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Abstract

:

In the present article, some geometric and physical properties of   M G   ( Q E )  n    were investigated. Moreover, general relativistic viscous fluid   M G   ( Q E )  4    spacetimes with some physical applications were studied. Finally, through a non-trivial example of   M G   ( Q E )  4    spacetime, we proved its existence.
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1. Introduction


A Riemannian or a semi-Riemannian manifold   (  M n  , g )   of dimension   n ( > 2 )   is termed as an Einstein manifold if its   ( 0 , 2 )  -type Ricci tensor   R i c ( ≠ 0 )   satisfies   R i c =  r n   , where r stands for the scalar curvature [1]. In addition to Riemannian geometry, Einstein manifolds also have a vital contribution to the general theory of relativity (GTR).



Approximately two decades ago, Chaki and Maity introduced and studied quasi-Einstein manifolds [2]. An   (  M n  , g )  ,   ( n > 2 )   is said to be a quasi-Einstein manifold    ( Q E )  n   if its   R i c   (≠ 0) realizes the following condition:


  R i c  (  U 1  ,  U 2  )  = a g  (  U 1  ,  U 2  )  + b A  (  U 1  )  A  (  U 2  )  ,  



(1)




where   a , b ∈ R   such that   b ≠ 0   and   A ( ≠ 0 )   is the 1-form such that


  g  (  U 1  , ρ )  = A  (  U 1  )  ,  g  ( ρ , ρ )  = A  ( ρ )  = 1 ,  



(2)




for any vector field   U 1  , and a unit vector field  ρ  called the generator of   (  M n  , g )  . In addition, A is named the associated 1-form. Einstein manifolds form a natural subclass of the class of    ( Q E )  n  .



Under the study of exact solutions of the Einstein field equations, as well as under the consideration of quasi-umbilical hypersurfaces of semi-Euclidean spaces,    ( Q E )  n   came into existence. For instance, the Robertson–Walker spacetimes are    ( Q E )  n  . Thus,    ( Q E )  n   have great importance in GTR.



An    (  M n  , g )  ,  ( n ≥ 2 )    is said to be a generalized quasi-Einstein manifold   G   ( Q E )  n    [3] if its   R i c ( ≠ 0 )   realizes the following condition:


  R i c  (  U 1  ,  U 2  )  = a g  (  U 1  ,  U 2  )  + b A  (  U 1  )  A  (  U 2  )  + c B  (  U 1  )  B  (  U 2  )  ,  



(3)




where a, b, c are non-zero scalars and A, B are two non-zero 1-forms such that


  g  (  U 1  , ρ )  = A  (  U 1  )  ,  g  (  U 1  , σ )  = B  (  U 1  )  ,  



(4)




where  ρ  and  σ  are mutually orthogonal unit vector fields, i. e.,   g ( ρ , σ ) = 0  . The vector fields  ρ  and  σ  are called the generators of the manifold. If   c = 0  , then the manifold reduces to a quasi-Einstein manifold.



In 2007, Bhattacharya, De and Debnath [4] introduced the notion of a mixed generalized quasi-Einstein manifold. A non-flat Riemannian manifold is said to be a mixed generalized quasi-Einstein manifold and is denoted by   M G   ( Q E )  n  ,   if its   R i c ( ≠ 0 )   satisfies the following condition:


     R i c (  U 1  ,  U 2  )     = a g  (  U 1  ,  U 2  )  + b A  (  U 1  )  A  (  U 2  )  + c B  (  U 1  )  B  (  U 2  )           + d [ A  (  U 1  )  B  (  U 2  )  + B  (  U 1  )  A  (  U 2  )  ] ,     



(5)




where a, b, c, d are non-zero scalars and A, B are two non-zero 1-forms such that


  g  (  U 1  , ρ )  = A  (  U 1  )  ,  g  (  U 1  , σ )  = B  (  U 1  )  ,  



(6)




where  ρ  and  σ  are mutually orthogonal unit vector fields and are called the generators of the manifold. Recently,   M G   ( Q E )  n    have been studied by various geometers in several ways to a different extent, such as [5,6,7,8] and many others.



Putting    U 1  =  U 2  =  e i    in (5), where   {  e i  }   is an orthonormal basis of the tangent space at each point of the manifold, and taking summation over i(   1 ≤ i ≤ n  ), we obtain


  r = n a + b + c .  



(7)







A Lorentzian four-dimensional manifold is said to be a mixed generalized quasi-Einstein spacetime with the generator  ρ  as the unit timelike vector field if its   R i c ( ≠ 0 )   satisfies (5). Here, A and B are non-zero 1-forms such that  σ  is the heat flux vector field perpendicular to the velocity vector field  ρ . Therefore, for any vector field   U 1  , we have


        g  (  U 1  , ρ )  = A  (  U 1  )  ,  g  (  U 1  , σ )  = B  (  U 1  )  ,          g  ( ρ , ρ )  = A  ( ρ )  = − 1 ,  g  ( σ , σ )  = B  ( σ )  = 1 .     



