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Abstract: In this article, we introduce a new mixed-type iterative algorithm for approximation
of common fixed points of two multivalued almost contractive mappings and two multivalued
mappings satisfying condition (E) in hyperbolic spaces. We consider new concepts of weak w2-
stability and data dependence results involving two multivalued almost contractive mappings. We
provide examples of multivalued almost contractive mappings to show the advantage of our new
iterative algorithm over some exiting iterative algorithms. Moreover, we prove several strong 4-
convergence theorems of our new algorithm in hyperbolic spaces. Furthermore, with another novel
example, we carry out a numerical experiment to compare the efficiency and applicability of a new
iterative algorithm with several leading iterative algorithms. The results in this article extend and
improve several existing results from the setting of linear and CAT(0) spaces to hyperbolic spaces.
Our main results also extend several existing results from the setting of single-valued mappings to
the setting of multivalued mappings.

Keywords: weak w2-stability; multivalued almost contractive mappings; multivalued mappings
satisfying condition (E); data dependence; strong and M-convergence

MSC: 05A30; 30C45; 11B65; 47B38

1. Introduction

In fixed point theory, the role played by ambient spaces is paramount. Several prob-
lems in diverse fields of science are naturally nonlinear. Therefore, transforming the linear
version of a given problem into its equivalent nonlinear version is very pertinent. Moreover,
studying various problems in spaces without a linear structure is significant in applied and
pure sciences. Several efforts have been made to introduce a convex-like structure on a
metric space. Hyperbolic space is one of the spaces that posses this structure.

In this paper, our studies will be carried out in the setting of hyperbolic space studied
by Kohlenbach [1]. This notion of hyperbolic space is more restrictive than the notion of
hyperbolic space considered in [2] and more general than the notion of hyperbolic space
studied in [3]. Banach and CAT(0) spaces are well known to be special cases of hyperbolic
spaces. Moreover, the class of hyperbolic spaces properly contains a Hilbert ball endowed
with hyperbolic metric [4], Hadamard manifolds, R-trees, and the Cartesian product of
Hilbert spaces.
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Definition 1. A hyperbolic space (Q, d,K) in the sense used by Kohlenbach [1] is a metric space
(Q, d) with a convexity mapping K : Q2 × [0, 1]→ Q that satisfies

(C1) d(η,K(m, w, ξ)) ≤ ξd(η, m) + (1− ξ)d(η, w);
(C2) d(K(m, w, ξ),K(m, w, υ)) ≤ |ξ − υ|d(m, w);
(C3) K(m, w, ξ) = K(w, m, (1− ξ));
(C4) d(K(m, u, ξ),K(w, v, ξ)) ≤ (1− ξ)d(m, w) + ξd(u, v),

for all m, w, u, v ∈ Q and ξ, υ ∈ [0, 1]. A nonempty subset J of a hyperbolic space Q is termed
convex, if K(m, w, ξ) ∈ J , for all m, w ∈ J and ξ ∈ [0, 1].

Suppose m, w ∈ Q and ξ ∈ [0, 1], the notation (1− ξ)m⊕ ξw is used for K(m, w, ξ).
The following also holds for the more general setting of convex metric space [5]: for any
m, w ∈ Q and ξ ∈ [0, 1], d(m, (1 − ξ)m ⊕ ξw) = ξd(m, w) and d(w, (1 − ξ)m ⊕ ξw) =
(1− ξ)d(m, w). Consequently, 1m⊕ 0w = m, 0m⊕ 1w = w and (1− ξ)m⊕ ξm = ξm⊕
(1− ξ)m = m.

The notion of multivalued contraction mappings and nonexpasive mappings using
the Hausdorff metric was initiated by Nadler [6] and Markin [7]. The theory of multivalued
mappings has several applications in convex optimization, game theory, control theory,
economics, and differential equations.

Let Q be a metric space and J a nonempty subset of Q. The subset J is called
proximal if for all m ∈ Q, there exists a member w in J such that

d(m, w) = dist(m,J ) = inf{d(m, s) : s ∈ J }.

Let P(J ) denote the collection of all nonempty proximal bounded and closed subsets
of J , and BC(J ) the collection of all nonempty closed bounded subsets. The Hausdorff
distance on BC(J ) is defined by

H (W , V ) = max

{
sup
m∈W

d(m, V ), sup
w∈V

d(w, W )

}
, ∀W , V ∈ BC(J ).

A point m ∈ J is called a fixed point of the multivalued mapping G : J → 2J

if m ∈ Gm. Let F (G) denote the set of all fixed points of G. A multivalued mapping
G : J → BC(J ) is called nonexpansive if H (Gm,Gw) ≤ ρ(m, w), for all m, w ∈ J and it
is called quasi-nonexpansive if F (G) 6= ∅ such that H (Gm,Gq?) ≤ ρ(m, q?), for all m ∈ J
and q? ∈ F (G) 6= ∅. In 2007, the notion of single-valued almost contractive mappings of
Berinde [8] was extended to multivalued almost contractive mappings by M. Berinde and
V. Berinde [9], as follows.

Definition 2. A multivalued mapping G : J → BC(J ) is said to be almost contractive if there
exist $ ∈ [0, 1) and L ≥ 0 such that the following inequality holds:

H (Gm,Gw) ≤ $d(m, w) + Ldist(m,Gm), ∀m, w ∈ J . (1)

In 2008, Suzuki [10] introduced a generalized class of nonexpansive mappings, which
is also known as condition (C), and further showed that the class of mapping satisfying
condition (C) is more general than the class of nonexpansive mappings. In 2011, Eslami
and Abkar [11] defined the multivalued version of condition (C) as follows.

Definition 3. A multivalued mapping G : J → BC(J ) is said to satisfy condition (C) if the
following inequalities hold:

1
2

dist(m,Gm) ≤ d(m, w)⇒H (Gm,Gw) ≤ d(m, w), ∀m, w ∈ J . (2)
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Very recently, García–Falset et al. [12] defined a new single-valued mapping called
condition (E). This class of mappings is weaker than the class of nonexpansive mappings
and stronger than the class of quasi-nonexpansive mappings. Recently, Kim et al. [13]
defined the multivalued and hyperbolic space version of the class of mappings satisfying
condition (E). The authors also established some existence and convergence results for
such mappings.

Definition 4. A multivalued mapping G : J → BC(J ) is said to satisfy condition (Eµ) if the
following inequality holds:

dist(m,Gw) ≤ µdist(m,Gm) + d(m, w), ∀m, w ∈ J . (3)

The mapping G is said to satisfy condition (E) whenever G satisfies condition (Eµ) for some
µ ≥ 1.

The studies involving multivalued nonexpansive mappings are known to be more
difficult than the concepts involving single-valued nonexpansive mappings. For the ap-
proximation of fixed points of various mappings, iterative methods are well known to be
essential. In recent years, several authors have introduced and studied different iterative
algorithms for approximating fixed points of multivalued nonexpansive mappings as well
as multivalued mappings satisfying condition (E) (see [13–18] and the references in them).

In 2007, Argawal et al. [19] introduced the S-iterative algorithm for single-valued
contraction mappings. In 2014, Chang et al. [15] considered the mixed-type S-iterative
algorithm in hyperbolic spaces for multivalued nonexpansive mappings as follows:

m1 ∈ J ,
wk = K(mk, uk, ηk),
mk+1 = K(uk, vk, ξk),

k ∈ N, (4)

where vk ∈ G1wk, uk ∈ G2m, {ξk} and {ηk} are real sequences in (0,1).
In addition, in [13] Kim et al. considered the multivalued and hyperbolic space version

of S-iterative algorithm for fixed points multivalued mappings satisfying condition (E) as
follows: 

m1 ∈ J ,
wk = K(mk, uk, ηk),
mk+1 = K(uk, vk, ξk),

k ∈ N, (5)

where vk ∈ Gwk, uk ∈ Gmk, {ξk} and {ηk} are real sequences in (0,1).
It is worth noting that the iterative algorithm (4) involves two multivalued mappings

and the iterative algorithm (5) involves one multivalued mapping and the class of mappings
considered by Kim et al. [13] is more general than the class of mappings considered by
Chang et al. [15].

