Forecasting a New Type of Virus Spread: A Case Study of COVID-19 with Stochastic Parameters
Abstract
:1. Introduction
2. Literature Overview
3. Materials and Methods
3.1. CIRD Balance Model
3.1.1. CIR Model
4. Results
4.1. Modeling Experiments
4.1.1. Case of Russia
4.1.2. Case of Europe
5. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Available online: https://search.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/ (accessed on 15 December 2021).
- Shinde, G.R.; Kalamkar, A.B.; Mahalle, P.N.; Dey, N.; Chaki, J.; Hassanien, A.E. Forecasting Models for Coronavirus (COVID-19): A Survey of the State-of-the-Art. SN Comput. Sci. 2020, 1, 197. [Google Scholar] [CrossRef]
- Moftakhar, L.; Seif, M.; Safe, M.S. Exponentially increasing trend of infected patients with COVID-19 in Iran: A comparison of neural network and ARIMA forecasting models. Iran. J. Public Health 2020, 49, 92–100. [Google Scholar] [CrossRef]
- Singh, S.; Chowdhury, C.; Panja, A.K.; Neogy, S. Time Series Analysis of COVID-19 Data to Study the Effect of Lockdown and Unlock in India. J. Inst. Eng. India Ser. B 2021, 102, 1275–1281. [Google Scholar] [CrossRef]
- Harvey, A.; Kattuman, P. A farewell to R: Time-series models for tracking and forecasting epidemics. J. R. Soc. Interface 2021, 18, 20210179. [Google Scholar] [CrossRef]
- Aditya Satrio, C.B.; Darmawan, W.; Nadia, B.U.; Hanafiah, N. Time series analysis and forecasting of coronavirus disease in Indonesia using ARIMA model and PROPHET. Procedia Comput. Sci. 2021, 179, 524–532. [Google Scholar] [CrossRef]
- Chen, S.; Robinson, P.; Janies, D.; Dulin, M. Four Challenges Associated with Current Mathematical Modeling Paradigm of Infectious Diseases and Call for a Shift. Open Forum Infect. Dis. 2020, 7, ofaa333. [Google Scholar] [CrossRef] [PubMed]
- Kermack, W.O.; McKendrick, A.G. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A 1927, 115, 700–721. [Google Scholar] [CrossRef] [Green Version]
- Anderson, R.M.; May, R.M. Infectious Diseases of Humans: Dynamics and Control; Oxford University Press: Oxford, UK, 1991. [Google Scholar]
- Dil, S.; Dil, N.; Maken, Z.H. COVID-19 Trends and Forecast in the Eastern Mediterranean Region with a particular focus on Pakistan. Cureus 2020, 12, e8582. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, H.S. Application of SIR epidemiological model: New trends. Int. J. Appl. Math. Inform. 2016, 10, 92–97. [Google Scholar] [CrossRef]
- Iwami, S.; Takeuchi, Y.; Liu, X. Avian–human influenza epidemic model. Math. Biosci. 2007, 207, 1–25. [Google Scholar] [CrossRef]
- Teles, P. Predicting the evolution of SARS-COVID-2 in Portugal using an adapted SIR model previously used in South Korea for the MERS outbreak. MedRxiv 2020. [Google Scholar] [CrossRef]
- Rǎdulescu, A.; Williams, C.; Cavanagh, K. Management strategies in a SEIR-type model of COVID 19 community spread. Sci. Rep. 2020, 10, 21256. [Google Scholar] [CrossRef] [PubMed]
- Fanelli, D.; Piazza, F. Analysis and forecast of COVID-19 spreading in China, Italy and France. Chaos Solitons Fractals 2020, 134, 109761. [Google Scholar] [CrossRef]
- Zhao, C.; Tepekule, B.; Criscuolo, N.G.; Wendel, G.P.; Hilty, M.P.; RISC-ICU Consortium Investigators in Switzerland; Fumeaux, T.; Van Boeckel, T. Icumonitoring.ch: A platform for short-term forecasting of intensive care unit occupancy during the COVID-19 epidemic in Switzerland. Swiss Med. Wkly. 2020, 150, w20277. [Google Scholar] [CrossRef]