(8)







Further, we know that if the Riemannian curvature tensor   K ¯   of type   ( 0 , 4 )   has the form


    K ¯   (  U 1  ,  U 2  ,  U 3  ,  U 4  )   = k  [ g  (  U 2  ,  U 3  )  g  (  U 1  ,  U 4  )  − g  (  U 1  ,  U 3  )  g  (  U 2  ,  U 4  )  ]  ,  



(9)




then the manifold is said to be of constant curvature k. The generalization of this manifold is the manifold of quasi-constant curvature and, in this case, the curvature tensor has the following form:


      K ¯   (  U 1  ,  U 2  ,  U 3  ,  U 4  )      =  f 1   [ g  (  U 2  ,  U 3  )  g  (  U 1  ,  U 4  )  − g  (  U 1  ,  U 3  )  g  (  U 2  ,  U 4  )  ]           +  f 2   [ g   (  U 2  ,  U 3  )  A  (  U 1  )  A  (  U 4  )  − g  (  U 2  ,  U 4  )  A  (  U 1  )  A  (  U 3  )           + g  (  U 1  ,  U 4  )  A  (  U 2  )  A  (  U 3  )  − g  (  U 1  ,  U 3  )  A  (  U 2  )  A  (  U 4  )   ] ,      



(10)




where   g  ( K  (  U 1  ,  U 2  )   U 3  ,  U 4  )  =  K ¯   (  U 1  ,  U 2  ,  U 3  ,  U 4  )   , K is the curvature tensor of type   ( 1 , 3 )   and   f 1  ,   f 2   are scalars, and  ρ  is a unit vector field defined by


  g  (  U 1  , ρ )  = A  (  U 1  )  ,  











It can be easily seen that, if the curvature tensor   K ¯   is of the form (10), then the manifold is conformally flat [3]. Thus, a Riemannian or semi-Riemannian manifold is said to be of quasi-constant curvature if the curvature tensor   K ¯   satisfies the relation (10); we denote such a manifold of dimension n by    ( Q C )  n  .



A non-flat Riemannian or semi-Riemannian manifold   (  M n  , g )    ( n ≥ 3 )   is said to be a manifold of generalized quasi-constant curvature if the curvature tensor   K ¯   of type   ( 0 , 4 )   satisfies the condition [3]


      K ¯   (  U 1  ,  U 2  ,  U 3  ,  U 4  )      =  f 1   [ g  (  U 2  ,  U 3  )  g  (  U 1  ,  U 4  )  − g  (  U 1  ,  U 3  )  g  (  U 2  ,  U 4  )  ]           +  f 2   [ g   (  U 1  ,  U 4  )  A  (  U 2  )  A  (  U 3  )  − g  (  U 2  ,  U 4  )  A  (  U 1  )  A  (  U 3  )           + g  (  U 2  ,  U 3  )  A  (  U 1  )  A  (  U 4  )  − g  (  U 1  ,  U 3  )  A  (  U 2  )  A  (  U 4  )   ]           +  f 3   [ g   (  U 1  ,  U 4  )  B  (  U 2  )  B  (  U 3  )  − g  (  U 2  ,  U 4  )  B  (  U 1  )  B  (  U 3  )           + g  (  U 2  ,  U 3  )  B  (  U 1  )  B  (  U 4  )  − g  (  U 1  ,  U 3  )  B  (  U 2  )  B  (  U 4  )   ] ,      



(11)




where   f 1  ,   f 2  ,   f 3   are scalars and A, B are two non-zero 1-forms.  ρ  and  σ  are orthonormal unit vectors corresponding to A and B such that   g  (  U 1  , ρ )  = A  ( X )   ,   g  (  U 1  , σ )  = B  ( X )    and   g ( ρ , σ ) = 0  . Such a manifold is denoted by   G   ( Q C )  n   .



In [9], Bhattacharya and De introduced the notion of mixed generalized quasi-constant curvature. A non-flat Riemannian or semi-Riemannian manifold   (  M n  , g )    ( n ≥ 3 )   is said to be a manifold of mixed generalized quasi-constant curvature if the curvature tensor   K ¯   of type   ( 0 , 4 )   satisfies the condition


      K ¯   (  U 1  ,  U 2  ,  U 3  ,  U 4  )      =  f 1   [ g  (  U 2  ,  U 3  )  g  (  U 1  ,  U 4  )  − g  (  U 1  ,  U 3  )  g  (  U 2  ,  U 4  )  ]           +  f 2   [ g   (  U 1  ,  U 4  )  A  (  U 2  )  A  (  U 3  )  − g  (  U 2  ,  U 4  )  A  (  U 1  )  A  (  U 3  )           + g  (  U 2  ,  U 3  )  A  (  U 1  )  A  (  U 4  )  − g  (  U 1  ,  U 3  )  A  (  U 2  )  A  (  U 4  )   ]           +  f 3   [ g   (  U 1  ,  U 4  )  B  (  U 2  )  B  (  U 3  )  − g  (  U 2  ,  U 4  )  B  (  U 1  )  B  (  U 3  )           + g  (  U 2  ,  U 3  )  B  (  U 1  )  B  (  U 4  )  − g  (  U 1  ,  U 3  )  B  (  U 2  )  B  (  U 4  )   ]           +  f 4   [   { A  (  U 2  )  B  (  U 3  )  + B  (  U 2  )  A  (  U 3  )  }  g  (  U 1  ,  U 4  )           −  { A  (  U 1  )  B  (  U 3  )  + B  (  U 1  )  A  (  U 3  )  }  g  (  U 2  ,  U 4  )           +  { A  (  U 1  )  B  (  U 4  )  + B  (  U 1  )  A  (  U 4  )  }  g  (  U 2  ,  U 3  )           −  { A  (  U 2  )  B  (  U 4  )  + B  (  U 2  )  A  (  U 4  )  }  g  (  U 1  ,  U 3  )   ] ,      



(12)




where   f 1  ,   f 2  ,   f 3  ,   f 4   are scalars. A, B are two non-zero 1-forms.  ρ  and  σ  are orthonormal unit vectors corresponding to A and B such that   g  (  U 1  , ρ )  = A  ( X )   ,   g  (  U 1  , σ )  = B  ( X )    and   g ( ρ , σ ) = 0  . Such a manifold is denoted by   M G   ( Q C )  n   .