In 2019, Chuadchawnay et al. [20] studied the iterative algorithm (4) for common fixed
points of two multivalued mappings satisfying condition (E) in hyperbolic spaces.

Very recently, Ahmad et al. [21] developed the hyperbolic space version of the F
iterative algorithm [22]. The authors obtained some fixed point convergence results for
single-valued mappings satisfying condition (E) and single-valued almost contractive
mappings. Furthermore, they obtained data dependence and weak w2-stability results
for single-valued almost contractive mappings. At the same time, they also raised the
following interesting open questions:

Open Question 1. Is it possible to establish all the results of Ahmad et al. [21] in the setting of
multivalued mappings?
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Open Question 2. Is it possible to establish all the results of Ahmad et al. [21] in the setting of
common fixed points?

Remark 1. It is worth mentioning that, as far as we know, there are no works in the literature
concerning stability and data dependence results of mixed-type iterative algorithms for single-valued
and multivalued mappings in hyperbolic spaces. Therefore, one of our aims in this article is to fill
such gaps and hence give affirmative answers to the above Open Questions 1–2.

It is well known that common fixed point problems have direct application with
minimization problems [23].

Motivated and inspired by the above results, in this paper, we introduce the following
mixed-type hyperbolic space version of the novel iterative algorithm considered in [24]:

m1 ∈ J ,
sk = K(mk, uk, ηk),
wk = K(uk, tk, ξk),
pk = hk,
mk+1 = `k,

k ∈ N, (6)

where {ξk}, {ηk} are real sequences in (0,1) and `k ∈ G1 pk, hk,∈ G2wk, tk ∈ G1sk, uk ∈ G2mk.
We prove strong convergence theorems of the iterative method (6) for common fixed points
of two multivalued almost contractive mappings. Next, we present some novel numerical
examples to compare the efficiency and applicability of our new iterative algorithm (6)
with many leading iterative algorithms in the current literature. Moreover, we study new
concepts of weak w2-stability and data-dependence results of (6) for two multivalued
almost contractive mappings. Furthermore, we prove strong and M convergence results
of (6) for common fixed points of two multivalued mappings satisfying the condition (E).
We provide another example and with the aid of the example, we show the advantage of our
iterative method (6) over some existing iterative methods in terms of rate of convergence.
Our results give affirmative answers to the two above Open Questions 1 and 2 raised by
Ahmad [21].

2. Preliminaries

A hyperbolic space (Q, d,K) is termed uniformly convex [5], if, given s > 0 and
ε ∈ (0, 2], there exists σ ∈ (0, 1], such that for any m, w, p ∈ Q,

d(
1
2

m⊕ 1
2

w, p) ≤ (1− σ)s,

provided d(m, p) ≤ s, d(m, p) ≤ s and d(m, w) ≥ εs. A mapping Θ : (0, ∞)× (0, 2]→ (0, 1]
which ensures that σ = Θ(s, ε) for any s > 0 and ε ∈ (0, 2], is said to be a modulus of
uniform convexity. The mapping Θ is termed monotone if for fixed ε, it decreases with s;
that is, Θ(s2, ε) ≤ Θ(s1, ε), for all s2 ≥ s1 > 0.

In 2007, with a modulus of uniform convexity σ(s, ε) = ε2

8 quadratic in ε, Leustean [25]
showed that CAT(0) space are uniformly convex hyperbolic spaces. This implies that the
class of uniformly convex hyperbolic spaces are a natural generalization of both CAT(0)
space and uniformly convex Banach spaces [5].

Next, we give the definition of M-convergence. In view of this, we consider the
following concept which will be useful in the definition. Let J denote a nonempty subset
of the metric space (Q, d) and {mk} be any bounded sequence in Q. For all m ∈ Q,
we define

• asymptotic radius of {mk} at m as

ra({mk}, m) = lim sup
k→∞

d(mk, m);
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• asymptotic radius of {mk} relative to J as

ra({mk},J ) = inf{ra({mk}, m); m ∈ J }; and

• asymptotic center of {mk} relative to J as

AC({mk},J ) = {m ∈ J ; ra({mk}, m) = ra({mk},J )}. (7)

It is known that every sequence that is bounded has a unique asymptotic center with
respect to each closed convex subset in Banach spaces and CAT(0) spaces. If the asymptotic
center is taken with rest to Q, then we simply denote it by AC({mk}).

The following lemma by Leustean [25] shows that the above property holds in a
complete uniformly convex hyperbolic space.

Lemma 1 ([25]). Let (Q, d,K) be a complete, uniformly convex hyperbolic space with a monotone
modulus of uniform convexity Θ. Then, for any sequence {mk} that is bounded in Q, it has a
unique asymptotic center with respect to any nonempty closed convex subset J of Q.

Now, we further consider some definitions and lemmas that will be useful in proving
our main results as follows.

Definition 5. A sequence {mk} in Q is said to be M-convergent to an element m in Q, if m is the
unique asymptotic center of every subsequence {mkl

} of {mk}. For this, we write M − lim
k→∞

mk = m

and say m is the M-limit of {mk}.

Lemma 2 ([23]). Assume that Q is a uniformly convex hyperbolic space with the monotone
modulus of uniform convexity Θ. Let m ∈ Q and {ϑk} be a sequence in [d, e] for some d, e ∈ (0, 1).
Suppose {mk} and {wk} are sequences inQ such that lim sup

k→∞
d(mk, m) ≤ c, lim sup

k→∞
d(wk, m) ≤

c and lim
k→∞

d(K(mk, wk, ϑk), m) = c for some c ≥ 0, and then we get lim
k→∞

d(mk, wk) = 0.

Lemma 3 ([26]). Let {ρk} and {φk} be non-negative sequences for which one assumes that there
exists a z0 ∈ N such that, for all z ≥ z0, and

ρk+1 = (1− ϕk)ρk + ϕkφk

is satisfied, where ϕk ∈ (0, 1) for all k ∈ N, ∑∞
k=0 φk = ∞ and φk ≥ 0 ∀k ∈ N. Then the following

holds:
0 ≤ lim sup

k→∞
ρk ≤ lim sup

k→∞
φk.

Definition 6 ([26]). Let G, G̃ be two self-mappings onQ. We say that G̃ is an approximate operator
of G if for all ε > 0, we have that d(Gm, G̃m) ≤ ε holds for any m ∈ Q.

Definition 7 ([27]). Two sequences {mk} and {wk} are said to be equivalent if

d(mk, wk)→ 0, as k→ ∞.

Definition 8 ([28]). Let (Q, d) be a metric space, G : Q → Q be a self-map and for arbitrary
m1 ∈ Q, {mk} is the iterative algorithm defined by

mk+1 = f (G, mk), k ≥ 0. (8)
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Assume that mk → q? as k→ ∞, for all q? ∈ F (G) and for any sequence {yk} ⊂ Q which
is equivalent to {mk}, and we have

lim
k→∞

d(yk+1, f (G, yk)) = 0 =⇒ lim
k→∞

yk = q?,

and then we say that the iterative algorithm (8) is weak w2-stable with respect to G.

Proposition 1 ([13]). Suppose G : J → BC(J ) is a multivalued mapping satisfying condition
(E), such that F (G) 6= ∅, and then G is a multivalued quasi-nonexpansive mapping.

Lemma 4 ([13]). Let (Q, d,K) be a complete uniformly convex hyperbolic space with a monotone
modulus of uniform convexity Θ, and let J be a nonempty closed convex subset of Q. Let
G : J → P(J ) be a multivalued mapping which satisfies condition (E) with convex values.
Suppose {mk} is a sequence in J with 4− lim

k→∞
mk = m and lim

k→∞
dist(mk,Gmk) = 0, then

m ∈ F (G).

