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Abstract: In the domain of passivity theory, there were major contributions in the last decade, the
most recent notion of passivity being the so-called Krasovskii passivity. This framework offers
the possibility of designing a controller which ensures the passivity of the resulting closed-loop
system. The current paper proposes a solution to design the parameters of Krasovskii passivity-based
controllers (K-PBCs) in order to ensure small sensitivity of the closed-loop systems. As such, after
the initial construction of the passivity output, the controller parameters are designed in order to
impose the dominant eigenvalues of the Jacobian of the resulting closed-loop system with the smallest
deviation around the given forced equilibrium point which is, additionally, smaller than a prescribed
stability margin. The resulting optimization problem is non-convex by nature, and a metaheuristic
approach is proposed to design these parameters. Moreover, in order to impose an extra set of
performances, the control system contains an outer loop where dynamical path planning is used to
impose the additional requirements. All mentioned results are developed for processes modeled as
bilinear systems. In order to illustrate the proposed control method, a numerical example consisting
of a single-ended primary inductor DC-DC converter (SEPIC) process is presented.

Keywords: passivity-based controller; Lyapunov methods; sensitivity analysis; bilinear systems;
uncertain systems

MSC: 93D20; 93D30; 93D09

1. Introduction
1.1. Literature Review

Passivity theory was developed fifty years ago when the notion of dissipative systems
was introduced in [1], and it describes an input–output property of a nonlinear system,
having the interpretation of the difference between the stored energy in the system and
the supply rate. In [2], the notion of dissipative systems and the special case of passive
systems are underlined as a tool to study the input–output relation of a nonlinear system.
L2-gain theory and passivity are presented in [3] in a unified manner for nonlinear systems
described using state-space models. The book also offers a compact treatment of well-
known small-gain and passivity theorems for nonlinear systems described using input–
output maps. A monograph that deals with passivity-based tools for problems such as
robust control, fault tolerant control, or decentralized control for industrial processes is
in [4].

Starting from the idea of incremental stability of nonlinear systems, the notion of
incremental passivity has been used in [5], presenting a method to construct an output
feedback controller which manages to achieve incremental passivity property for a special
class of systems, nonlinear by nature. In addition, the paper [6] extends the incremental
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passivity for the case of nonlinear switched systems, studying the global output regulation
for this class of systems. Additionally, this paper manages to extend these notions for
systems whose subsystems are not required to be incrementally passive. Recently, the
classical passivity notion has been extended in [7,8] to the notion of differential passivity,
where, besides the nonlinear system itself, the variational system was also considered,
resulting in a prolonged system. Differential passivity is a property of such a prolonged
system, general geometric conditions for gradient and Brayston–Moser systems being
available in the aforementioned papers. Another class of systems discussed in the topic
of passivity-based control is the class of port-Hamiltonian systems. A passivity approach
for the case of port-Hamiltonian systems for multi-agent formation control and velocity
tracking is proposed in [9]. Another notion that fills the gap between the classical passivity
and incremental passivity is that of shifted passivity, which can be seen as a generalized
version of passivity for other nontrivial equilibrium points [10].

The idea of Krasovskii passivity was introduced for the first time in [11] and proposes a
method to construct the storage function using Krasovskii’s method to construct Lyapunov
functions for stability study. In addition, a method to design a passivity-based controller
(PBC) is presented in the previously mentioned paper. In [12], a set of relations between
differential, incremental, shifted and Krasovskii passivity are established. In addition, a
mechanism to design Krasovskii passivity-based controllers (K-PBCs) and shifted passivity-
based controllers (S-PBCs) for a class of nonlinear systems is offered, the class of port-
Hamiltonian systems being representative. A set of sufficient conditions for a bilinear
system to be Krasovskii passive has been presented in [13], and in a similar manner, the set
of conditions has been extended in [14] for nonlinear systems which can be bounded by a
polytopic bilinear system. In [13,14], a cascade control structure with an inner K-PBC and
an outer dynamical path-planning robust controller, was proposed. The problem of robust
output regulation has been addressed using the passivity theory in [15] for the case of DC
power networks where the considered loads are of type impedance, current or power.

The passivity-based control techniques can be extended to the case of switching
systems. For the case of switched linear systems, the paper [16] presents a control design
problem related to the determination of a switching strategy that renders a switched linear
system passive. Moreover, for the case of linear systems, the positive real lemma plays
an important role and links the passivity with the linear matrix inequalities framework,
but it requires an extra assumption for the system to be controllable. This lemma has been
recently developed in [17] and offers a mechanism to determine if an uncontrollable linear
system is passive. In the same manner, the results available for controllable reciprocal
systems have been extended for the uncontrollable case in [18].

