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Abstract: The Randi¢ index is among the most famous degree-based topological indices in chemical
graph theory. It was introduced due to its application in modeling the properties of certain molecular
structures and has been extensively studied. In this paper, we study the lower bound of the Randi¢
index of trees in terms of the order and the total domination number. Finally, trees with the minimal
Randi¢ index are characterized.
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1. Introduction

Let G be a simple and connected graph with vertex set V(G) and edge set E(G). An
edge connecting two vertices u and v in the graph G are denoted by uv. For any vertex
v € V, the open neighborhood of v is the set N(v) = {u € V|uv € E} and the closed
neighborhood is the set N[v] = N(v) Uv. The degree of a vertex u is denoted by deg(u) and
it is the number of edges that are incident with u in the graph G. A vertex u in G is a leaf if
deg(u) = 1. The diameter of a tree is the longest path between two leaves. If v1,v,,...,7, is
a path where the diameter is attained, we say that v1, vy, ..., v, is a diameter path in T. We
use T — {ul, e, uk} to denote the tree obtained from T by deleting the vertices uy, . .., u
of T. As usual, by P, and S,, we denote the path and the star with n vertices, respec-
tively. For other notations and terminologies not defined here, please refer to the book by
West [1].

Graph theory has provided chemists with a variety of useful tools, such as topological
indices. A topological index is a numeric quantity from the structural graph of a chemical
compound [2]. Among many topological indices, the Randi¢ index is the most widely used
in applications to chemistry, especially in QSPR/QSAR investigations [3].

The Randi¢ index was introduced by Randi¢ [4] and is defined as

1
deg(u)deg(v)/

where deg(u) and deg(v) denote the degrees of the vertices 1, v € V(G), and uv denotes
the edge connecting these two vertices.

A subset D C V(G) is a dominating set of G if every vertexin V(G) \ D has a neighbor
in D. The minimum cardinality of a dominating set of G is called the domination number,
denoted by 7(G). A subset D C V(G) is a total dominating set of G with no isolated vertices
if every vertex G has a neighbor in D. The total domination number of G, denoted by 7(G),
is the minimal cardinality of a total dominating set [5]. Please refer to [6] for a survey of the

R(G) =
uveE(G)
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f(n,k+1)

selected findings on total domination number in graphs before 2009. Domination in graphs
has been an active research area in graph theory [7,8].

The relationship between topological indices and the parameters of domination has
attracted the attention of many researchers. Borovic¢anin and Furtula [9] showed the sharp
upper bounds on the Zagreb indices of n-vertex trees with the domination number and
characterized the extremal trees. In [10], the authors obtained the extremal harmonic index
of trees in terms of the order and domination number. Furthermore, Pei and Pan [11]
considered the upper bounds for the Zagreb indices of n-vertex trees with a given distance
k-domination number and the extremal trees are characterized. Wang et al. [12] determined
sharp upper and lower bounds of multiplicative Zagreb indices in terms of the arbitrary
domination number. Moreover, the corresponding extremal graphs are characterized. In the
paper, [13], upper and lower bounds on the zeroth-order general Randi¢ index for trees
with a given order and domination number are presented. In addition, the authors showed
that the bounds are the best possible. Sahin [14] obtained the extremal values of the Hosoya
index and the Merrifield-Simmons index of trees with a given domination number. Recently,
Sun et al. [15] provided the maximum and minimum Sombor index of trees with fixed
domination numbers and identified the corresponding extremal trees.

In [16], the upper bounds on the Zagreb indices of the tree, unicyclic, and bicyclic
graphs with a given domination number and total domination number were obtained.
Bermudo et al. [17] obtained the upper and lower bounds of the Randi¢ index of trees with
a given domination number. Recently, Ahmad Jamri et al. [18] discovered an upper bound
for the Randi¢ index of trees with a given total domination number. This paper investigates
the lower bound of the Randi¢ index of trees with a given total domination number. Finally,
trees with a given order and total domination number with minimal Randi¢ index are
characterized.

2. Main Results

Here, the sharp lower bound of the Randi¢ index of trees in terms of the total domina-
tion number and the characterization of those that attain this lower bound are presented.
In order to do that, we used a similar approach as in [17].