Lemma 5 ([15]). Let (Q, d,K) be a complete uniformly convex hyperbolic space with a monotone
modulus of uniform convexity Θ and {mk} be a sequence which is bounded in Q such that
AC({mk}) = {m}. Suppose that {uk} is a subsequence of {mk} such that AC({uk}) = {u},
and the sequence {d(mk, u)} is convergent, and then we have m = u.

3. Convergence Results for Two Multivalued, Almost Contraction Mappings

Theorem 3. Let J be a nonempty closed convex subset of a hyperbolic space Q and Gi : J →
P(J ) (i=1,2) be two multivalued almost contraction mappings. Let F =

⋂2
i=1 F (Gi) 6= ∅ and

Giq? = {q?} for each q? ∈ F (i = 1, 2). Let {mk} be the sequence defined by (6). Then, {mk}
converges to a point in F .

Proof. Let q? ∈ F . From (1) and (6), we have

d(sk, q?) = d(K(mk, uk, ηk), q?)

≤ (1− ηk)d(mk, q?) + ηkd(uk, q?)

≤ (1− ηk)d(mk, q?) + ηkdist(uk,G2q?)

≤ (1− ηk)d(mk, q?) + ηkH (G2mk,G2q?)

= (1− ηk)d(mk, q?) + ηkH (G2q?,G2mk)

≤ (1− ηk)d(mk, q?) + ηk[$d(q?, mk) + Ldist(q?,G2q?)]

≤ (1− ηk)d(mk, q?) + ηk$d(mk, q?)

= (1− (1− $)ηk)d(mk, q?). (9)

Because 0 ≤ $ < 1 and 0 < ηk < 1, it follows that (1− (1− $)ηk) < 1. Thus, (9)
becomes

d(sk, q?) ≤ d(mk, q?). (10)

By using (6) and (10), we have

d(wk, q?) = d(K(uk, tk, ξk), q?)

≤ (1− ξk)d(uk, q?) + ξkd(tk, q?)

≤ (1− ξk)dist(uk,G2q?) + ξkdist(tk,G1q?)

≤ (1− ξk)H (G2mk,G2q?) + ξkH (G1sk,G1q?)

≤ (1− ξk)$d(mk, q?) + ξk$d(sk, q?)

≤ (1− ξk)$d(mk, q?) + ξk$d(mk, q?)

≤ (1− (1− $)ξk)$d(mk, q?). (11)
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Because 0 ≤ $ < 1 and 0 < ξk < 1, it follows that (1− (1− $)ξk) < 1. Thus, (9)
becomes

d(wk, q?) ≤ $d(mk, q?). (12)

Moreover, from (6) and (12), we have

d(pk, q?) = d(hk, q?)

≤ dist(hk,G2q?)

≤ H (G2wk,G2q?)

≤ $d(wk, q?)

≤ $2d(mk, q?). (13)

Finally, by (6) and (13), we have

d(mk+1, q?) = d(`k, q?)

≤ dist(`k,G1q?)

≤ H (G1 pk,G1q?)

≤ $d(pk, q?)

≤ $3d(mk, q?). (14)

Inductively, we obtain

d(mk+1, q?) ≤ $3(k+1)d(m0, q?).

Because 0 ≤ $ < 1, it follows that lim
k→∞

mk = q?.

Next, we give examples of two multivalued almost contractive mappings that are
neither contraction nor nonexpansive mappings. With the provided example, we also
compare the efficiency of our iterative algorithm (6) with some existing methods.

Example 1. Let Q = R with the distance metric and J = [−1, 1]. Let G1,G2 : J → P(J ) be
defined by

G1m =


[0, m

4 ], if m ∈ [−1, 0],

{0}, if m ∈ (0, 1];

and

G2m =


[0, m

8 ], if m ∈ [−1, 0]

{0}, if m ∈ (0, 1].

Because every nonexpansive mapping is continuous, we know that G1 and G2 are not multi-
valued nonexpansive mappings because of their discontinuity at 0 ∈ [−1, 1] and hence, they are
not multivalued contraction mappings. Next, we show that G1 is a multivalued almost contractive
mapping. In view of this, we consider the following cases.

Case I: When m, w ∈ [−1, 0], we have
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H (G1m,G1w) =
1
4
|m− w|

≤ 1
4
|m− w|+ 4

5

∣∣∣∣3m
4

∣∣∣∣
=

1
4
|m− w|+ 4

5

∣∣∣m− m
4

∣∣∣
=

1
4

d(m, w) +
4
5

dist
(

m, [0,
m
4
]
)

=
1
4

d(m, w) +
4
5

dist(m,G1m).

Case II: When m, w ∈ (0, 1], we have

H (G1m,G1w) = 0 ≤ 1
4

d(m, w) +
4
5

dist(m,G1m).

Case III: When m ∈ [−1, 0] and w ∈ (0, 1], we have

H (G1m,G1w) =
∣∣∣m

4

∣∣∣
<

1
4
|m− w|+ 4

5

∣∣∣∣3m
4

∣∣∣∣
= |m− w|+ 4

5

∣∣∣m− m
4

∣∣∣
=

1
4

d(m, w) +
4
5

dist
(

m, [0,
m
4
]
)

=
1
4

d(m, w) +
4
5

dist(m,G1m).

Case IV: When m ∈ (0, 1] and w ∈ [−1, 0], we have

H (G1m,G1w) =
∣∣∣w

4

∣∣∣
<

1
4
|m− w|+ 4

5
|m|

= |m− w|+ 4
5
|m− 0|

=
1
4

d(m, w) +
4
5

dist(m, {0})

=
1
4

d(m, w) +
4
5

dist(m,G1m).

From all the above cases, we have seen that G1 satisfies (1) for $ = 1
4 and L = 4

5 .
Similarly, we can show that G2 satisfies (1) for $ = 1

4 and L = 4
5 . Clearly, F = F (G1) ∩

F (G2) = {0}.

Now, for control parameters ξk = ηk = ζk = 0.65, for all k ∈ N and starting point
m1 = 1, then by using MATLAB R2015a, we obtain the following Tables 1 and 2 and
Figures 1 and 2.
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Table 1. Convergence behavior of various iterative algorithms.

mk Mann Ishikawa Abbas S M New

m1 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
m2 0.512500 0.433281 0.348068 0.170781 0.032031 0.003557
m3 0.262656 0.187733 0.121152 0.029166 0.001026 0.000000
m4 0.134611 0.081341 0.042169 0.004981 0.000033 0.000000
m5 0.068988 0.035244 0.014678 0.000851 0.000001 0.000000
m6 0.035357 0.015270 0.005109 0.000145 0.000000 0.000000
m7 0.018120 0.006616 0.001778 0.000025 0.000000 0.000000
m8 0.009287 0.002867 0.000619 0.000004 0.000000 0.000000
m9 0.004759 0.001242 0.000215 0.000001 0.000000 0.000000
m10 0.002439 0.000538 0.000075 0.000000 0.000000 0.000000
m11 0.001250 0.000233 0.000026 0.000000 0.000000 0.000000
m12 0.000641 0.000101 0.000009 0.000000 0.000000 0.000000
m13 0.000328 0.000044 0.000003 0.000000 0.000000 0.000000
m14 0.000168 0.000019 0.000001 0.000000 0.000000 0.000000
m15 0.000086 0.000008 0.000000 0.000000 0.000000 0.000000

The reds show the point of convergence of various iterative methods.

Table 2. Convergence behavior of various iterative algorithms.

mk Noor SP Picard-Man Picard-S F New

m1 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
m2 0.458320 0.134611 0.128125 0.042695 0.008008 0.003557
m3 0.210058 0.018120 0.016416 0.001823 0.000064 0.000000
m4 0.096274 0.002439 0.002103 0.000078 0.000001 0.000000
m5 0.044124 0.000328 0.000269 0.000003 0.000000 0.000000
m6 0.020223 0.000044 0.000035 0.000000 0.000000 0.000000
m7 0.009269 0.000006 0.000004 0.000000 0.000000 0.000000
m8 0.004248 0.000001 0.000001 0.000000 0.000000 0.000000
m9 0.001947 0.000000 0.000000 0.000000 0.000000 0.000000

The reds show the point of convergence of various iterative methods.
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Figure 1. Graph corresponding to Table 1.
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Figure 2. Graph corresponding to Table 2.