The spacetime of general relativity and cosmology is regarded as a connected four-dimensional semi-Riemannian manifold   (  M 4  , g )   with Lorentzian metric g with signature   ( − , + , + , + )  . The geometry of the Lorentz manifold begins with the study of a causal character of vectors of the manifold. Due to this causality, the Lorentz manifold becomes a convenient choice for the study of general relativity. Spacetimes have been studied by various authors in several ways, such as [10,11,12,13,14] and many others.




2.   MG   ( QE )  n    Admitting the Generators  ρ  and  σ  as Recurrent Vector Fields


Let us consider the generators  ρ  and  σ  corresponding to the associated recurrent 1-forms A and B. Then, we have


   (  D  U 1   A )   (  U 2  )  = η  (  U 1  )  A  (  U 2  )  ,  










   (  D  U 1   B )   (  U 2  )  = φ  (  U 1  )  B  (  U 2  )  ,  








where  η  and  φ  are non-zero 1-forms.



A non-flat Riemannian or semi-Riemannian manifold   (  M n  , g )  ,   ( n > 2 )   is said to be Ricci-recurrent [15,16] if its   R i c ( ≠ 0 )   satisfies the following condition:


   (  D  U 1   R i c )   (  U 2  ,  U 3  )  = α  (  U 1  )  R i c  (  U 2  ,  U 3  )  ,  



(13)




where  α  is in non-zero 1-form. Since we know that


      (  D  U 1   R i c )   (  U 2  ,  U 3  )     =     U 1  R i c  (  U 2  ,  U 3  )  − R i c  (  D  U 1    U 2  ,  U 3  )          − R i c (  U 2  ,  D  U 1    U 3  ) ,     



(14)




using (14) in (13), it follows that


     α  (  U 1  )  R i c  (  U 2  ,  U 3  )     =     U 1  R i c  (  U 2  ,  U 3  )  − R i c  (  D  U 1    U 2  ,  U 3  )          − R i c (  U 2  ,  D  U 1    U 3  ) .     



(15)







Using (5) in (15), we obtain


        α  (  U 1  )   [ a g   (  U 2  ,  U 3  )  + b A  (  U 2  )  A  (  U 3  )  + c B  (  U 2  )  B  (  U 3  )           + d  { A  (  U 2  )  B  (  U 3  )  + A  (  U 3  )  B  (  U 2  )  }   ] =  U 1  [  a g  (  U 2  ,  U 3  )  + b A  (  U 2  )  A  (  U 3  )           + c B  (  U 2  )  B  (  U 3  )  + d  { A  (  U 3  )  B  (  U 2  )  + A  (  U 2  )  B  (  U 3  )  }   ]           − [ a g  (  D  U 1    U 2  ,  U 3  )  + b A  (  D  U 1    U 2  )  A  (  U 3  )  + c B  (  D  U 1    U 2  )  B  (  U 3  )           + d { A  (  D  U 1    U 2  )  B  (  U 3  )  + A  (  U 3  )  B  (  D  U 1    U 2  )  } ]          − [ a g  (  U 2  ,  D  U 1    U 3  )  + b A  (  U 2  )  A  (  D  U 1    U 3  )  + c B  (  U 2  )  B  (  D  U 1    U 3  )           + d { A  (  U 2  )  B  (  D  U 1    U 3  )  + A  (  D  U 1    U 3  )  B  (  U 2  )  } ] .     



(16)







Putting    U 2  =  U 3  = ρ   in (16), we obtain


   U 1   ( a + b )  − α  (  U 1  )   ( a + b )  = 2  ( a + b )  A  (  D  U 1   ρ )  + 2 d B  (  D  U 1   ρ )  .  



(17)







By using the fact that   A (  D  U 1   ρ ) = 0   and (6) in (17), we have


   U 1   ( a + b )  − α  (  U 1  )   ( a + b )  = 2 d g  (  D  U 1   ρ , σ )  ,  



(18)




which can be written as


    U 1   ( a + b )  − α  (  U 1  )   ( a + b )  = − 2 d A  (  D  U 1   σ )  .  











Thus, we have   A (  D  U 1   σ ) = 0   if and only if    U 1   ( a + b )  − α  (  U 1  )   ( a + b )  = 0  . This implies that either    D  U 1   σ ⊥ ρ   or  σ  is a parallel vector field.



Again, putting    U 2  =  U 3  = σ   in (16), we have


   U 1   ( a + b )  − α  (  U 1  )   ( a + b )  = 2  ( a + c )  B  (  D  U 1   σ )  + 2 d A  (  D  U 1   σ )  .  