The following lemmas are useful for our main results.

Lemma 1 ([12]). If G is a connected graph of order n > 3, then v < %”

Lemma 2. Assume that for any number n > 4

k—
flnk) = (”_%(3"_1” 2\/§1><\/n—1k—1 - \/nl—k)_ n—lk—l'

then f(n,k+1) < f(n,k)and f(n, k) < f(n+1,k), forany2 <k <n—2.

Proof. Firstly, we show that f(n,k+1) < f(n,k) forany k < n —2.

(”‘1(3"“)*#1)(\/14—15—2‘ ¢n—11k—1> ‘n—llk—z
<n_2(3k_1)Jr 2?@)(\/n—k—2_ \/n—k—1> CVn—k-2

_@ - 2\1/§> <\/n —1k—2 ~ Vn —1k—1>'
then f(n,k + 1) < f(n,k) if and only if

— N
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<n_;(3k_1)+k2\_f21>(¢n—1k—2_ \/n—lk—l> - n—lk—Z

_<§_2\1/§)<\/n—1k—2_ \/n—lk—1>

1 k—1 1 1 1
< <n_§(3k_1)+ 2ﬁ>(\/n—k—1_\/n—k)_\/n—k—1'

This inequality is equivalent to

1 k-1 1 1
(”‘z@k‘l” zﬁ)<¢n_k_z_ \/n—k—1>
k—

—(n—%(3k—1)+ 2\f21)(\/n—1k—1 a \/nl—k)

3 1 1 1 1 1
= (2_2\@)<\/n—k—2_ \/n—k—1> T Vnok—1 Vak—2

After rearranging, we have

1 k—1 1 2 1

(;1_2<3k_1)+ 2\/§)<\/rz—k—2_ \/n—k—1+\/n—k>

= (§_2\1/§)<\/n—1k—2_ \/n—lk—1> - \/n—lk—1+\/n—lk—2'

Since we have

1 k—1 1 k—1
n—=-Bk—-1)4+—=n—-k—=(k—1)4+~——=
2( ) 22 2( ) 22
1 1
=n—k—=(k-1(1-—
2( ) ﬁ)
<n-—k,

it is enough to check that

1 2 1
(nk)(\/nkZ \/nk1+\/nk>

< (;_2\15)<\/n—1k—2_ \/n—lk—1> a \/n—lk—1+\/n—1k—2’

which is obtained by using the fact that the function

3 1 1 1 1 1 1 2 1
rx) = (5-— - — + —x - +—=),
(*) <2 2\@)(\/9(—2 \/x—1> Vi—1 +x=2 (\/x—Z Vx—1 ﬁ)
is a positive function for any x > 2.
Finally, we show that f(n,k) < f(n+1,k) implies

(n_;(gk_1)+k2\_/§1><\/n—1k—1 a \/nl—k) a \/n—lk—l
= <n+1_;(3k_1)+lf2\_/§1)<\/n1—k_ \/n—1k+1> B wll_k'
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for any n > k + 2. Hence, this inequality is equivalent to
1 k—1 1 1 2
n—-Bk—1)+ ) ( + - )
( 2( ) 22 ) \Vn—k—-1 Vn—k+1 +Vn—k
1
< - .
Vn—k—1 +vn—k+1
Since
1 k-1 1 1
—-Bk-1)+—=n—-k—-(k-1 <1—) <n-—k,
for any k > 2 and the function
T 1 x< 1 " 1 2)
Vi—1 Vx+1 V=1 Vx+1 x)
is a positive function for any x > 2, we have the required inequality. [
Now, we present our main results.
Theorem 1. If T is a tree of order n and total domination number <y, then
1 ye—1 1 (r-D(V2+1) (=" +1
>(n—= - — . 1
R(T)—(” ;B =1)+ zﬁ)(,/in—%)+ 4 291 —1 )

Proof. The result is proved by induction on the number of vertices. If n = 3, R(P;) =
V2 > ¢(3,2) &~ 0.7904. If n = 4, then R(Py) = V2+ 4 > ¢(4,2) ~ 1.2475 and
R(S4) = v/3 > g(4,2). Therefore, we suppose that n > 5 and the result holds for any trees
of order n — 1. We will check if it is true for the tree with n vertices.