As seen in Tables 1 and 2 and Figures 1 and 2 above, it is very clear that our new
iterative algorithm (6) converges faster to 0 than Mann [29], Ishikawa [30], Abbas [31], S [19],
M [32], Noor [33], SP [34], Picard-Man [35], Picard-S [36], and F [22] iteration processes.

4. Weak w2-Stability Results for Two Multivalued Almost Contractive Mappings

In this section, we first give the definition of w2-stability involving two mappings in
hyperbolic space. After this, we prove that our new iterative algorithm (6) is weak w2-stable
with respect to two multivalued almost contractive mappings.

Definition 9. Let (Q, d,K) be a hyperbolic space, Gi : Q → Q (i = 1, 2) be two self-maps, and
arbitrary m1 ∈ Q, {mk} be the iterative algorithm defined by

mk+1 = f (Gi, mk) (i = 1, 2), k ≥ 0. (15)

Assume that mk → q? as k → ∞, for all q? ∈ F =
⋂2

i=1 F (Gi) and for any sequence
{xk} ⊂ Q which is equivalent to {mk}, we have

lim
k→∞

εk = lim
k→∞

d(xk+1, f (Gi, xk)) = 0 =⇒ lim
k→∞

xk = q?.

Then we say that the iterative algorithm (15) is weak w2-stable with respect to Gi (i = 1, 2).

Theorem 4. Suppose that all the assumptions in Theorem 3 are satisfied. Then, the sequence {mk}
defined by (6) is weak w2-stable with respect to G1 and G2.

Proof. Suppose {mk} is the sequence defined by (6) and {xk} ⊂ J an equivalent sequence
of {mk}. We define {εk} ∈ R+ by

x1 ∈W,
ck = K(xk, gk, ηk),
bk = K(gk, ik, ξk),
ak = fk,
εk = d(xk+1, ek),

k ∈ N, (16)

where {ξk}, {ηk} are real sequences in (0,1) and ak ∈ G1ak, fk,∈ G2bk, ik ∈ G1ck, gk ∈ G2xk.
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Suppose lim
k→∞

εk = 0 and q? ∈ F . From (6) and (16), we have

d(sk, ck) = d(K(mk, uk, ηk),K(xk, gk, ηk))

≤ (1− ηk)d(mk, xk) + ηkH (G2mk,G2xk)

≤ (1− ηk)d(mk, xk) + ηk$d(mk, xk) + ηkLdist(mk,G2mk)

≤ (1− (1− $)ηk)d(mk, xk) + ηkLd(mk, q?) + ηkLdist(G2mk, q?)

≤ (1− (1− $)ηk)d(mk, xk) + ηkLd(mk, q?) + ηkLH (G2mk,G2q?)

≤ (1− (1− $)ηk)d(mk, xk) + ηkLd(mk, q?) + ηkL$d(mk, q?)

≤ (1− (1− $)ηk)d(mk, xk) + ηkL(1 + $)d(mk, q?). (17)

Because 0 ≤ $ < 1 and 0 < ηk < 1, it follows that (1− (1− $)ηk) < 1. Thus, (17)
becomes

d(sk, ck) ≤ d(mk, xk) + ηkL(1 + $)d(mk, q?). (18)

By (6), (16), and (18), we obtain

d(wk, bk) = d(K(uk, tk, ξk),K(gk, ik, ξk))

≤ (1− ξk)H (G2mk,G2xk) + ξkH (G1sk,G1ck)

≤ (1− ξk)[$d(mk, xk) + Ldist(mk,G2mk)] + ξk[$d(sk, ck) + Ldist(sk,G1sk)]

≤ (1− ξk)[$d(mk, xk) + Ld(mk, q?) + Ldist(G2mk, q?)]

+ξk[$d(sk, ck) + Ld(sk, q?) + Ldist(G1sk, q?)]

≤ (1− ξk)[$d(mk, xk) + Ld(mk, q?) + LH (G2mk,G2q?)]

+ξk[$d(sk, ck) + Ld(sk, q?) + LH (G1sk,G1q?)]

≤ (1− ξk)[$d(mk, xk) + Ld(mk, q?) + L$d(mk, q?)]

+ξk[$d(sk, ck) + Ld(sk, q?) + L$d(sk, q?)]

≤ (1− ξk)[$d(mk, xk) + L(1 + $)d(mk, q?)]

+ξk[$d(sk, ck) + L(1 + $)d(sk, q?)]

≤ $d(mk, xk) + L(1 + $)d(mk, q?)

+ξk$d(sk, ck) + ξkL(1 + $)d(sk, q?)

≤ $d(mk, xk) + L(1 + $)d(mk, q?)

+ξk$[d(mk, xk) + ηkL(1 + $)d(mk, q?)] + ξkL(1 + $)d(sk, q?). (19)

By (6), (16), and (19), we obtain

d(pk, ak) = d(hk, fk)

= H (G2wk,G2bk)

≤ $d(wk, bk) + Ldist(wk,G2wk)

≤ $d(wk, bk) + Ld(wk, q?) + Ldist(G2wk, q?)

≤ $d(wk, bk) + Ld(wk, q?) + LH (G2wk,G2q?)

≤ $d(wk, bk) + Ld(wk, q?) + L$d(wk, q?)

≤ $d(wk, bk) + L(1 + $)d(wk, q?)

≤ $2d(mk, xk) + $L(1 + $)d(mk, q?)

+$2ξk[d(mk, xk) + $ηkL(1 + $)d(mk, q?)]

+$ξkL(1 + $)d(sk, q?) + L(1 + $)d(wk, q?). (20)
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By using (6), (16), and (20), we obtain

d(xk+1, q?) ≤ d(xk+1, mk+1) + d(mk+1, q?)

≤ d(xk+1, ek) + d(ek, mk+1) + d(mk+1, q?)

≤ εk + d(ek, `k) + d(mk+1, q?)

≤ εk +H (G1 pk,G1ak) + d(mk+1, q?)

≤ εk + $d(pk, ak) + Ldist(pk,G1 pk) + d(mk+1, q?)

≤ εk + $d(pk, ak) + Ld(pk, q?) + Ldist(G1 pk, q?) + d(mk+1, q?)

≤ εk + $d(pk, ak) + Ld(pk, q?) + LH (G1 pk,G1q?) + d(mk+1, q?)

≤ εk + $d(pk, ak) + Ld(pk, q?) + L$d(pk, q?) + d(mk+1, q?)

≤ εk + $3d(mk, xk) + $2L(1 + $)d(mk, q?)

+$3ξk[d(mk, xk) + $2ηkL(1 + $)d(mk, q?)]

+$2ξkL(1 + $)d(sk, q?) + $L(1 + $)d(wk, q?)

+L(1 + $)d(pk, q?) + d(mk+1, q?). (21)

By Theorem 3, lim
k→∞

d(mk, q?) = 0. Consequently, we have lim
m→∞

d(mk+1, q?) = 0.

Moreover, by the equivalence of {mk} and {xk}, we have lim
m→∞

d(mk, xk) = 0.

Thus, using (10), (12), (13), and by taking the limit of both sides of (21), we have

lim
k→∞

d(xk, q?) = 0.

Hence, our new iterative sequence (6) is weak w2-stable with respect to G1 and G2.

5. Data Dependence Results for Two Multivalued Almost Contractive Mappings

In this section, we show that our new iterative method (6) is data dependent with
respect to two multivalued almost contractive mappings.