(19)







Again, using the fact that   B (  D  U 1   σ ) = 0   and (6) in (19), we have


   U 1   ( a + b )  − α  (  U 1  )   ( a + b )  = 2 d g  (  D v  σ , ρ )  ,  



(20)






  o r ,   U 1   ( a + b )  − α  (  U 1  )   ( a + b )  = − 2 d B  (  D v  ρ )  .  











Thus, we have   B (  D  U 1   ρ ) = 0   if and only if    U 1   ( a + b )  − α  (  U 1  )   ( a + b )  = 0  . This implies that either    D  U 1   ρ ⊥ σ   or  ρ  is a parallel vector field. Hence, we can state the following theorem:



Theorem 1.

Let a mixed generalized quasi-Einstein manifold   M G   ( Q E )  n    be Ricci-recurrent; then, the following statements are equivalent:




	(i) 

	
ρ and σ are parallel vector fields;




	(ii) 

	
   U 1   ( a + b )  − α  (  U 1  )   ( a + b )  = 0   if and only if    D  U 1   σ ⊥ ρ  ;




	(iii) 

	
   U 1   ( a + b )  − α  (  U 1  )   ( a + b )  = 0   if and only if    D  U 1   ρ ⊥ σ  .












3.   MG   ( QE )  n    Admitting the Generators  ρ  and  σ  as Concurrent Vector Fields


A vector field  π  is said to be concurrent if it satisfies the following condition [17,18]:


   D  U 1   π = ξ  U 1  ,  



(21)




where  ξ  is constant.



Let us consider the generators  ρ  and  σ  corresponding to the associated concurrent 1-forms A and B. Then, we have


   (  D  U 1   A )   (  U 2  )  = λ g  (  U 1  ,  U 2  )  ,  



(22)






  a n d   (  D  U 1   B )   (  U 2  )  = μ g  (  U 1  ,  U 2  )  ,  



(23)




where  λ  and  μ  are non-zero constants.



Taking the covariant derivative of (5) with respect to   U 3  , we obtain


      (  D  U 3   R i c )   U 2      = b [  (  D  U 3   A )   (  U 1  )  A  (  U 2  )  + A  (  U 1  )   (  D  U 3   A )   (  U 2  )  ]          + c [  (  D  U 3   B )   (  U 1  )  B  (  U 2  )  + B  (  U 1  )   (  D  U 3   B )   (  U 2  )  ]          + d [  (  D  U 3   A )   (  U 1  )  B  (  U 2  )  + A  (  U 1  )   (  D  U 3   B )   (  U 2  )           +  (  D  U 3   B )   (  U 1  )  A  (  U 2  )  + B  (  U 1  )   (  D  U 3   A )   (  U 2  )   ] .      



(24)







Using (22) and (23) in (24), it follows that


      (  D  U 3   R i c )   (  U 1  ,  U 2  )      = b [ λ g  (  U 1  ,  U 3  )  A  (  U 2  )  + λ g  (  U 2  ,  U 3  )  A  (  U 1  )  ]          + c [ μ g  (  U 1  ,  U 3  )  B  (  U 2  )  + μ g  (  U 2  ,  U 3  )  B  (  U 1  )  ]          + d [ λ g  (  U 1  ,  U 3  )  B  (  U 2  )  + μ g  (  U 1  ,  U 3  )  A  (  U 2  )           + λ g  (  U 2  ,  U 3  )  B  (  U 1  )  + μ g  (  U 2  ,  U 3  )  A  (  U 1  )   ] .      



(25)







Contracting (25) over   U 1   and   U 2   leads to


  ∂ r  (  U 3  )  = A  (  U 3  )   [ 2 b λ + 2 d μ ]  + B  (  U 3  )   [ 2 c μ + 2 d λ ]  .  



(26)







From (7), it follows that


  ∂ r (  U 1  ) = 0 .  



(27)







In view of (27), (26) turns to


  A  (  U 3  )   [ 2 b λ + 2 d μ ]  + B  (  U 3  )   [ 2 c μ + 2 d λ ]  = 0 .  



(28)







Thus, by virtue of (28), (5) takes the form


  R i c  (  U 1  ,  U 2  )  = a g  (  U 1  ,  U 2  )  +  b + c     ( b λ + d μ )   ( c μ + d λ )    2  − 2 d   ( b λ + d μ )   ( c μ + d λ )    A  (  U 1  )  A  (  U 2  )   



(29)




which is a quasi-Einstein manifold. Thus, we can state the following theorem:



Theorem 2.

Let   M G   ( Q E )  n    be a mixed generalized quasi-Einstein manifold. If the associated vector fields of   M G   ( Q E )  n    are concurrent and the associated scalars are constants, then the manifold reduces to a quasi-Einstein manifold.






4.   MG   ( QE )  n    Admitting Einstein’s Field Equations


The Einstein’s field equations with and without cosmological constants are given by


  R i c  (  U 1  ,  U 2  )  −  r 2  g  (  U 1  ,  U 2  )  + λ g  (  U 1  ,  U 2  )  = κ T  (  U 1  ,  U 2  )  ,  



(30)




and


  R i c  (  U 1  ,  U 2  )  −  r 2  g  (  U 1  ,  U 2  )  = κ T  (  U 1  ,  U 2  )  ,  



(31)




respectively;  κ  is a gravitational constant,  λ  is a cosmological constant, and T is the energy–momentum tensor.