- Chinazzi, M.; Davis, J.T.; Ajelli, M.; Gioannini, C.; Litvinova, M.; Merler, S.; Pastore, Y.; Piontti, A.; Mu, K.; Rossi, L.; et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science 2020, 368, 395–400. [Google Scholar] [CrossRef] [Green Version]
- Tang, B.; Wang, X.; Li, Q.; Bragazzi, N.L.; Tang, S.; Xiao, Y.; Wu, J. Estimation of the transmission risk of 2019-nCov and its implication for public health interventions. J. Clin. Med. 2020, 9, 462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, H.; Liu, Y.; Li, Y. An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China. Science 2020, 368, 638–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López, L.; Rodó, X. A modified SEIR model to predict the COVID-19 outbreak in Spain and Italy: Simulating control scenarios and multi-scale epidemics. Results Phys. 2021, 21, 103746. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Feng, Z.; Ling, C.; Chang, C.; Feng, Z. Prediction of the COVID-19 epidemic trends based on SEIR and AI models. PLoS ONE 2021, 16, e0245101. [Google Scholar] [CrossRef]
- Matveev, A. The mathematical modeling of the effective measures against the COVID-19 spread. Natl. Secur. Strateg. Plan. 2020, 1, 23–39. [Google Scholar] [CrossRef]
- Anastassopoulou, C.; Russo, L.; Tsakris, A.; Siettos, C. Data-based analysis, modelling and forecasting of the COVID-19 outbreak. PLoS ONE 2020, 15, e0230405. [Google Scholar] [CrossRef] [Green Version]
- Calafiore, G.C.; Novara, C.; Possieri, C. A time-varying SIRD model for the COVID-19 contagion in Italy. Annu. Rev. Control 2020, 50, 361–372. [Google Scholar] [CrossRef]
- Maier, B.F.; Brockmann, D. Effective containment explains subexponential growth in recent confirmed COVID-19 cases in China. Science 2020, 368, 742–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandal, S.; Bhatnagar, T.; Arinaminpathy, N. Prudent public health intervention strategies to control the coronavirus disease 2019 transmission in India. A mathematical model-based approach. Indian J. Med. Res. 2020, 151, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Ki, M. Estimating the reproductive number and the outbreak size of COVID-19 in Korea. Epidemiol. Health 2020, 42, e2020011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guglielmi, N.; Iacomini, E.; Viguerie, A. Delay differential equations for the spatially re-solved simulation of epidemics with specific application to COVID-19. Math. Methods Appl. Sci. 2022, 45, 4752–4771. [Google Scholar] [CrossRef] [PubMed]
- Guglielmi, N.; Elisa Iacomini, E.; Viguerie, A. Identification of Time Delays in COVID-19 Data. arXiv 2021, arXiv:2111.13368. [Google Scholar]
- Pugliese, A.; Sottile, S. Inferring the COVID-19 infection curve in Italy. arXiv 2020, arXiv:2004.09404. [Google Scholar]
- Paul, S.; Lorin, E. Estimation of COVID-19 recovery and decease periods in Canada using delay model. Sci. Rep. 2021, 11, 23763. [Google Scholar] [CrossRef] [PubMed]
- Dell’Anna, L. Solvable delay model for epidemic spreading: The case of Covid-19 in Italy. Sci. Rep. 2020, 10, 15763. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Yang, Y.; Li, Z.; Zhang, L. Modeling and analysis of COVID-19 based on a time delay dynamic model. Math. Biosci. Eng. 2021, 18, 154–165. [Google Scholar] [CrossRef]
- Adam, D. Special report: The simulations driving the world’s response to COVID-19. Nature 2020, 580, 316–318. [Google Scholar] [CrossRef]