Theorem 5. Let J be a nonempty closed convex subset of a hyperbolic space Q and Gi : J →
P(J ) (i=1,2) be two multivalued almost contractive mappings. Let G̃i : J → P(J ) (i=1,2) be
two multivalued approximate operators of G1 and G2, respectively, such that H (Gim,Gim) ≤ ε
(i=1,2) for all m ∈ J . If {mk} is the sequence defined by (6) for two multivalued almost contractive
mappings G1 and G2. Then, we define an iterative sequence {m̃k} as follows:

m̃1 ∈ J ,
s̃k = K(m̃k, ũk, ηk),
w̃k = K(ũk, t̃k, ξk),
p̃k = h̃k,
m̃k+1 = ˜̀k,

k ∈ N, (22)

where {ξk}, {ηk} are real sequences in (0,1) such that 1
2 ≤ ξkηk and ˜̀k ∈ G̃1 p̃k, h̃k ∈ G̃2w̃k,

t̃k ∈ G̃1 s̃k, ũk ∈ G̃2m̃k. If F =
⋂2

i=1 F (Gi) 6= ∅, Giq? = {q?} for each q? ∈ F (i = 1, 2),
F̃ =

⋂2
i=1 F (G̃i) 6= ∅ and G̃i q̃? = {q̃?} for each q̃? ∈ F̃ (i = 1, 2) such that m̃k → q̃? as

m→ ∞, and we have

d(q?, q̃?) ≤ 11ε

1− $
,

where ε is a fixed number.
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Proof. From (6) and (22), we have

d(sk, s̃k) = d(K(mk, uk, ηk),K(m̃k, ũk, ηk))

≤ (1− ηk)d(mk, m̃k) + ηkd(uk, ũk)

≤ (1− ηk)d(mk, m̃k) + ηkd(uk,G2m̃k) + ηkd(G2m̃k, ũk)

≤ (1− ηk)d(mk, m̃k) + ηkH (G2mk,G2m̃k) + ηkH (G2m̃k, G̃2m̃k)

≤ (1− ηk)d(mk, m̃k) + ηk$d(mk, m̃k) + ηkLdist(mk,G2mk) + ηkε

≤ (1− (1− $)ηk)d(mk, m̃k) + ηkLd(mk, q?) + ηkLdist(G2mk, q?) + ηkε

≤ (1− (1− $)ηk)d(mk, m̃k) + ηkLd(mk, q?) + ηkLH (G2mk,G2q?) + ηkε

≤ (1− (1− $)ηk)d(mk, m̃k) + ηkLd(mk, q?) + ηkL$d(mk, q?) + ηkε

= (1− (1− $)ηk)d(mk, m̃k) + ηkL(1 + $)d(mk, q?) + ηkε. (23)

From (6), (22) and (23), we have

d(wk, w̃k) = d(K(uk, tk, ξk),K(m̃k, ũk, ξk))

≤ (1− ξk)d(uk, ũk) + ξkd(tk, t̃k)

≤ (1− ξk)[d(uk,G2m̃k) + d(G2m̃k, ũk)]

+ξk[d(tk,G1 s̃k) + ηkd(G1 s̃k, t̃k)]

≤ (1− ξk)[H (G2mk,G2m̃k) +H (G2m̃k, G̃2m̃k)]

+ξk[H (G1sk,G1 s̃k) +H (G1 s̃k, G̃1 s̃k)]

≤ (1− ξk)[$d(mk, m̃k) + Ldist(mk,G2mk) + ε]

+ξk[$d(sk, s̃k) + Ldist(sk,G1sk) + ε]

≤ (1− ξk)[$d(mk, m̃k) + Ld(mk, q?) + Ldist(G2mk, q?) + ε]

+ξk[$d(sk, s̃k) + Ld(mk, q?) + Ldist(G1sk, q?) + ε]

≤ (1− ξk)[$d(mk, m̃k) + Ld(mk, q?) + LH (G2mk,G2q?) + ε]

+ξk[$d(sk, s̃k) + Ld(sk, q?) + LH (G1sk,G1q?) + ε]

≤ (1− ξk)[$d(mk, m̃k) + Ld(mk, q?) + L$d(mk, q?) + ε]

+ξk[$d(sk, s̃k) + Ld(sk, q?) + L$d(sk, q?) + ε]

= (1− ξk)$d(mk, m̃k) + (1− ξk)[L(1 + $)d(mk, q?) + ε]

+ξk$d(sk, s̃k) + ξk[L(1 + $)d(sk, q?) + ε]

= (1− ξk)$d(mk, m̃k) + (1− ξk)[L(1 + $)d(mk, q?) + ε]

+ξk$[(1− (1− $)ηk)d(mk, m̃k) + ηkL(1 + $)d(mk, q?) + ηkε]

+ξk[L(1 + $)d(sk, q?) + ε]

≤ $[1− (1− $)ξkηk]d(mk, m̃k) + L(1 + $)d(mk, q?) + ε

+$ξkηkL(1 + $)d(mk, q?) + $ξkηkε

+ξkL(1 + $)d(sk, q?) + ξkε. (24)
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From (6), (22), and (24), we have

d(pk, p̃k) ≤ d(hk, h̃k)

≤ d(hk,G2w̃k) + d(G2w̃k, h̃k)

≤ H (G2wk,G2w̃k) +H (G2w̃k, G̃2w̃k)

≤ $d(wk, w̃k) + Ldist(wk,G2wk) + ε

≤ $d(wk, w̃k) + Ld(wk, q?) + Ldist(G2wk, q?) + ε

≤ $d(wk, w̃k) + Ld(wk, q?) + LH (G2wk,G2q?) + ε

≤ $d(wk, w̃k) + Ld(wk, q?) + L$(wk, q?) + ε

= $d(wk, w̃k) + L(1 + $)d(wk, q?) + ε

≤ $2[1− (1− $)ξkηk]d(mk, m̃k) + $L(1 + $)d(mk, q?) + $ε

+$2ξkηkL(1 + $)d(mk, q?) + $2ξkηkε

+$ξkL(1 + $)d(sk, q?) + $ξkε + L(1 + $)d(wk, q?) + ε. (25)

From (6), (22), and (25), we obtain

d(mk+1, m̃k+1) ≤ d(`k, ˜̀k)

≤ d(`k,G1 p̃k) + d(G1 p̃k, ˜̀k)

≤ H (G1 pk,G1 p̃k) +H (G1 p̃k, G̃1 p̃k)

≤ $d(pk, p̃k) + Ldist(pk,G1 pk) + ε

≤ $d(pk, p̃k) + Ld(pk, q?) + Ldist(G1 pk, q?) + ε

≤ $d(pk, p̃k) + Ld(pk, q?) + LH (G1 pk,G1q?) + ε

≤ $d(pk, p̃k) + Ld(pk, q?) + L$(`k, q?) + ε

= $3[1− (1− $)ξkηk]d(mk, m̃k) + $2L(1 + $)d(mk, q?) + $2ε

+$3ξkηkL(1 + $)d(mk, q?) + $3ξkηkε

+$2ξkL(1 + $)d(sk, q?) + $2ξkε + $L(1 + $)d(wk, q?)

+$ε + L(1 + $)d(pk, q?) + ε. (26)

Because 0 ≤ $ < 1 and 0 < ξk, ηk < 1, then (26) yields

d(mk+1, m̃k+1) ≤ [1− (1− $)ξkηk]d(mk, m̃k) + L(1 + $)d(mk, q?)

+ξkηkL(1 + $)d(mk, q?) + ξkηkε

+L(1 + $)d(sk, q?) + L(1 + $)d(wk, q?)

+L(1 + $)d(pk, q?) + 4ε. (27)

Because 1
2 ≤ ξkηk, ∀k ≥ 1, it implies that 1 ≤ 2ξkηk, ∀k ≥ 1. Thus, (27) becomes

d(mk+1, m̃k+1) ≤ [1− (1− $)ξkηk]d(mk, m̃k) + 2ξkηkL(1 + $)d(mk, q?)

+ξkηkL(1 + $)d(mk, q?) + ξkηkε

+2ξkηkL(1 + $)d(sk, q?) + 2ξkηkL(1 + $)d(wk, q?)

+2ξkηkL(1 + $)d(pk, q?) + 9ξkηkε.

≤ [1− (1− $)ξkηk]d(mk, m̃k) + (1− $)ξmηk ×
2L(1 + $)d(mk, q?) + L(1 + $)d(mk, q?) + ε
+2L(1 + $)d(sk, q?) + 2L(1 + $)d(wk, q?)