Using (6) in (31), it follows that


         a −  r 2   g  (  U 1  ,  U 2  )  + b A  (  U 1  )  A  (  U 2  )  + c B  (  U 1  )  B  (  U 2  )           + d  [ A  (  U 1  )  B  (  U 2  )  + A  (  U 2  )  B  (  U 1  )  ]  = κ T  (  U 1  ,  U 2  )  .     



(32)







Now, taking the covariant derivative of (32) with respect to   U 3  , we arrive at


        b [  (  D  U 3   A )   (  U 1  )  A  (  U 2  )  + A  (  U 1  )   (  D  U 3   A )   (  U 2  )  ]          + c [  (  D  U 3   B )   (  U 1  )  B  (  U 2  )  + B  (  U 1  )   (  D  U 3   B )   (  U 2  )  ]          + d [  (  D  U 3   A )   (  U 1  )  B  (  U 2  )  + A  (  U 1  )   (  D  U 3   B )   (  U 2  )           +  (  D  U 3   B )   (  U 1  )  A  (  U 2  )  + B  (  U 1  )   (  D  U 3   A )   (  U 2  )   ] = κ   (  D  U 3   T )   (  U 1  ,  U 2  )  .     



(33)







Thus, we have a result.



Theorem 3.

Let   M G   ( Q E )  n    admit Einstein’s field equation without a cosmological constant. If the associated 1-forms A and B are covariantly constant, then the energy–momentum tensor is also covariantly constant.






5.   MG   ( QE )  4    Spacetime Admitting Space-Matter Tensor


In 1969, Petrov [19] introduced and studied the space–matter tensor   P ¯   of type   ( 0 , 4 )   and defined by


   P ¯  =  K ¯  +  κ 2  g ∧ T − ν G ,  



(34)




where   K ¯   is the curvature tensor of type   ( 0 , 4 )  , T is the energy–momentum tensor of type   ( 0 , 2 )  ,  κ  is the gravitational constant, and  ν  is the energy density. Furthermore, G and   g ∧ T   are, respectively, defined by


  G  (  U 1  ,  U 2  ,  U 3  ,  U 4  )  = g  (  U 2  ,  U 3  )  g  (  U 1  ,  U 4  )  − g  (  U 1  ,  U 3  )  g  (  U 2  ,  U 4  )  ,  



(35)




and


      ( g ∧ T )   (  U 1  ,  U 2  ,  U 3  ,  U 4  )      = g  (  U 2  ,  U 3  )  T  (  U 1  ,  U 4  )  + g  (  U 1  ,  U 4  )  T  (  U 2  ,  U 3  )           − g  (  U 1  ,  U 3  )  T  (  U 2  ,  U 4  )  − g  (  U 2  ,  U 4  )  T  (  U 1  ,  U 3  )  ,     



(36)




for all   U 1  ,   U 2  ,   U 3  ,   U 4   on M.



Using (35) and (36) in (34), it follows that


      P ¯   (  U 1  ,  U 2  ,  U 3  ,  U 4  )      =  K ¯   (  U 1  ,  U 2  ,  U 3  ,  U 4  )  +  κ 2   [ g   (  U 2  ,  U 3  )  T  (  U 1  ,  U 4  )           + g  (  U 1  ,  U 4  )  T  (  U 2  ,  U 3  )  − g  (  U 1  ,  U 3  )  T  (  U 2  ,  U 4  )           − g  (  U 2  ,  U 4  )  T  (  U 1  ,  U 3  )   ] − ν [  g  (  U 2  ,  U 3  )  g  (  U 1  ,  U 4  )           − g  (  U 1  ,  U 3  )  g  (  U 2  ,  U 4  )   ] .      



(37)







If    P ¯  = 0  , then (37) gives


      K ¯   (  U 1  ,  U 2  ,  U 3  ,  U 4  )      = −  κ 2   [ g   (  U 2  ,  U 3  )  T  (  U 1  ,  U 4  )  + g  (  U 1  ,  U 4  )  T  (  U 2  ,  U 3  )           − g  (  U 1  ,  U 3  )  T  (  U 2  ,  U 4  )  − g  (  U 2  ,  U 4  )  T  (  U 1  ,  U 3  )   ]           + ν [ g  (  U 2  ,  U 3  )  g  (  U 1  ,  U 4  )  − g  (  U 1  ,  U 3  )  g  (  U 2  ,  U 4  )  ] .     



(38)







In view of (5), from (31), it follows that


     κ T (  U 1  ,  U 2  )     =  a −  r 2   g  (  U 1  ,  U 2  )  + b A  (  U 1  )  A  (  U 2  )  + c B  (  U 1  )  B  (  U 2  )           + d [ A  (  U 1  )  B  (  U 2  )  + A  (  U 2  )  B  (  U 1  )  ] .     