- Amelin, K.; Granichin, O.; Sergeenko, A.; Volkovich, Z.V. Emergent Intelligence via Self-Organization in a Group of Robotic Devices. Mathematics 2021, 9, 1314. [Google Scholar] [CrossRef]
- Wieczorek, M.; Siłka, J.; Woźniak, M. Neural network powered COVID-19 spread forecasting model. Chaos Solitons Fractals 2020, 140, 110203. [Google Scholar] [CrossRef]
- Liu, D.; Clemente, L.; Poirier, C.; Ding, X.; Chinazzi, M.; Davis, J.; Vespignani, A.; Santillana, M. Real-Time Forecasting of the COVID-19 Outbreak in Chinese Provinces: Machine Learning Approach Using Novel Digital Data and Estimates from Mechanistic Models. J. Med. Internet Res. 2020, 22, e20285. [Google Scholar] [CrossRef]
- Kumar, R.L.; Khan, F.; Din, S.; Band, S.S.; Mosavi, A.; Ibeke, E. Recurrent Neural Network and Reinforcement Learning Model for COVID-19 Prediction. Front. Public Health 2021, 9, 744100. [Google Scholar] [CrossRef]
- Ayoobi, N.; Sharifrazi, D.; Alizadehsani, R.; Shoeibi, A.; Gorriz, J.M.; Moosaei, H.; Khosravi, A.; Nahavandi, S.; Gholamzadeh Chofreh, A.; Goni, F.A.; et al. Time series forecasting of new cases and new deaths rate for COVID-19 using deep learning methods. Results Phys. 2021, 27, 104495. [Google Scholar] [CrossRef]
- Alali, Y.; Harrou, F.; Sun, Y. A proficient approach to forecast COVID-19 spread via optimized dynamic machine learning models. Sci. Rep. 2022, 12, 2467. [Google Scholar] [CrossRef]
- Zhao, H.; Merchant, N.N.; McNulty, A.; Radcliff, T.A.; Cote, M.J.; Fischer, R.S.B.; Sang, H.; Ory, M.G. COVID-19: Short term prediction model using daily incidence data. PLoS ONE 2021, 16, e0250110. [Google Scholar] [CrossRef]
- Amaral, F.; Casaca, W.; Oishi, C.M.; Cuminato, J.A. Towards Providing Effective Data-Driven Responses to Predict the COVID-19 in São Paulo and Brazil. Sensors 2021, 21, 540. [Google Scholar] [CrossRef]
- Pavlyutin, M.; Samoyavcheva, M.; Kochkarov, R.; Pleshakova, E.; Korchagin, S.; Gataullin, T.; Nikitin, P.; Hidirova, M. COVID-19 Spread Forecasting, Mathematical Methods vs. Machine Learning, Moscow Case. Mathematics 2022, 10, 195. [Google Scholar] [CrossRef]
- Katris, C. A time series-based statistical approach for outbreak spread forecasting: Application of COVID-19 in Greece. Expert Syst. Appl. 2021, 166, 114077. [Google Scholar] [CrossRef]
- Finkenstädt, B.F.; Grenfell, B.T. Time series modelling of childhood diseases: A dynamical systems approach. J. R. Stat. Soc. Ser. C (Appl. Stat.) 2000, 49, 187–205. [Google Scholar] [CrossRef]
- Kondratyev, M. Forecasting methods and models of disease spread. Comput. Res. Modeling 2013, 5, 863–882. [Google Scholar] [CrossRef] [Green Version]
- Zakharov, V.; Balykina, Y.; Petrosian, O.; Gao, H. CBRR Model for Predicting the Dynamics of the COVID-19 Epidemic in Real Time. Mathematics 2020, 8, 1727. [Google Scholar] [CrossRef]
- Zakharov, V.; Balykina, Y. Predicting the dynamics of the coronavirus (COVID-19) epidemic based on the case-based reasoning approach. Vestn. St.-Peterbg. Univ. Appl. Math. Comput. Sci. Control Process 2020, 16, 249–259. [Google Scholar] [CrossRef]
- Dairi, A.; Harrou, F.; Zeroual, A.; Hittawe, M.M.; Sun, Y. Comparative study of machine learning methods for COVID-19 transmission forecasting. J. Biomed. Inform. 2021, 18, 103791. [Google Scholar] [CrossRef]
- CDC. Reported and Forecasted New and Total COVID-19 Deaths in USA. Available online: https://www.cdc.gov/coronavirus/2019-ncov/science/forecasting/forecasting-us.html (accessed on 7 December 2021).