+2L(1 + $)d(pk, q?) + 9ε


1− $

. (28)
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Therefore, (28) can be written as

ρk+1 = (1− ϕk)ρk + ϕkφk,

where
ρk+1 = d(mk+1, m̃k+1),

ϕk = (1− $)ξkηk ∈ (0, 1),

and

φk =


2L(1 + $)d(mk, q?) + L(1 + $)d(mk, q?) + ε
+2L(1 + $)d(sk, q?) + 2L(1 + $)d(wk, q?)

+2L(1 + $)d(pk, q?) + 9ε


1− $

≥ 0.

From Theorem 3, we know that mk → q? as k→ ∞ and by the hypothesis m̃k → q̃? as
k→ ∞, then applying Lemma 3, we obtain

d(q?, q̃?) ≤ 11ε

1− $
.

6. 4-Convergence and Strong Converges Results for Two Multivalued Mappings

In this section, we establish 4-convergence and strong convergence theorems of
our new iterative algorithm (6) for common fixed points of two multivalued mappings
satisfying condition (E). Throughout the remaining part of this article, let (Q, d,K) denote
a complete uniformly convex hyperbolic space with a monotone modulus of convexity Θ
and let J be a nonempty closed convex subset of Q.

Theorem 6. Let J be a nonempty closed convex subset of Q and Gi : J → P(J ) (i = 1, 2) be
two multivalued mappings satisfying condition (E) with convex values. Let F =

⋂2
i=1 F (Gi) 6= ∅

and Giq? = {q?} for each q? ∈ F (i = 1, 2). Let {mk} be the sequence defined by (6). Then,
{mk} 4-converges to a common fixed point of G1 and G2.

Proof. The proof will be divided into the following three steps:

Step 1: First, we show that lim
k→∞

d(mk, q?) exists for each q? ∈ F . By Proposition 1, we

know that Gi (i = 1, 2) are multivalued quasi-nonexpansive mappings. Therefore, for all
q? ∈ F and by (6), we obtain

d(sk, q?) = d(K(mk, uk, ηk), q?)

≤ (1− ηk)d(mk, q?) + ηkd(uk, q?)

≤ (1− ηk)d(mk, q?) + ηkdist(uk,G2q?)

≤ (1− ηk)d(mk, q?) + ηkH (G2mk,G2q?)

≤ (1− ηk)d(mk, q?) + ηkd(mk, q?)

= d(mk, q?). (29)



Mathematics 2022, 10, 3720 16 of 26

Again, from (6) and (29), we have

d(wk, q?) = d(K(uk, tk, ξk), q?)

≤ (1− ξk)d(uk, q?) + ξkd(tk, q?)

≤ (1− ξk)dist(uk,G2q?) + ξkdist(tk,G1q?)

≤ (1− ξk)H (G2mk,G2q?) + ξkH (G1sk,G1q?)

≤ (1− ξk)d(mk, q?) + ξkd(sk, q?)

≤ (1− ξk)d(mk, q?) + ξk$d(mk, q?)

= d(mk, q?). (30)

From (6) and (30), we have

d(pk, q?) = d(hk, q?)

≤ dist(hk,G2q?)

≤ H (G2wk,G2q?)

≤ d(wk, q?)

≤ d(mk, q?). (31)

Finally, by (6) and (31), we have

d(mk+1, q?) = d(`k, q?)

≤ dist(`k,G1q?)

≤ H (G1 pk,G1q?)

≤ d(pk, q?)

≤ d(mk, q?). (32)

This implies that the sequence {d(mk, q?)} is non-increasing and bounded below. Thus,
lim

m→∞
d(mk, q?) exists for each q? ∈ F .

Step 2: Next, we show that

lim
k→∞

dist(mk,Gimk) = 0, for all i = 1, 2. (33)

From Step 1, it is established that for all q? ∈ F , lim
k→∞

d(mk, q?) exists. Let

lim
k→∞

d(mk, q?) = γ ≥ 0. (34)

If γ = 0, then we get

dist(mk,Gimk) ≤ d(mk, q?) + dist(Gimk, q?)

≤ d(mk, q?) +H (Gimk,Giq?)

≤ d(mk, q?) + d(mk, q?)

= 2d(mk, q?)→ 0 as k→ ∞.
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Hence, lim
k→∞

dist(mk,Gimk) = 0, for all i = 1, 2. If γ > 0, Now from (29), (30), (31)

and (32), we have

lim sup
k→∞

d(sk, q?) ≤ γ; (35)

lim sup
k→∞

d(wk, q?) ≤ γ; (36)

lim sup
k→∞

d(pk, q?) ≤ γ; (37)

and

lim sup
k→∞

d(`m, q?) ≤ γ. (38)

Consequently, we obtain the following inequalities

lim sup
k→∞

d(uk, q?) ≤ lim sup
k→∞

H (G2mk,G2q?)

≤ lim sup
k→∞

d(mk, q?) = γ; (39)

lim sup
k→∞

d(tk, q?) ≤ lim sup
k→∞

H (G1sk,G1q?)

≤ lim sup
k→∞

d(sk, q?) ≤ γ (40)

and

lim sup
k→∞

d(`k, q?) ≤ lim sup
k→∞

H (G2 pk,G2 pk)

≤ lim sup
k→∞

d(pk, q?) ≤ γ. (41)

By using (6) and (34), we have

γ = lim
k→∞

d(mk+1, q?) = lim
k→∞

d(`k, q?)

≤ lim
k→∞

H (G1 pk,G1 pk)

≤ lim
k→∞

d(pk, q?)

= lim
k→∞

d(hk, q?)

≤ lim
k→∞

H (G2wk,G2q?)

≤ lim
k→∞

d(wk, q?)

= lim
k→∞

d(K(uk, tk, ξk), q?).

From Lemma 2, we obtain

lim
k→∞

d(uk, tk) = 0. (42)

Again, from (6) we get

d(mk+1, q?) = d(`k, q?)

≤ H (G1 pk,G1q?)

≤ d(pk, q?),
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this yields

γ ≤ lim inf
k→∞

d(pk, q?). (43)

By (22) and (43), we have

lim
k→∞

d(pk, q?) = γ. (44)

Now, by using (6), we obtain

d(pk, q?) = d(hk, q?)

≤ H (G2wk,G2q?)

≤ d(wk, q?), (45)

which yields

γ ≤ lim inf
k→∞

d(wk, q?). (46)

From (36) and (46), we have

lim
k→∞

d(wk, q?) = γ. (47)

From (6) and (42), we have

d(wk, q?) = (K(uk, tk, ξk), q?)

≤ d(uk, q?) + ξkd(tk, uk),

which gives

γ ≤ lim inf
k→∞

d(uk, q?). (48)

By using (39) and (48), we have

lim
k→∞

d(uk, q?) = γ. (49)

In addition,

d(uk, q?) ≤ d(uk, tk) + d(tk, q?)

≤ d(uk, tk) +H (G2sk,G2q?)

≤ d(uk, tk) + d(sk, q?),

implies that

γ ≤ lim inf
k→∞

d(sk, q?). (50)

From (35) and (50), we obtain

lim
k→∞

d(sk, q?) = γ. (51)

Finally, by (6), we obtain

lim
k→∞

d(sk, q?) = lim
k→∞

d(K(mk, uk, ηk), q?) = γ. (52)
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Now, due to (34), (39), (52), and Lemma 2, we have

lim
k→∞

d(mk, uk) = 0. (53)

Because dist(mk,G2mk) ≤ d(mk, uk), we get

lim
k→∞

d(mk,G2mk) = 0. (54)

On the other hand, by (6) and (53), we have

d(sk, mk) = d(K(mk, uk, ηk), mk) ≤ ηkd(mk, uk), (55)

and

dist(sk,G1sk) ≤ d(sk, tk)

= d(K(mk, uk, ηk), tk)

≤ (1− ηk)d(mk, tk) + ηkd(uk, tk)

≤ (1− ηk)[d(mk, uk) + d(uk, tk)] + ηkd(uk, tk). (56)

Now, by using (42) and (53), we have

lim
k→∞

distd(sk,G1sk) = 0. (57)

Because G1 satisfies condition (E), we obtain

dist(mk,G1mk) ≤ d(mk, sk) + dist(sk,G1mk)

≤ d(mk, sk) + µdistd(sk,G1sk) + d(sk, mk)

≤ 2d(uγ, wγ) + µρ(wγ, M1wk).