If v} is even, then we can have the inequality (1) as follows

1 ve—1 1 (vt —1(V2+1) 2
> (n—= — — )
R(T) 2 (1= 3061 -1+ 2,2 ) (m) - 4 -1 @
Meanwhile, if ; is odd, the inequality (1) is obtained as follows
1 v —1 1 (e —1)(V2+1)
> (n— =3y — )
R(T) 2 (1= 3061 -1+ 22 )(m) * 4 ©)

Without loss of generality, suppose that ; is odd. Therefore, we prove inequality (3).
To simplify the computations, we denote

i %—1)( 1 >+(%—1)(\/§+1)‘

g(n,m) = (1= 57 -

22 /I \n—= 4
Letvy, vy, ..., v, is a diameter path in the tree T. Let deg(vp) =i, N(vp) = {v1,v3,11,.. .,

ui_o}, deg(v3) = jand N(v3) = {v2,04, w1, Wo,..., W} and deg(w;) = s; for I €
{1,...,j — 2}. Suppose T = T —v,. Since () -1 < %(A < 7(T), we study the
following cases.

Case 1. Suppose that ;(T) = 7;(T). Then, we have
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> ((n=1) 37 - )+72tﬁ1)(\/%_%)+(%1)iﬁ“)
ez
S i) T
1 —1 1 1 1
:g(n’%H(n_E(?m_l)Jerﬁ>(\/n77tf1_\/n—fyt)_\/n7%71
NEEETRIE T
1V i)

If n = i + 2, we have the graph shown in Figure 1 with r = 1 (see below). In this case,

71(T2;) = 2and R(TSZ/I) = w It is easy to check that R(T2;) > g(i +2,2).

Figure 1. The graph Tsz,r.

Thus, we consider n > i+ 3. Since 7y < n—(i—2)—2=n—iandn > i+ 3, by
Lemma 2, we have

1 -1 1 1 1
(”_5(3%_ )+ vz\f)(\/n.—%—l_\/n'7t>_\/n—')/t—l
>(n;(3(ni)1)+n2\lﬁ1)<\/il_71\2) il—l

it i)

Therefore,
R(D) 2 gln)+ (1= 3En -1+ L) (e L)
1 1 1 1
—ﬁ‘(f \/)< 1+\ﬂ)+m

=

—g(n,%)+(i—1+\1@)(

-
e D )

1 Iyl 1
> g(n,ve) + (ﬁ_@) (ﬁ - \ﬁ)
=gq(n,v),

for any i > 2. Thus, R(T) > g(n, ). The equalities hold if and only if j = 2 and in this
case, the graph is one of the graphs shown in Figure 1.
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Case 2. Suppose that ; (T) = 94(T) — 1. In this case, we have i = 2. Then, there exists a
minimum total dominating set D of T such that v3 € D. Therefore, we obtain

R(T) = R(T) - (1- \2) (\1/]) + \15

> ((n-1) - %(3(%—1) —1)+ Vzt:ﬁ )( Fl_%) i *2)?6“)

2 1 1 1
oy R (s

1 1 1 V2-1 2
:g(”'%)+(1_7@)(2\/n—7%_ﬁ)+ 4 (2y-a)

Ifj > 4(n— ), theny; < n j+1, thus, 4n —4vy; < n— vy + 1. Therefore, n < ; + z
and, consequently, we have n — » < 7 < 2” . However, itis n < 1. Therefore, we con51der
j < 4(n — ) — 1. We denote N(Ug) = {02,214,w1,... w;_2} and deg(w;) = s; for any
I €{1,2...,j—2}. By considering this case,s; = lors; = 2forl € {1,2,...,j —2}.
If v4 is a leaf or support vertex with deg(vs) = 2, then the graph is the one shown in
Figure 1, which the result holds. In the other cases, we consider sy = --- = 5, =
1, 8,41 = -+ = Sy tr, = 2, wherery +1, = j—2 and deg(vy) > 2. We have the
following cases.

Case 2.1. Letr; > 1. If w; € N(v3) is one vertex, such that deg(v;) = 1 and we take

Ty =T — wyq, then 14(T) = 'yt(T). Since vt —2—1, < w w.

