended issues, its main feature
against overfitting is a regularized model formulation. It also includes other regularization
techniques, such as shrinkage and instance subsampling. The objective function of XG-
Boost comprises a regularization expression Ω, which manages the model complexity. This
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permits the learning of a naive and predictive model and finding of a noble bias–variance
tradeoff. The objective function of XGBoost is presented in Equations (3) and (4)

obj = ∑
i
L (yi F(xi)) + ∑

i
Ω ( ft), (3)

where

Ω( f ) = γT +
1
2

λ
T

∑
j

w2
j (4)

where T denotes the leaf count of the tree f ; the computed score of the jth leaf of tree f is
denoted as w; and f (x) is a function, such as f (x) = wq(x), where q is a tree that plots sample x
to the corresponding leaf. λ represents the optimization parameter for rigid regularization
which makes prediction less sensitive to training data by decreasing the variance. Parameter
γ is the threshold for the score function for splitting the tree. Equation (5) represents the
XGBoost training by minimizing the objective function on the addition of a new tree.

objt = ∑
i
L (yi, Ft−1 (xi) + ft (xi)) + Ω( ft) (5)

XGBoost supports customized loss functions with Taylor’s second-order approxima-
tion for optimizing loss functions. The objective function is tuned with the w score of the
leaf nodes by removing the constant values. Equation (6) presents the customized XGBoost
loss function.

obj′t =
T

∑
j

∑
iεIj

gi

 wj +
1
2

∑
iεIj

hi + λ

 w2
j

+ γT (6)

where gi and hi are the gradient values of the loss function. The samples allotted to leaf
j are represented as Ij. The ideal score w∗j of leaf j for a tree q can be attained as follows,
using Equation (7):

w∗j =
∑iεIj

gi

∑iεIj
hi + λ

(7)

To enhance the accuracy, the data are stored as blocks of memory in a compressed
column format. The split value is calculated by linearly scanning each column. The split
values are aggregated and applied for all leaves during the single scanning in the gradient
statistics collection. This leads to the parallel algorithm of split value finding. The splitting
technique accesses a non-contiguous memory using gradient values, resulting in missing
cache data with several instances. XGBoost solves this issue by pre-buffering the required
values and processing them.

3.3. Histogram Gradient Boosting

Gradient boosting is a collection of machine learning algorithms built as an ensemble
model for classification. At every iteration, the loss function optimizes with the deepest
descent minimization. The predictive function is built through many optimizations in
function space. It uses both decision tree and linear regression as its base learner. It
starts with the random F0(x) of all output samples. Gradient boosting fits the tree until it
reaches the extreme number of estimators. The sum of all scaled output from the tree in
the ensemble and the initial guess predict the output for the new input. The HGB with a
derivable loss function is adaptable to any regression or classification problem. A binary or
multi-class classification uses negative binomial log-likelihood or multinomial loss function.
In multi-class regression problems, the HGB estimates the additive function F1(x) for each
class l using the loss function Equation (8)

L
({
{y1, F1 (s)}L

1

})
= −

L

∑
l=1

log yl pl(x) (8)
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where L denotes the number of classes; y1 takes the value of 1 or 0 based on the class of
sample x; and pl(x) denotes the probability that x belongs to class l. The probability pl(x)
is calculated using Equation (9).

pl(x) =
eFl(x)

∑L
j=1 eFj(x)

(9)

The regression tree is trained with the pseudo residuals of probabilities. The output
calculation of leaves is presented in Equation (10).

γi,l =
L− 1

L

∑xiεRj,l
rj,l

∑xiεRj,l

∣∣∣rj,l

∣∣∣(1−
∣∣∣rj,l

∣∣∣) (10)

Equation (9) predicts the probabilities of a new observation of all classes. In boosting-
based ensemble methods, the regression trees generated at each layer will incorporate the
strength of the regression subtrees generated to handle different value types generated for
the predictor variables.

3.4. Random Forest

Random forest is an ensemble method used for classification and regression. Due
to its effectiveness and simplicity, it has become the most popular ensemble method
based on previous literatures and surveys. RF is the best classifier. It is a flag shipping
method that serves as an extension of begging decision trees. The RF method reduces
the correlation between the subtrees generated by incorporating the randomized feature.
Through bootstrap sampling, RF provides a variety of trees in the forest. Each decision
tree in the forest is trained with a different set of training data from the original dataset.
RF includes an extra boost of diversity during the development of each tree. A subset of
features from the total set Q of the training data D is used to select the best cut for tree
branching. A RF Tn is generated for every bootstrap sample derived. During the tree
construction, m random variables must be selected, and the best splitting criteria among
the m must be identified. The subtrees are generated based on the splitting criteria, and the
tree construction steps are repeated until the minimum node size nmin is reached at each
terminal tree node. The regression formula for predicting a new datapoint x is presented as
Equation (11).

f̂ B
r f (x) =

1
N

N

∑
n=1

Tn(x) (11)

where the output of the ensemble of trees is denoted by {Tn}. While generating the subtrees,
RF will find the best split only among the n features. The depth of the trees increases
without pruning. The final prediction is attained based on the majority of voting among
the decisions made by different trees. RF overcomes the overfitting problem by averaging
or combining the results of different trees. It also maintains a good accuracy even when a
large portion of data is missing.