(39)







Thus, from (38) and (39), we obtain


      K ¯   (  U 1  ,  U 2  ,  U 3  ,  U 4  )      =  f 1   [ g  (  U 2  ,  U 3  )  g  (  U 1  ,  U 4  )  − g  (  U 1  ,  U 3  )  g  (  U 2  ,  U 4  )  ]           +  f 2   [ g   (  U 1  ,  U 4  )  A  (  U 2  )  A  (  U 3  )  − g  (  U 2  ,  U 4  )  A  (  U 1  )  A  (  U 3  )           + g  (  U 2  ,  U 3  )  A  (  U 1  )  A  (  U 4  )  − g  (  U 1  ,  U 3  )  A  (  U 2  )  A  (  U 4  )   ]           +  f 3   [ g   (  U 1  ,  U 4  )  B  (  U 2  )  B  (  U 3  )  − g  (  U 2  ,  U 4  )  B  (  U 1  )  B  (  U 3  )           + g  (  U 2  ,  U 3  )  B  (  U 1  )  B  (  U 4  )  − g  (  U 1  ,  U 3  )  B  (  U 2  )  B  (  U 4  )   ]           +  f 4   [ g   (  U 1  ,  U 4  )   { A  (  U 2  )  B  (  U 3  )  + B  (  U 2  )  A  (  U 3  )  }           − g  (  U 2  ,  U 4  )   { A  (  U 1  )  B  (  U 3  )  + B  (  U 1  )  A  (  U 3  )  }           + g  (  U 2  ,  U 3  )   { A  (  U 1  )  B  (  U 4  )  + B  (  U 1  )  A  (  U 4  )  }           − g  (  U 1  ,  U 3  )   { A  (  U 2  )  B  (  U 4  )  + B  (  U 2  )  A  (  U 4  )  }   ] ,      



(40)




where    f 1  =  ( ν − a +  r 2  )   ,    f 2  = −  b 2   ,    f 3  = −  c 2   ,    f 4  = −  d 2   . Thus, we can state the following theorem:



Theorem 4.

For a vanishing space–matter tensor,   M G   ( Q E )  4    spacetime satisfying Einstein’s field equation without a cosmological constant is a   M G   ( Q C )  4    spacetime.





Next, we investigate the existence of a sufficient condition under which   M G   ( Q E )  4    can be a divergence-free space–matter tensor.



From (31) and (37), we obtain


      ( d i v  P ¯  )   (  U 1  ,  U 2  ,  U 3  )      =  ( d i v K )   (  U 1  ,  U 2  ,  U 3  )  +  1 2   [   (  D  U 1   R i c )   (  U 2  ,  U 3  )           −  (  D  U 2   R i c )   (  U 1  ,  U 3  )   ] − g   (  U 2  ,  U 3  )   [  1 4  ∂ r  (  U 1  )  + ∂ ν  (  U 1  )  ]           + g  (  U 1  ,  U 3  )   [  1 4  ∂ r  (  U 2  )  + ∂ ν  (  U 2  )  ]  .     



(41)







By using    ( d i v K )   (  U 1  ,  U 2  ,  U 3  )  =  (  D  U 1   R i c )   (  U 2  ,  U 3  )  −  (  D  U 2   R i c )   (  U 1  ,  U 3  )    in (41), we obtain


      ( d i v  P ¯  )   (  U 1  ,  U 2  ,  U 3  )      =  3 2   [  (  D  U 1   R i c )   (  U 2  ,  U 3  )  −  (  D  U 2   R i c )   (  U 1  ,  U 3  )  ]           − g  (  U 2  ,  U 3  )   [  1 4  ∂ r  (  U 1  )  + ∂ ν  (  U 1  )  ]           + g  (  U 1  ,  U 3  )   [  1 4  ∂ r  (  U 2  )  + ∂ ν  (  U 2  )  ]  .     



(42)







Let    ( d i v  P ¯  )   (  U 1  ,  U 2  ,  U 3  )  = 0  ; then, contracting (42) over   U 2   and   U 3  , we obtain   ∂ ν (  U 1  ) = 0  , where (27) is used. Hence, we can state the following theorem:



Theorem 5.

For a divergence-free space–matter tensor, the energy density in   M G   ( Q E )  4    spacetime satisfying Einstein’s field equation without a cosmological constant is constant.