Hence, we have

; thus, 7 <

2(n—1—;(37t—1)+72t\_ﬁl)( ﬁlwl)ﬂ%_l)iﬁﬂ)
_< jl—1_\1[]>(1+r2j§2)+\/j1f1

1 _ 1 )_ 1
vi—y—-1 n—m/ n—m-1

=)+ (1 36n -1+ H D)
1

1])(1+r2—|—2)+ 1

V2 /i1

If d <5, then T is one of the graphs P, S3, P4 or the graph shown in Figure 1, thus
we can consider d > 6. In this case, n > r{ + 2r, 4+ 6 and there exists r > 0, such that
n =ry + 2rp, + 6 + r. Therefore,

2(r1 +2r + 6+ 2j+r —|—4
7 < (r 2 N=%+r

2
4
3 2+ —|—3r

By applying Lemma 1 and since v < rp +4 + %r and n = r; + 2r, + 6 4+ r, we have
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(”—;<3%—1>+7§$)(¢n_1%_1 - \/nl—'yt) - \/n—l'yﬁ

r+1 r2+§r+3)( 1 B 1 )
2 2v2 Jin+r) +5+1 Jn+n)+5+2
1

\/(r1+r2)+§+1
>2(j+g)+(\/§—1)(2r1+r2+1)( 1 B 1 )_ '
B 2v2 Ji+n-1 Ji+57 Ji+5H-1

By putting x = j + 5, we have the function

> (7‘1+

h(x)_(2x+(\/§21\)/(§2r1+r2+1))(\/x1j_\}§)_\/x1j,
whose
v 1,1 1 1 1224+ (V2-1)@2r+n+1) 11
0= () Tl A L (s i O

If 2x > (2r; + 12 + 1), we have that

W (x)

> Al e (Y G )
TV2\Wa-1 o V) g(x—1)3 V2 (x-1)7 (x)i/

The above function for any x > 2 is a positive function. Thus, h(x) is an increasing
function for any x > M Since j + % >j> M, if r = 0, then the graph with

n =r1+2rp +6and y; = 4+ ry satisfies (1). In other cases, we have 1(j 4 §) > h(j), which
implies that

(n—%(3fyt—1)+%_1)( L ! ) - L

22 ) \Vn—q—1 n—v/) n—y—1
>2(j+§)+(ﬁ—1)(2r1+r2+1)( 1 1 )_ 1
) 2v2 VUtrn-1 Ji+5" Ji+p-1
>2j+(ﬁ—1)(2r1+r2+1)( 1 _L)_ 1
- 2V/2 i-1 i—1
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Therefore,
( )Zg( ) ( *%(3%71) z\fl)(\/n—lfyt—lx/nl_')’t)\/n_l')/ﬁ
2 1
(e
(,70) + 2j+ (V2 - 1)(2r1+1’2+1)< 1 _L)_#
> 8n 22 Vi-1 Vil i1
7o +2 1
(=) )+
B 1 1y (V2=1)(ra+1)
= g(n, (\/7_%)( 2\/;2 )

Therefore, R(T) > g(n,:) for j > 2and r, > 0.
Case 2.2. Assume that r; = 0. We study the following cases.

Case 2.2.1. Letj > 3. If w; € N(v3) is one vertex such that deg(w;) = 2 and z; is adjacent
to wy with deg(z1) = 1, we take Tp = T — {v1,vp,21}. In this case, 1(T2) = 7+(T) — 2 and

we have
R(T) = (8~ (g = ) () + S+ v2
> (n3;(3(%2)1)+72t\@3)( ﬁ_lyt_lw ”“”iﬁ“)
1 1 ' 242
W) vmes

g(n,%)+ (n_;(3%_1)4_7;\@1)(\/11—1%—1 a \/nl—’Yt) _\f(\/n—l’yﬁ)
V2-1 1 1 ‘ 22
+ )_(\m_f/j)(i%m-

Since v < %”, we have

P V2
(n_;(?”)/t_l)—i_’)/z\[l)(\/nl’ytl \/nl—’)/t)_zz(\/i’ll’)/ﬁ)
%

> (n—%(Zn—l)—i—

®-1 /&)

We consider the function

o =31+ ) (s - ) - P (),

which is an increasing function for x > 1.
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If n > 3j, then h(%5) > h(j), which yields