By (53), (55), and (57), we have

lim
k→∞

dist(mk,G1mk) = 0. (58)

Hence, lim
k→∞

dist(mk,G1mk) = 0, i = 1, 2.

Step 3: Finally, we show that the sequence {mk} is4-convergent to a point in F . In view
of this, it suffices to show that

K4({mk}) =
⋃

{uk}⊂{mk}
⊂ F (59)

and K4({mk}) has only one point. Set u ∈ K4({mk}). Then a subsequence {uk} of {mk}
exists such that AC({uk}) = {u}. From Lemma 1, a subsequence {vk} of {uk} exists
such that 4− lim

k→∞
vk = v ∈ J . Because lim

k→∞
dist(vk,Givk) = 0 (i = 1, 2), by Lemma 4,

we know that v ∈ F . By the convergence of {d(uk, v)}, then from Lemma 5, we obtain
u = v. This implies that K4({mk}) ⊂ F . Now, we show that the set K4({mk}) contains
exactly one element. For this, let {uk} be a subsequence of {mk} with AC({uk}) = {u}
and AC({mk}) = {m}. We have already seen that u = v and v ∈ F . Conclusively, by the
convergence of {d(mk, q?)}, then by Lemma 5, we obtain m = v ∈ F . It follows that
K4({mk}) = {m}. This completes the proof.

Next, we establish some strong convergence theorems.
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Theorem 7. Let J be a nonempty closed compact subset ofQ and Gi : J → BC(J ) (i = 1, 2) be
two multivalued mappings satisfying condition (E) with convex values. Let F =

⋂2
i=1 F (Gi) 6= ∅

and Giq? = {q?} for each q? ∈ F (i = 1, 2). Let {mk} be the sequence defined by (6). Then,
{mk} converges strongly to a point in F .

Proof. For all m ∈ J and i = 1, 2, we can assume that Gi is a bounded closed and convex
subset of J . By the compactness of J , we know that Gi is a nonempty compact convex
subset and bounded proximal subset in J . It follows that Gi : J → P(J ). Thus, all
the assumptions in Theorem 6 are performed. Hence, from Theorem 6, we have that
lim
k→∞

(mk, q?) exists and lim
k→∞

distd(mk,Gimk) = 0, for each q? ∈ F and i = 1, 2 . By the

compactness of J , we are sure of the existence of a subsequence {mki
} of {mk} with

lim
k→∞

mki
= χ ∈ J . By using condition (E) for some µ ≥ 1 and for each i = 1, 2, we have

dist(χ,Giχ) ≤ dist(χ, mki
) + dist(mki

,Giχ)

≤ µdist(mki
,Gimki

) + 2d(χ, mki
)→ 0 as k→ ∞.

This shows that χ ∈ F . By the strong convergence of {mki
} to χ and the existence of

lim
k→∞

d(mk, χ) from Theorem 6, it is implied that the sequence {mk} converges strongly to

χ.

Theorem 8. Let J be a nonempty closed compact subset ofQ and Gi : J → BC(J ) (i = 1, 2) be
two multivalued mappings satisfying condition (E) with convex values. Let F =

⋂2
i=1 F (Gi) 6= ∅

and Giq? = {q?} for each q? ∈ F (i = 1, 2). Let {mk} be the sequence defined by (6). Then,
{mk} converges strongly to a point in F if and only if lim inf

k→∞
dist(mk, F ) = 0.

Proof. Suppose that lim inf
k→∞

dist(mk, F ) = 0. From (32), we have d(mk+1, q?) ≤ d(mk, q?),

for all q? ∈ F . It follows that dist(mk+1, F ) ≤ dist(mk, F ). Therefore, lim
k→∞

dist(mk+1, F )

exists and lim
k→∞

dist(mk+1, F ) = 0. Thus, there exists a subsequence {mkr} of the sequence

{mk} such that d(mkr , tr) ≤ 1
2r for all r ≥ 1, where {tr} is a sequence in F . In view of (32),

we obtain
d(mkr+1 , tr) ≤ d(mkr , tr) ≤

1
2r . (60)

By using (60) and the concept of triangle inequality, then we get

d(tr+1, tr) ≤ d(tr+1, wkr+1) + d(wkr+1 , tr)

≤ 1
2r+1 +

1
2r <

1
2r−1 .

It follows clearly that {tr} is a Cauchy sequence in J and moreover, it is convergent
to some p ∈ J . Because for all i = 1, 2,

dist(tr,Gi p) ≤H (Gitr,Gi p) ≤ d(p, tr)

and tr → p as k → ∞, it is implied that dist(p,Gi p) = 0, and hence, p ∈ F and {mkr}
strongly converges to p. Because lim

k→∞
d(mk, p) exists, it is implied that {mk} converges

strongly to p.

Theorem 9. Let J be a nonempty closed compact subset ofQ and Gi : J → BC(J ) (i = 1, 2) be
two multivalued mappings satisfying condition (E) with convex values. Let F =

⋂2
i=1 F (Gi) 6= ∅

and Giq? = {q?} for each q? ∈ F (i = 1, 2). Let {mk} be the sequence defined by (6). Assume
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that there exists an increasing self-function f defined on [0, ∞) such that f (0) = 0 with f (l) > 0
for all l > 0 and i = 1, 2, and we have

dist(mk,Gimk) ≥ f (dist(mk, F )).

Then, the sequence {mk} converges strongly to a point in F .

Proof. It is established in Theorem 6 that dist(mk,Gimk) = 0. Hence, one can assume that

lim
k→∞

f (dist(mk, F )) ≤ lim
k→∞

dist(mk,Gimk) = 0.

Thus, it is implied that lim
k→∞

f (dist(mk, F )) = 0. Because f is an increasing self-

function defined on [0, ∞) with f (0) = 0, we know that lim
k→∞

dist(mk, F ) = 0. The conclu-

sion of the proof follows from Theorem 8.

7. Numerical Example

In this section, we provide examples of mappings which satisfy condition (E) but do
not satisfy condition (C). We carry out numerical experiment to show the efficiency and
applicability of new method (6) with some existing iterative methods.

Example 2. Let Q = R with the distance metric d(m, w) = |m − w| and J = [0, ∞). Let
G1,G2 : J → P(J ) be defined by

G1m =


[0, 3m

4 ], if m ∈ [ 1
5 , ∞),

{0}, if m ∈ [0, 1
5 );

and

G2m =


[0, m

2 ], if m ∈ (2, ∞],

{0}, if m ∈ [0, 2],

for all m ∈ J .
Clearly, F = F (G1) ∩ F (G2) = {0}. Because G1 and G2 are not continuous at 1

5 and 2,
respectively, so G1 and G2 are not nonexpansive mappings. Next, we show that G1 and G2 do not
satisfy condition (C). For G1, let m = 1

15 and w = 1
5 . Then,

1
2

dist(m,G1m) =
1
2

dist
(

1
15

,G1
1

15

)
=

1
30

<
2

15
= d(m, w).

However,

H (G1m,G1w) = H (G1
1
15

,G1
1
5
) = H ({0}, [0,

3
20

]) =
3

20
>

2
15

= d(m, w). (61)

Thus, G1 does not satisfy condition (C).
Similarly, for m = 3

2 and w = 5
2 , we can show that G2 does not satisfy condition (C).