4. Datasets and Performance Metrics for Model Evaluation

To evaluate the bond strength of the FRP–concrete interface, a large number of single-
lap shear test results used in the literature were used to build an ensemble method-based
bond strength prediction model. A total of 855 single-lap shear test data instances, each
with seven attributes, were considered from the literature. The dataset included the values
of seven different attributes, which were strength of the concrete cylinder/cube, elastic
modulus, thickness, width and length of the FRP sheet, thickness of the concrete material,
and bond strength. Among these attributes, the bond strength remained as a class-labeled
attribute for model building. For the experimentation, a 80–20 train–test scheme was used
to make a better comparison between the proposed method and those used in the literature
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for the same dataset. The training dataset contained 685 instances of single-lap shear test
data, while the validation data contained 170 instances of the single-lap shear test data. The
overall performance analysis of the proposed ensemble methods was performed using four
performance metrics, namely root mean square error (RMSE), R-square error, covariance
(COV), and integral absolute error (IAE).

4.1. Root Mean Square Error

The RMSE is the standard deviation of the residual functions. It is the measure of the
average scale of the error. The RMSE is calculated by applying the predicted and actual
observation values in Equation (12).

RMSE =

√√√√ 1
n

n

∑
j=1

(yi − ŷi)
2 (12)

where n indicates the number of instances; yi represents the predicted output value; and ŷi
indicates the actual value.

4.2. R-Squared Measure

R-square is the statistical measure that denotes the proportion of variance between
dependent and independent variables. R-square indicates the measure of the relationship
between an independent variable and a dependent variable. It evaluates the observa-
tion around the fitted regression line and is known as the coefficient of determination.
Equation (13) represents the formula for calculating the R-square:

R2 = 1− ∑i(yi − ŷi)
2

∑i(yi − y)2 (13)

where y represents the actual recorded value; ŷi is the predicted value of y; and y is the
average of the y values.

4.3. Covariance

Covariance is the sum dissimilarity of the observations from the original and predicted
values. It directly measures the relationship between values. A positive relationship
between the observations implies that the actual and predicted values are near each other.
A negative relationship between the observations shows that the actual and predicted
values are not close, and it does not provide the best fit. The covariance (cov) between two
variables (x and y) is calculated as follows Equation (14):

cov (x, y) =
∑
(
Xi − X

)
(yi − y)

n− 1
(14)

where Xi denotes the predicted values; yi denotes the actual values; X denotes the mean of
the predicted value; y denotes the mean of the observed value; and n denotes the number
of observations.

4.4. Integral Absolute Error

The IAE is the integration of the absolute error over the predicted and actual observa-
tions that determine the model performance. The IAE represented in Equation (15) denotes
the sum of errors that occur above and below the actual point and inflicts all errors that
occur equally, irrespective of the direction.

IAE =
∫ ∞

0

∣∣∣e(t)∣∣∣ dt (15)

where e(t) represents the error value.
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4.5. Explained Variance Score

Explained variance score (EVS) is used to measure the discrepancy between a model
and actual data. The higher value of EVS indicates the higher strength of association
between the parameters. Better prediction accuracy is achieved by the strong association
with the parameters, and EVS can be measured using the Equation (16).

EVS(y − ŷ) = 1 − var(y − ŷ)
var(y)

(16)

where y represents the actual recorded value; ŷ is the predicted value of y; and var
represents the variance between of the values.

4.6. Mean Squared Error

The mean squared error (MSE) measures the amount of error in the proposed ensemble
models. MSE is calculated by applying the predicted and actual observation values in
Equation (12).

MSE =
1
n

n

∑
i=1

(yi − ŷi ) (17)

where n indicates the number of instances; yi represents the actual value; and ŷi indicates
the predicted output value.

4.7. Mean Absolute Error

The mean absolute error (MAE) represents the actual average value of the absolute
errors of the data points. The absolute error highlights the total value of the difference
between the forecasted value and the actual value. MAE calculates the accuracy for
continuous variables and quantifies the error value expected from the forecast on average.
The MAE is calculated as mentioned in Equation (18).