- V2
(n—;(3’)/,5—1)—1—72\&1)(\/”_1%_1 a \/nl—’yt) _22(\/71—1'yﬁ)

V2-1 1 1 ' 2—v2
+( 2 >_(\/]f1_7])(\]@) 2(—1)
j — V2 V2 —
02 () ) ()
1 1\/ ] 2-V2
(=B

This is a positive function for any j > 3. Therefore, R(T) > g(n,v¢). If n < 3j and
j > 3, in this case, the only graph with these conditions is the graph obtained from path Ps,
such that P, is added to the vertex v3. It is easy to check for this graph that R(T) > g(8,5).

Case 2.2.2. We suppose that j = 2. By the above cases, we can suppose that n > 8. We
consider the following cases.

Case 2.2.2.1. If v4,v5 ¢ D, then we take T, = T — {v1,v2}. In this case, 1:(T2) = 7+(T).
Thus, we have

> Jon o+ 35 gy 2
=g(n,%)+(”—;(3%—1)+Vzt\g)(m_lw_3—\/nl%)—\/n_zyﬁﬂ.

Since v < %”, using Lemma 2, we have
1 v —1 1 1 2
773 il _ _
(n 2(% )+2ﬁ)(\/n—7t—3 W—%) Vin—7-3
2(2n) _
z(n—1(3(2n—1)+ (&) 2

i 11y

1 2n1-3\/ V3 3 2/3
=(3+ Zﬁ)(m‘ﬁ)_m‘
Therefore,
R(T)zg(n,%)+(n—;(37t—1)+’2\_@1)<m_1%_3—\/nl_%)_\/n_zyﬁﬂ’

1 2n—3>( \/C’; \/g)_ 2\/5

Zg(n,%)Jr(er NN m+1,

2 62
which is a positive function for n > 10. Therefore, R(T) > ¢(n, ).
Forn = 8 and j = 2, tree T is the path Ps, and for n = 9 and j = 2, the graph is one

of graphs Py or the graph obtained from Pg, such that deg(v;) = 4. Clearly, in these cases,
R(T) > g(n, 7).

Case 2.2.2.2. Let v4 or v5 not be in the minimum total dominating set D. We suppose that
vy € Dand vs ¢ D. We take T, = T — {01, vp,v3} and we consider the two following cases.
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Case 2.2.2.2.1. We suppose that 7;(Tz) = 7:(T) — 2. Assume that deg(vy) = k > 2. Then,
we have

@> 1(1 2>

N AN I

> (n-3- 360 —2) ~1) + 22) () 4 2D
V2

(B (- 2

:g(n"yt)+(n_;(B%_l)+72t\_f1)(\/n—1'yt—l \/111—%)
V2 1 1 1 2
_7<\/m> _ﬁ(\/k—l _W)

By applying 7+ < % and Lemma 2, we have

t— f
(n_;(37t_1)+72ﬁ1)(\/n1’rt1_\/111—%)_22(”1%1)/
2(4) -1 V2
() ) 1 1 )_i(#)

Here, the function

1022 (- )2 )
2 V2 x—1 x 2 x—1/
is an increasing function for x > 1. Therefore, for n > 3k, we have R(T) > g(n,v).

Note thatif v4 ¢ D and vs € D, by considering T, = T — {v1,v5,v3} and 14(Th) =
Yt — 2, the result is obtained via the case given above.

Case 2.2.2.2.2. We suppose that 7¢(T>) = 7 — 1. We denote N(vs) = {v3,05,¥1,..., Y2}
By the above cases and the definition of the total domination number, deg(y;) = 1 for any
1 <1 <k—2.Insucha case, we take T, = T — {v1, v} which yields

A (-

R(T) = R(Ty) + (5 (5

z(n—Z—l( (%—1)—1)+72tk)( Flw_l)“%Z)iﬁH)
V2
() Y

= g(n,7e) + ;3%—1)+72tk1)(¢n—1%—1_Wl%>
_f+1( 1 ) (@) i(l -1).