- Congdon, P. Mid-Epidemic Forecasts of COVID-19 Cases and Deaths: A Bivariate Model Applied to the UK. Interdiscip. Perspect. Infect. Dis. 2021, 2021, 8847116. [Google Scholar] [CrossRef]
- Banoei, M.M.; Dinparastisaleh, R.; Zadeh, A.V.; Mirsaeidi, M. Machine-learning-based COVID-19 mortality prediction model and identification of patients at low and high risk of dying. Crit. Care 2021, 25, 328. [Google Scholar] [CrossRef]
- Ahmadini, A.A.H.; Naeem, M.; Aamir, M.; Dewan, R.; Alshqaq, S.S.A.; Mashwani, W.K. Analysis and Forecast of the Number of Deaths, Recovered Cases, and Confirmed Cases from COVID-19 for the Top Four Affected Countries Using Kalman Filter. Front. Phys. 2021, 9, 629320. [Google Scholar] [CrossRef]
- Ioannidis, J.; Cripps, S.; Tanner, M.A. Forecasting for COVID-19 has failed. Int. J. Forecast. 2020. advance online publication. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.N.; Haider, N.; Stigler, F.L.; Khan, R.A.; McCoy, D.; Zumla, A.; Kock, R.A.; Uddin, M.J. The Global Case-Fatality Rate of COVID-19 Has Been Declining Since May 2020. Am. J. Trop. Med. Hyg. 2021, 104, 2176–2184. [Google Scholar] [CrossRef] [PubMed]
- Johns Hopkins Coronavirus Resource Center. Available online: https://coronavirus.jhu.edu/map.html (accessed on 15 December 2021).
- Chaudhry, R.M.; Hanif, A.; Chaudhary, M.; Minhas, S., II; Mirza, K.; Asif, T.; Gilani, S.A.; Kashif, M. Coronavirus disease 2019 (COVID-19): Forecast of an emerging urgency in Pakistan. Cureus 2020, 12, e8346. [Google Scholar] [CrossRef] [PubMed]
- Zakharov, V.; Balykina, Y. Balance Model of COVID-19 Epidemic Based on Percentage Growth Rate. Inform. Autom. 2021, 20, 1034–1064. [Google Scholar] [CrossRef]
- Izvestia Newspaper. Available online: https://iz.ru/1233744/olga-kolentcova/podem-s-povorotom-matematiki-dali-novyi-prognoz-po-zabolevaemosti-covid (accessed on 15 December 2021).
- Center for Intelligent Logistics of St. Petersburg State University. Available online: http://old.apmath.spbu.ru/cil/index_en.html (accessed on 12 December 2021).
t | Date | Number of C(t) | Number of R(t) | Intervals of Possible Values of R(t) | Deviation R(t) from the Interval | ||
---|---|---|---|---|---|---|---|
23 | 12 May 2020 | 232,243 | 45,628 | 1 | 22 | ≤47, 121 | 0 |
24 | 13 May 2020 | 242,271 | 50,215 | 2 | 22 | [47,121; 52,763] | 0 |
25 | 14 May 2020 | 252,245 | 55,835 | 3 | 22 | [52,763; 57,999] | 0 |
26 | 15 May 2020 | 262,843 | 60,644 | 4 | 22 | [57,999; 62,773] | 0 |
27 | 16 May 2020 | 272,043 | 65,739 | 5 | 22 | [62,773; 68,622] | 0 |
28 | 17 May 2020 | 281,752 | 70,004 | 6 | 22 | [68,622; 74,588] | 0 |
29 | 18 May 2020 | 290,678 | 72,931 | 6 | 23 | [74,588; 80,949] | 1657 |
30 | 19 May 2020 | 299,941 | 78,967 | 7 | 23 | [80,949; 87,147] | 1982 |
Country | C(t) Forecast (MAPE) | Constant ϑ(t) | ||||
---|---|---|---|---|---|---|
I(t) Forecast (MAPE) | D(t) Forecast (MAPE) | I(t) Forecast (MAPE) | D(t) Forecast (MAPE) | |||
6–30 June 2020 | ||||||
Russia | 25 | 0.37% | 4.14% | 3.17% | 1.13% | 0.4% |