MAE =
∑n

i=1| yi − ˆyi |
n

(18)

where n indicates the number of instances; yi represents the actual value; and ŷi indicates
the predicted output value.

4.8. Residual Error

Residual standard error (RSE) is represented as a model sigma, a variant of the RMSE
adjusted for the number of predictors in the model. In RSE, the residual error is denoted as
e. Residual error represents the difference between the value predicted by the model and
the actual observed value.

e = y− ŷ (19)

where e represents the residual error; y indicates the actual observed value; and ŷ represents
the predicted output value;

5. Results and Discussion

This section presents two types of comparative studies based on the model perfor-
mance to evaluate the effectiveness of the proposed work. The proposed bond strength
prediction model was initially developed using the single-lap shear test data considered
from the literature. In this proposed work, 80% of the data is utilized from the total available
data for the model building. The remaining 20% of the data was later used to validate the
performance of the proposed model. All the proposed ensemble models were constructed
over the Python platform, with dependencies on the Python machine learning libraries. The
computational resource used for this model building was Intel Core i7 with GPU RTX 2080,
3.60 GHz, and 16 GB RAM. Unlike deep learning models, ensemble methods depend only
on minimum computation power. They do not need to depend on GPU servers for compu-
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tation. The two comparative studies performed to validate the performance of the proposed
CatBoost model presented in this section involved (i) a comparison of CatBoost with other
ensemble approaches and (ii) a comparison of CatBoost with the ANN algorithm.

5.1. Comparative Study of CatBoost with Other Ensemble Approaches

A comparative study was conducted with other well-known ensemble methods to
validate the performance of the CatBoost method. The methods used for the comparison
were XGBoost, HGBoost, and RF. Table 3 summarizes the test results of the various ensemble
methods over the different performance metrics on the single-lap shear test dataset.

Table 3. Performance comparison of the ensemble methods.

Performance Metrics

Ensemble Methods

CatBoost XGBoost HGBoost Random
Forest

RMSE 2.310 2.522 2.675 2.733
R-square 0.961 0.954 0.948 0.946

IAE 0.088 0.099 0.105 0.106
COV 0.218 0.222 0.242 0.232
EVS 0.959 0.947 0.938 0.925
MSE 5.335 6.360 7.153 7.469
MAE 1.498 1.645 1.678 1.708

RE 2.123 2.353 2.370 2.472

Table 3 evidently shows that the proposed CatBoost approach achieved maximum
performance in predicting the bond strength on the single-lap shear test dataset, with the
maximum R-square value of 0.961 and minimum RMSE, COV, and IAE values of 2.310,
0.218, and 0.088, respectively. In addition, CatBoost algorithm perform better than all the
other models in terms of other performance metrics, including EVS, MSE, MAE, and RE.
The results also illustrate that, next to CatBoost, XGBoost had a better performance in
predicting the bond strength values, followed by HGBoost and RF. Figures 3 and 4 presents
a visualization of the performance comparison of the proposed CatBoost on different
performance metrics with the other ensemble methods.

Figure 5 depicts the performances of the ensemble methods by plotting the predicted
bond strength values with a sequence of bond strength tests. The actual and predicted
bond strength results of CatBoost more accurately overlapped each other compared to
those of the other ensemble methods.

Figure 6 shows the estimator result analysis of the ensemble methods, which clearly
demonstrates that the estimator results of CatBoost and its true test results are less scattered
compared with those of other ensemble methods. The boosting schemes used in CatBoost
helped reduce overfitting and improved the model quality. Furthermore, CatBoost used
the symmetric trees method for the tree construction; hence, it can have fast inference over
the other ensemble methods.

5.2. Comparative Study of the Ensemble Approach with ANN

In the literature, an ANN-based model [1] was developed by considering the single-
lap shear test data considered in 34 reference papers. The ANN-based model produced a
satisfactory accuracy when compared to the other existing models in the literature. In the
preceding subsection, a comparative study was conducted between the proposed CatBoost
method and the ANN-based model. The result showed that the proposed CatBoost method
has better performance than the ANN-based model in predicting the bond strength of
FRP–concrete. A comparative study on performance was also conducted between the
proposed ensemble methods and the existing ANN-based model on single-lap shear test
data (Figure 3). Figure 7 depicts the consolidated performance analysis of CatBoost and
other ensemble classifiers, showing that the former provides the best fit.
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CatBoost produced the maximum accuracy when compared to the other ensemble
methods in terms of the bond strength prediction; hence, a separate comparison was
conducted. CatBoost delivers better performance on the training and evaluation while
modelling with the bond strength dataset. CatBoost takes advantage of the categorical
features and mainly leverages that for model building. It assumes that absolute features are
more powerful and best suited for the dataset with a more definite feature set. CatBoost is
perfectly implemented for the bond strength dataset with mixed data types. CatBoost also
does a better job in training a model with a relatively smaller dataset. CatBoost algorithm
offers various hyperparameters to tune and custom call-back functions. Table 4 presents
the performance comparison of the CatBoost and ANN models.