Now, by using (5) in (42), we obtain


      ( d i v  P ¯  )   (  U 1  ,  U 2  ,  U 3  )      =  3 2   [ ∂ a  (  U 1  )  g  (  U 2  ,  U 3  )  − ∂ a  (  U 2  )  g  (  U 1  ,  U 3  )  ]           +  3 2   [ ∂ b  (  U 1  )  A  (  U 2  )  A  (  U 3  )  − ∂ b  (  U 2  )  A  (  U 1  )  A  (  U 3  )  ]           +   3 b  2   [   (  D  U 1   A )   (  U 2  )  A  (  U 3  )  + A  (  U 2  )   (  D  U 1   A )   (  U 3  )           −  (  D  U 2   A )   (  U 1  )  A  (  U 3  )  −  (  D  U 2   A )   (  U 3  )  A  (  U 1  )   ]           +  3 2   [ ∂ c  (  U 1  )  B  (  U 2  )  B  (  U 3  )  − ∂ c  (  U 2  )  B  (  U 1  )  B  (  U 3  )  ]           +   3 c  2   [   (  D  U 1   B )   (  U 2  )  B  (  U 3  )  + B  (  U 2  )   (  D  U 1   B )   (  U 3  )           −  (  D  U 2   B )   (  U 1  )  B  (  U 3  )  −  (  D  U 2   B )   (  U 3  )  B  (  U 1  )   ]           +  3 2   [ ∂ d   (  U 1  )   { A  (  U 2  )  B  (  U 3  )  + B  (  U 2  )  A  (  U 3  )  }           − ∂ d  (  U 2  )   { A  (  U 1  )  B  (  U 3  )  + B  (  U 1  )  A  (  U 3  )  }   ]           +   3 d  2   [   (  D  U 1   A )   (  U 2  )  B  (  U 3  )  + A  (  U 2  )   (  D  U 1   B )   (  U 3  )           +  (  D  U 1   A )   (  U 3  )  B  (  U 2  )  + A  (  U 3  )   (  D  U 1   B )   (  U 2  )           −  (  D  U 2   A )   (  U 1  )  B  (  U 3  )  − A  (  U 1  )   (  D  U 2   B )   (  U 3  )           −  (  D  U 2   A )   (  U 3  )  B  (  U 1  )  − A  (  U 3  )   (  D  U 2   B )   (  U 1  )   ]           − g  (  U 2  ,  U 3  )   [  1 4  ∂ r  (  U 1  )  + ∂ ν  (  U 1  )  ]           + g  (  U 1  ,  U 3  )   [  1 4  ∂ r  (  U 2  )  + ∂ ν  (  U 2  )  ]  .     



(43)







By assuming that  ν , a, b, c, and d are constants and the generator  ρ  is a parallel vector field, i.e.,    D  U 1   ρ = 0  , we obtain


        ∂ r  (  U 1  )  = 0 ,  ∂ ν  (  U 1  )  = 0 ,   (  D  U 1   A )   (  U 2  )  = 0 .     



(44)







In view of (44), we derive


  a + b = 0 ,  c = 0 ,  d = 0 .  



(45)







Using (44) and (45), (43) reduces to


   ( d i v  P ¯  )   (  U 1  ,  U 2  ,  U 3  )  = 0 .  











Thus, we can state the following theorem:



Theorem 6.

In   M G   ( Q E )  4    spacetimes admitting parallel vector field ρ satisfying Einstein’s field equation without a cosmological constant, if the energy density and associated scalars constant are constants, then the divergence of the space–matter tensor vanishes.






6.   MG   ( QE )  4    Spacetime Admitting General Relativistic Viscous Fluid


Ellis [20] defined the energy–momentum tensor for a perfect fluid distribution with heat conduction as


     T (  U 1  ,  U 2  )     = ω g  (  U 1  ,  U 2  )  +  ( ν + ω )  A  (  U 1  )  A  (  U 2  )  + B  (  U 1  )  B  (  U 2  )           + A  (  U 1  )  B  (  U 2  )  + A  (  U 2  )  B  (  U 1  )  ,     



(46)




where   g  (  U 1  , ρ )  = A  (  U 1  )   ,   g  (  U 1  , σ )  = B  (  U 1  )   ,   A ( ρ ) = − 1  ,   B ( σ ) > 0  ,   g ( ρ , σ ) = 0  , and  ν ,  ω  are called the isotropic pressure and the energy density, respectively.  σ  is the heat conduction vector field perpendicular to the velocity vector field  ρ . Assuming a mixed generalized quasi-Einstein spacetime satisfying Einstein’s field equation without a cosmological constant whose matter content is viscous fluid, then, from (31) and (46), the Ricci tensor takes the form


     R i c (  U 1  ,  U 2  )     =  ( κ ω +  r 2  )  g  (  U 1  ,  U 2  )  + κ  ( ν + ω )  A  (  U 1  )  A  (  U 2  )           + κ B  (  U 1  )  B  (  U 2  )  + κ  [ A  (  U 1  )  B  (  U 2  )  + A  (  U 2  )  B  (  U 1  )  ]  .     



(47)







By comparing (5) and (47), we obtain


  a = κ ω +  r 2  ,  b = κ  ( ν + ω )  ,  c = κ ,  d = κ .  



(48)







Taking a frame field to contract (48) over   U 1   and   U 2  , we obtai


  r = κ ( ν − 3 ω ) .  



(49)







In view of (49), (47) turns to


     R i c (  U 1  ,  U 2  )     =   κ ( ν − ω )  2  g  (  U 1  ,  U 2  )  + κ  ( ν + ω )  A  (  U 1  )  A  (  U 2  )           + κ B  (  U 1  )  B  (  U 2  )  + κ  [ A  (  U 1  )  B  (  U 2  )  + A  (  U 2  )  B  (  U 1  )  ]  .     



(50)







Now, let R be the Ricci operator given by   g  ( R  (  U 1  )  ,  U 2  )  = R i c  (  U 1  ,  U 2  )    and   R i c  ( R  (  U 1  )  ,  U 2  )  = R i  c 2   (  U 1  ,  U 2  )   . Then, we have   A  ( R  (  U 1  )  )  = g  ( R  (  U 1  )  , ρ )  = R i c  (  U 1  , ρ )    and   B  ( R  (  U 1  )  )  = g  ( R  (  U 1  )  , σ )  = R i c  (  U 1  , σ )   . Thus, we obtain


     R i c ( R  (  U 1  )  ,  U 2  )     =   κ ( ν − ω )  2  R i c  (  U 1  ,  U 2  )  + κ  ( ν + ω )  R i c  (  U 1  , ρ )  A  (  U 2  )           + κ R i c  (  U 1  , σ )  B  (  U 2  )   + κ [ R i c   (  U 1  , ρ )  B  (  U 2  )           + A  (  U 2  )  R i c  (  U 1  , σ )   ] .      