+ + —
2v2 \n—7 =1 4 Vk\V2
Since v; < 4!, using Lemma 2, we have
1 1 1 V2+1 1
(n=36m-1+ 52 ) (=)
22 I \Vn= =1 =i 2v2 \Wn—y—1

1 2(%) -1 1 V2+1 1
25( V2 )(\/T \/?) zﬁ( (’;)—1>'
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Similar to the above case, for any n > 4 we have R(T) > g(n,v:). O

Remark 1. In [17], the authors proposed a lower bound of the Randi¢ index of trees in terms of the
order n and the domination number <y as follows

n—2y+1 -1 1 -
R(T) 2 = + ﬁ(1+m)_h(n,y).

According to the discussion at the beginning of the proof of Theorem 1, let us consider

%—1)( 1 )+(%—1)(ﬁ+1)

R(T) > (n=30m -1+ L) (= : — g(n, 7).

Ifye <%, then

g(n,%):(n—%(:a%_l) %—1)( 1 >+<%—1><\@+1>

242 I \m—y 4
= (n—§7t+1—1—|— +72t\f1)(\/n1_7%>+(%1)iﬁ+1)

2 (-2t () + 5 ) () + -2+

Using the fact that v < vy and 2 < n — vy, we have

) (-Lamoty Ly, e v2e

g(n,’yt)z(n—z'y—kl)(ﬁ Nl 1
(-2 () 3 Wim’;ﬂe )
e R

71 ( —1)(f+1)

=) = 5 (5) - Z}l(%) ;

foranyn > 4and v > 2.

Therefore, for any n > 4and v < 4 < 47

r— F—1(V2
(n—;(3%—1)+72ﬁ1)( Fl_%)_._('y 1)4(1 2+1)
n—2y+1 ’y—l( i 1 )

Vimy L a N )

Consequently, the lower bound (1) is stronger than the lower bound obtained in [17] Theorem
24 forn>4andy <y < %7.

Theorem 2. Let T be a tree of order n and a total domination number ;. Then

%—1)( 1 )+(7t—1)(\5+1)7(—1)%+1

1
R(T) = (n7§(3%7 D+ 22 T\ ="y 4 2v—1 7

ifand only if T = Ty 1.
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Proof. Suppose that there exists a tree T;, (s > 1), shown in Figure 2 as below. In such a
case, we have n = s + 3r + 1 and y; = 2r + 1. Therefore, we have

R(T)—;+L+L+;
T rts V2 VA J2(r+s)

o O———0——0
Figure 2. The graphT .

By substituting r = %771 and s = n — (37 — 1) on the right side of the above

equation, we have

_ 1 7t -1 1 (n-D(V2+1) (=17 +1
R(Ts,r)_(n_2(3')/t_1)+ 2\/§>(m)+ 4 - zz),tfl '

By following the proof of Theorem 1, we can see that in some cases of the proof, if
T # Ts,, then the inequality in that theorem is a strict inequality. Therefore, we suppose
that there exists a tree T # T;, in Cases 1 and 2.2, such that the equality holds. However,
we show that there is no such tree.

In Case 1, if there exists a tree T such that the equality holds, then all of the inequalities
become equalities. This happens when n = i +3 and 7; = n — i = 3. That is, the graph is
one of the graphs shown in Figure 2 with » = 1. Therefore, T = T ;.

By considering Case 2.2 in the proof of Theorem 1, we investigate trees that satisfy
the equality conditions ry = 0 and j > 3. If all inequalities become equal in Case 2.2,
then we have

3 3)-2(e)- ()

. (1_1><f>+2—ﬁ_0
Vil Vi) \v2) o V2(i-1)
By simplification of the above relation, we have

1 V2—-2 V2-2
4<—2+2ﬁ+ T’—1+ 7 >=o,

which we can easily check that j < 3. Therefore, the inequality, in this case, is also strict. [

3. Conclusions

This research looks at the link between the Randi¢ index and the total domination
number of trees. We provided a lower bound for the Randi¢ index of trees in terms of
the total domination number and characterized all trees that attained the equality case.
Combined with the result in [18], the extremal results for the Randi¢ index of trees (in terms
of the order and the total domination number) were completely determined.

To conclude this paper, we suggest the following open problem.

Problem 1. Determine the upper and lower bounds for the Randi¢ index of trees with
respect to the order and the Roman domination number (or other domination parameters).
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