Table 4. Performance comparison of ANN and CatBoost.

Performance Measures
ML Methods

ANN CatBoost

RMSE 3.97 2.31
R-square 0.93 0.96

COV 0.22 0.22
IAE 0.16 0.09
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Figure 3. Performance of the ensemble methods: (a) root mean square error (RMSE), (b) R-square
error (R-square), (c) coefficient of variance (COV), and (d) integral absolute error (IAE).
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Figure 4. Performance of the ensemble methods: (a) explained variance score (EVS), (b) mean square
error (MSE), (c) mean absolute error (MAE), and (d) residual error (RE).
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Figure 5. Actual vs. predicted result of the ensemble methods. (a) CatBoost, (b) XGBoost, (c) HGBoost,
and (d) random forest.
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The proposed CatBoost ensemble classifier was compared with the ANN classifier us-
ing all statistical measures (i.e., RMSE, R-square, COV, and IAE). Table 4 shows that the per-
formance of the CatBoost model (RMSE = 2.31; R-square = 0.96; COV = 0.22; and IAE = 0.09)
was better than the ANN model (RMSE = 3.97; R-square = 0.93; COV = 0.22; and IAE = 0.16)
(Figure 8). The statistical metric values showed that the accuracy of the ensemble algo-
rithms was better than that of the ANN model when predicting the bond strength of the
FRP–concrete interfaces. The prototypes in the literature were developed based on fracture
mechanics and semi-empirical approaches. Few models resulted in an effective bond
strength prediction model with a better predictive accuracy. A comparison with the best-
performing existing bond strength prediction models (i.e., Chen et al.’s model (IAE = 22.1%,
RMSE = 5.61, and COV = 28.7%) [13], Kanakubo et al.’s model (IAE = 22.42%, RMSE = 5.57,
and COV = 29.39%) [8], Lu’s model (IAE = 21.44%, RMSE = 5.46, and COV = 27.51%) [12],
Zhou et al.’s model (IAE = 20.74%, RMSE = 5.05, and COV = 29.21%) [13], Wu et al.’s model
(IAE = 23.04%, RMSE = 5.56, and COV = 28.6%) [14], and the ANN model (IAE = 23.04%,
RMSE = 5.56, and COV = 28.6%) [14] in the literature) was performed to validate the
proposed model. Figure 9 presents the comparison of the error evaluation of the proposed
models with the models used in the literature.
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The error evaluation comparison presented in Figure 9 shows that the ensemble meth-
ods used herein can produce maximum accuracy compared to any other model presented
in the literature. The ANN-based model performed better than the other traditional algo-
rithms in the literature by maintaining the minimum error rate. The ensemble methods
helped convert a set of feeble learners into robust learners by combining diversified learners.
This enabled the ensemble methods to reduce variance and bias compared to the other
machine learning algorithms.

6. Conclusions

This work employed an ensemble machine learning approach for FRP–concrete bond
strength prediction. To build the model, a large number of single-lap shear test experimental
data from the reference papers of FRP–concrete bond strength data were collected. The
collected data were pre-processed to eliminate the missing data, finally reaching a total of
855 complete test result datapoints. The complete data set included the values of seven
important attributes, which are strength of the concrete cylinder/cube, elastic modulus,
thickness, width and length of the FRP sheet, thickness of the concrete material, and bond
strength value. These seven attributes from 685 instances were used to build the ensemble
model for the bond strength prediction. The remaining 170 instances were utilized for
the model validation. Further, the performance of the ensemble was validated with all
the other possible performance metrics and showed an improved performance compared
to other machine learning models used in the literature. Among the proposed ensemble
models, CatBoost algorithm managed to produce maximum performance compared to the
other ensemble methods.

Furthermore, the hyperparameters of CatBoost algorithm are perfectly finetuned in
this research work for a relatively small dataset that has mixed data types. Despite the
significant performance of CatBoost algorithm, finetuning of the hyperparameters remains
challenging and requires proper experimentation on larger dataset. Further research can be
conducted by considering additional parameters in addition to the existing single-lap shear
test data available in the literature. This enables the future researchers to determine the
sensitivity of the FRP–concrete interfacial bonding in external conditions.
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