(51)







Now, contracting (51) over   U 1   and   U 2  , we obtain


     R i c  (  U 1  ,  U 1  )  =   | | R | |  2      =   κ ( ν − ω ) r  2  + κ  ( ν + ω )  R i c  ( ρ , ρ )           + κ R i c ( σ , σ ) + κ [ R i c ( ρ , σ ) + R i c ( σ , ρ ) ] .     



(52)







For a mixed generalized quasi-Einstein spacetime, from (5), it follows that


  R i c  (  U 1  , ρ )  =  ( a − b )  A  (  U 1  )  − d B  (  U 1  )  ,  R i c  (  U 1  , σ )  =  ( a + c )  B  (  U 1  )  + d A  (  U 1  )  .  



(53)







In view of (48), (49), and (53), we find that


  R i c  ( ρ , ρ )  =   κ ( ν + 3 ω )  2  ,   R i c  ( σ , ρ )  = R i c  ( ρ , σ )  = − κ ,   R i c  ( σ , σ )  =   κ ( ν − ω + 2 )  2  .  



(54)







By making use of (54), from (52), it follows that


    | | R | |  2  =  κ 2   (  ν 3   ω 2  + ν + ω − 3 )  .  



(55)







Thus, we can state the following theorem:



Theorem 7.

If   M G   ( Q E )  4    spacetime admitting viscous fluid satisfies Einstein’s field equation without a cosmological constant, then the square of the length of Ricci operator is    κ 2   (  ν 3   ω 2  + ν + ω − 3 )   .






7. Example of   MG   ( QE )  4    Spacetime


In this section, we constructed a non-trivial concrete example to prove the existence of a   M G   ( Q E )  4    spacetime.



We assume a Lorentzian manifold   (  M 4  , g )   endowed with the Lorentzian metric g given by


  d  s 2  =  g  i j   d  u i  d  u j  =  ( 1 + 2 p )   [   ( d  u 1  )  2  +   ( d  u 2  )  2  +   ( d  u 3  )  2  −   ( d  u 4  )  2  ]  ,  



(56)




where    u 1  ,  u 2  ,  u 3  ,  u 4    are standard coordinates of   M 4  , i, j =   1 , 2 , 3 , 4  , and   p =  e  u 1    k  − 2    , and k is a non-zero constant. Here, the signature of g is   ( + , + , + , − )  , which is Lorentzian. Then, the only non-vanishing components of the Christoffel symbols and the curvature tensors are


            1     11     =     1     44     =     2     12     =     3     13     =     4     14     =   p  1 + 2 p    ,       1     22     =     1     33     =    − p   1 + 2 p    .     



(57)






    K ¯  1212  =   K ¯  1313  =    − p   1 + 2 p    ,    K 1414  =   p  1 + 2 p    ,  










    K ¯  3232  =    −  p 2    1 + 2 p    ,     K ¯  4242  =   K ¯  4343  =    p 2   1 + 2 p     








and the components are obtained by the symmetry properties.



The non-vanishing components of the Ricci tensors are


   R 11  =    3 p    ( 1 + 2 p )  2    ,    R 22  =  R 33  =   p   ( 1 + 2 p )  2    ,    R 44  =    − p    ( 1 + 2 p )  2    ,  











Thus, the scalar curvature r is    6 q ( 1 + q )    ( 1 + 2 q )  3   .



Let us consider the associated scalars   a , b , c  , and d defined by


  a =   p   ( 1 + 2 p )  3    ,   b =   1  ( 1 + 2 p )    ,   c =    − 1    ( 1 + 2 p )  3    ,   d =    − p    ( 1 + 2 p )  2     








and the 1-forms are defined by


   A 1  =  B 1  =   1 + 2 p   ,   A i  =  B i  = 0  ∀  i = 2 , 3 , 4 ,  








where the generators are unit vector fields; then, from (5), we have


   R 11  = a  g 11  + b  A 1   A 1  + c  B 1   B 1  + d  (  A 1   B 1  +  A 1   B 1  )  ,  



(58)






   R 22  = a  g 22  + b  A 2   A 2  + c  B 2   B 2  + d  (  A 2   B 2  +  A 2   B 2  )  ,  



(59)






   R 33  = a  g 33  + b  A 3   A 3  + c  B 3   B 3  + d  (  A 3   B 3  +  A 3   B 3  )  ,  



(60)






   R 44  = a  g 44  + b  A 4   A 4  + c  B 4   B 4  + d  (  A 4   B 4  +  A 4   B 4  )  .  



(61)






     N o w , R . H . S .  o f  ( 58 )    =    a  g 11  + b  A 1   A 1  + c  B 1   B 1  + d  (  A 1   B 1  +  A 1   B 1  )            =    3 p    ( 1 + 2 p )  2              =  R 11            = L . H . S .  o f  ( 58 ) .     











Similarly, it can easily be show that (59), (60), and (61) are also true. Hence, (   I   R 4   , g  ) is a   M G   ( Q E )  4   .
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