Finally, we show that G1 and G2 are multivalued mappings satisfying condition (E). First, we
consider G1 and the following possible cases:

Case 1: If m, w ∈ [ 1
5 , ∞), then

dist(m,G1m) = dist
(

m,
[

0,
3m
4

])
=

∣∣∣∣m− 3m
4

∣∣∣∣ = ∣∣∣m4 ∣∣∣.
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Therefore,

dist(m,G1w) = dist
(

m,
[

0,
3w
4

])
=

∣∣∣∣m− 3w
4

∣∣∣∣
=

∣∣∣∣m− 3m
4

+
3m
4
− 3w

4

∣∣∣∣
≤

∣∣∣∣m− 3m
4

∣∣∣∣+ ∣∣∣∣3m
4
− 3w

4

∣∣∣∣
≤ 4

∣∣∣m
4

∣∣∣+ 3
4
|m− w|

≤ 4
∣∣∣m

4

∣∣∣+ |m− w|

= 4dist(m,G1m) + d(m, w).

Case 2: If m, w ∈ [0, 1
5 ), then

dist(m,G1m) = dist(m, {0}) = |m− 0| = |m|.

Therefore,

dist(m,G1w) = dist(m, {0})
= |m|
≤ 4|m|+ |m− w|
= 4dist(m,G1m) + d(m, w).

Case 3: If m ∈ [ 1
5 , ∞) and w ∈ [0, 1

5 ), then

dist(m,G1m) = dist
(

m,
[

0,
3m
4

])
=

∣∣∣∣m− 3m
4

∣∣∣∣ = ∣∣∣m4 ∣∣∣.
Therefore,

dist(m,G1w) = dist(m, {0})
= |m|

= 4
∣∣∣m

4

∣∣∣
≤ 4

∣∣∣m
4

∣∣∣+ |m− w|

= 4dist(m,G1m) + d(m, w).

Case 4: If m ∈ [0, 1
5 ) and w ∈ [ 1

5 , ∞), then

dist(m,G1m) = dist(m, {0}) = |m− 0| = |m|.
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Therefore,

dist(m,G1w) = dist
(

m,
[

0,
3w
4

])
=

∣∣∣∣m− 3w
4

∣∣∣∣
=

∣∣∣∣m− 3m
4

+
3m
4
− 3w

4

∣∣∣∣
≤

∣∣∣∣m− 3m
4

∣∣∣∣+ ∣∣∣∣3m
4
− 3w

4

∣∣∣∣
=

∣∣∣m
4

∣∣∣+ 3
4
|m− w|

≤ |m|+ |m− w|
≤ 4|m|+ |m− w|
= 4dist(m,G1m) + d(m, w).

For all m, w ∈ J , we seen that G1 satisfies (1) for some µ = 4. Hence, G1 is a multivalued
mapping satisfying condition (E).

Following the same approach above, we can show that G2 is a multivalued mapping satisfying
condition (E) for some µ = 2.

Now, for control parameters ξk = ηk = ζk =
1
2 , for all k ∈ N and starting point m1 = 5.

Then by using MATLAB R2015a, we obtain the following Tables 3 and 4 and Figures 3 and 4.

Number of Iteration
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f 
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1
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F

New

Figure 3. Graph corresponding to Table 3.



Mathematics 2022, 10, 3720 24 of 26

Number of Iteration

0 2 4 6 8 10 12 14

V
a
lu

e
 o

f 
m

k

0

1

2

3

4

5

Noor

M

CR

Picard-S

Thakur

New

Figure 4. Graph corresponding to Table 4.

Table 3. Convergence behavior of various iterative algorithms.

mk Mann Ishikawa S Picard-Mann F New

m1 5.00000000 5.00000000 5.00000000 5.00000000 5.00000000 5.00000000
m2 4.37500000 4.14062500 3.51562500 3.28125000 1.84570313 0.99609375
m3 3.82812500 3.42895508 2.47192383 2.15332031 0.68132401 0.19844055
m4 3.34960938 2.83960342 1.73807144 1.41311646 0.25150437 0.03953308
m5 2.93090820 2.35154659 1.22208148 0.92735767 0.09284048 0.00787573
m6 2.56454468 1.94737452 0.85927604 0.60857847 0.03427119 0.00156899
m7 2.24397659 1.61266952 0.60417847 0.39937962 0.01265089 0.00031257
m8 1.96347952 1.33549195 0.42481298 0.26209288 0.00466996 0.00006227
m9 1.71804458 1.10595427 0.29869663 0.17199845 0.00172387 0.00001241
m10 1.50328901 0.91586838 0.21002107 0.11287398 0.00063635 0.00000247
m11 1.31537788 0.75845350 0.14767106 0.07407355 0.00023490 0.00000049
m12 1.15095565 0.62809431 0.10383122 0.04861077 0.00008671 0.00000010
m13 1.00708619 0.52014060 0.07300632 0.03190082 0.00003201 0.00000002
m14 0.88120042 0.43074143 0.05133257 0.02093491 0.00001182 0.00000000

The reds show the point of convergence of various iterative methods.

Table 4. Convergence behavior of various iterative algorithms.

mk Noor CR Thakur Picard-S M New

m1 5.00000000 5.00000000 5.00000000 5.00000000 5.00000000 5.00000000
m2 4.05273438 2.11914063 2.63671875 1.81640625 2.46093750 0.99609375
m3 3.28493118 0.89815140 1.39045715 0.65986633 1.21124268 0.19844055
m4 2.66259070 0.38066182 0.73324889 0.23971707 0.59615850 0.03953308
m5 2.15815458 0.16133519 0.38667422 0.08708472 0.29342176 0.00787573
m6 1.74928545 0.06837839 0.20391023 0.03163624 0.14441852 0.00156899
m7 1.41787785 0.02898068 0.10753079 0.01149285 0.07108099 0.00031257
m8 1.14925646 0.01228283 0.05670569 0.00417514 0.03498518 0.00006227
m9 0.93152623 0.00520581 0.02990339 0.00151675 0.01721927 0.00001241
m10 0.75504568 0.00220637 0.01576937 0.00055101 0.00847511 0.00000247
m11 0.61199991 0.00093512 0.00831588 0.00020017 0.00417134 0.00000049
m12 0.49605462 0.00039633 0.00438533 0.00007272 0.00205308 0.00000010
m13 0.40207552 0.00016798 0.00231257 0.00002642 0.00101050 0.00000002
m14 0.32590106 0.00007119 0.00121952 0.00000960 0.00049736 0.00000000

The reds show the point of convergence of various iterative methods.
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From Tables 3 and 4 and Figures 3 and 4 above, it is very clear that our new iterative
algorithm (6) converges faster to 0 than Mann [29], Ishikawa [30], Thakur [37], S [19], M [32],
Noor [33], CR [38], Picard–Man [35], Picard-S [36], and F [22] iteration processes.

8. Conclusions

(i) In this work, we have introduced a new iterative algorithm (6) in hyperbolic spaces.
(ii) We have proven the strong convergence of the newly defined iterative algorithm (6)

to the common fixed point of two multivalued almost contractive mappings.
(ii) We have also provided some examples of multivalued, almost contractive mappings.

We show with the aid of the examples that our iterative algorithm (6) converges faster
than many existing iterative algorithms.

(iii) We have introduced the concepts of weak w2-stability and data dependence results
involving two multivalued almost contractive mappings. These concepts are relatively
new in the literature.

(iv) We have proved several strong and4-convergence results of (6) for the common fixed
point of multivalued mappings satisfying condition (E).

(v) We presented interesting examples of mappings which satisfy condition (E) but do
not satisfy condition (C). We further performed numerical experiments to compare
the efficiency and applicability of our iterative method with some leading iterative
algorithms.

(vi) The results in this article extend and generalize the results in [24,39] and several others
from the setting of Banach spaces to the setting hyperbolic spaces. Moreover, our
results improve and generalize the results in [22,24,39] and several others from the
setting of single-valued mappings to the setting of multivalued mappings. In addition,
we improve and extend the results in [22,24,39] from the setting of fixed points of
single mapping to the setting common fixed points of two mappings.

(vii) Our results give affirmative answers to the two interesting open questions raised by
Ahmad et al. [21].

(viii) The main results derived in this article continue to be true in linear and CAT(0) spaces,
because the hyperbolic space properly includes these spaces.
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