Germany | 18 | 0.25% | 3.22% | 0.7% | 2.8% | 0.7% |
Italy | 40 | 0.1% | 3.85% | 5.7% | 3.3% | 5.7% |
1–20 December 2020 | ||||||
Russia | 20 | 0.30% | 1.10% | 3.10% | 0.9% | 2.9% |
Germany | 17 | 0.25% | 2.70% | 0.7% | 1.25% | 0.7% |
Italy | 25 | 0.10% | 9% | 5.7% | 0.5% | 5.7% |
Data | Actual I(t) | I(t) Forecast, SIR | I(t) Forecast, CIRD | SIR Difference | CIRD Difference |
---|---|---|---|---|---|
20 April 20 | 43,270 | 43,270 | 0 | ||
21 April 20 | 48,434 | 46,332 | −2102 | ||
22 April 20 | 53,066 | 49,612 | 53,268 | −3454 | −202 |
23 April 20 | 57,327 | 53,122 | 58,366 | −4205 | −1039 |
24 April 20 | 62,421 | 56,881 | 63,526 | −5540 | −1105 |
25 April 20 | 67,657 | 60,906 | 68,840 | −6751 | −1183 |
26 April 20 | 73,435 | 65,215 | 75,652 | −8220 | −2217 |
27 April 20 | 79,007 | 69,828 | 81,619 | −9179 | −2612 |
28 April 20 | 84,235 | 74,767 | 87,616 | −9468 | −3381 |
29 April 20 | 88,138 | 80,055 | 93,575 | −8083 | −5437 |
30 April 20 | 93,806 | 85,716 | 101,582 | −8090 | −7776 |
01 May 20 | 100,042 | 91,777 | 108,151 | −8265 | −8109 |
02 May 20 | 107,819 | 98,265 | 114,394 | −9554 | −6575 |
03 May 20 | 116,768 | 105,211 | 120,414 | −11,557 | −3646 |
04 May 20 | 125,817 | 112647 | 129,095 | −13,170 | −3278 |
05 May 20 | 134,054 | 120,607 | 135,054 | −13,447 | −1000 |
06 May 20 | 143,065 | 129,128 | 140,395 | −13,937 | 2670 |
07 May 20 | 151,732 | 138,249 | 149,063 | −13,483 | 2669 |
08 May 20 | 159,528 | 148,012 | 154,160 | −11,516 | 5368 |
09 May 20 | 164,933 | 158,462 | 158,861 | −6471 | 6072 |
10 May 20 | 173,467 | 169,647 | 163,065 | −3820 | 10,402 |
11 May 20 | 179,534 | 181,619 | 166,203 | 2085 | 13,331 |
12 May 20 | 186,615 | 194,432 | 171,332 | 7817 | 15,283 |
13 May 20 | 192,056 | 208,144 | 175,275 | 16,088 | 16,781 |
14 May 20 | 196,410 | 222,819 | 179,801 | 26,409 | 16,609 |
15 May 20 | 202,199 | 238,524 | 184,952 | 36,325 | 17,247 |
16 May 20 | 206,304 | 255,329 | 189,177 | 49,025 | 17,127 |
17 May 20 | 211,748 | 273,311 | 193,418 | 61,563 | 18,330 |
18 May 20 | 217,747 | 292,551 | 197,381 | 74,804 | 20,366 |
19 May 20 | 220,974 | 313,136 | 201,606 | 92,162 | 19,368 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakharov, V.; Balykina, Y.; Ilin, I.; Tick, A. Forecasting a New Type of Virus Spread: A Case Study of COVID-19 with Stochastic Parameters. Mathematics 2022, 10, 3725. https://doi.org/10.3390/math10203725
Zakharov V, Balykina Y, Ilin I, Tick A. Forecasting a New Type of Virus Spread: A Case Study of COVID-19 with Stochastic Parameters. Mathematics. 2022; 10(20):3725. https://doi.org/10.3390/math10203725
Chicago/Turabian StyleZakharov, Victor, Yulia Balykina, Igor Ilin, and Andrea Tick. 2022. "Forecasting a New Type of Virus Spread: A Case Study of COVID-19 with Stochastic Parameters" Mathematics 10, no. 20: 3725. https://doi.org/10.3390/math10203725
APA StyleZakharov, V., Balykina, Y., Ilin, I., & Tick, A. (2022). Forecasting a New Type of Virus Spread: A Case Study of COVID-19 with Stochastic Parameters. Mathematics, 10(20), 3725. https://doi.org/10.3390/math10203725