1.2. Contributions and Paper Structure

As mentioned, the notion of Krasovskii passivity has been developed in the last five
years and offers a mechanism to construct a passivity-based controller. However, none of
the papers [11–14] present a method to design the parameters of K-PBCs, which represents
the starting point of the current paper. In the recent conference paper [19], an ad hoc analysis
to tune the previously mentioned parameters using a method similar with the classical
root-locus was proposed. As such, the current journal paper presents an extensive method
to find the sub-optimal values of the Krasovskii passivity-based controller parameters
instead of the initially proposed isolated analysis. The key points of the paper are:

(i) The ad hoc analysis proposed in [19], based on a trial and error methodology, is
replaced with a more rigorous treatment using the sensitivity analysis of the resulting
closed-loop system. To measure the sensitivity, we consider the length of the curve
described by the dominant eigenvalue of the Jacobian of the closed-loop system.

(ii) The length of the path of the aforementioned dominant eigenvalues can be used
as a performance index which can be minimized in terms of K-PBC’s parameters,
resulting in a non-convex optimization problem. In the current paper, there are two
possibilities presented to formulate the optimization problem: one by minimizing
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only the sensitivity of the inner closed-loop system, and the latter by minimizing this
sensitivity function with an extra constraint of having the inner dynamics at least twice
as fast as the dominant dynamics imposed by the outer dynamical path planning.

(iii) The two said optimization problems formulated in this journal paper are non-convex
by nature. As such, a global optimization technique is required in order to find the
sub-optimal value of the controller’s parameters. For the purpose of this paper, we
developed a slightly modified version of the Artificial Bee Colony (ABC) algorithm [20],
the main modification being in terms of stopping criteria and abandonment counters
management, all modifications increasing the speed of the algorithm and avoiding
the search in the unfeasible zone. Being a metaheurisitc approach for a non-convex
optimization problem, only a sub-optimal value of these parameters can be guaranteed,
but the exploration ability of the ABC algorithm leads to good results.

(iv) Finally, in order to prove the efficiency of the proposed method, we present an end-to-
end design approach for a nonideal DC-DC single-ended primary-inductor converter
(SEPIC), starting from the method of constructing the passivity output, along with
designing the outer dynamical path planning for the linearized system around a
desired equilibrium point, and also the solution to the optimization problem regarding
the sub-optimal choice of the K-PBC’s parameters. All results presented are obtained
using the MATLAB-based toolbox initially described in [21] and extended in [13] for
the nonlinear model.

The paper next contains the following sections: Section 2, which presents the main
theoretical background for the Krasovskii passivity and for the robust control framework;
Section 3, which illustrates the mechanism used to formulate the optimization problems
which leads to the sub-optimal values of the controller parameters, along with the meta-
heuristic approach which manages to solve these non-convex problems; Section 4, which
presents an end-to-end approach to design both the K-PBC controller and dynamic path
planning alike from the proposed structure for a DC-DC SEPIC converter; Section 5, where
a set of final remarks and a discussion based on the obtained results are emphasized, while
Section 6 contains conclusions and future work.

1.3. Notations

We will use >(≥) 0 to denote that a symmetrical matrix Q = Q> ∈ Rn×n is positive
(semi-)definite. For a vector x ∈ Rn and a symmetrical and positive-definite matrix
Q = Q> > 0 ∈ Rn×n, we define the norm ‖ · ‖Q by ‖x‖Q := (x>Qx)1/2.

2. Mathematical Background
2.1. Krasovskii Passivity

The purpose of the current subsection is to briefly introduce the main notions regarding
the passivity-based controller design procedure using Krasovskii’s method presented in
several recent papers [11–14,19] in order to increase the readability of this journal paper.
The proofs for all mentioned results can be founded in the above-mentioned papers. We
start by describing the framework used to model the systems, namely the bilinear systems
framework.

Definition 1. A single-input and input-affine continuous-time nonlinear system (Σ) is called
bilinear if it has the following input-to-state representation:

(Σ) : ẋ = f (x, u) ≡ A0x + b0 + (A1x + b1)u, (1)

where u ∈ R is the input, x ∈ Rn is the state vector, while A0, A1 ∈ Rn×n and b0, b1 ∈ Rn×1.

Definition 2. A bilinear system (Σ∆) is called uncertain if it has the state-space representation:

(Σ∆) : ẋ = f∆(x, u) ≡ (A0 + ∆A0)x + (b0 + ∆b0) + ((A1 + ∆A1)x + (b1 + ∆b1))u, (2)
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where ∆A0, ∆A1 ∈ Rn×n and ∆b0, ∆b1 ∈ Rn×1 are the uncertainty matrices described by a set ∆.

Let us consider Dx the reachable domain and Du the domain of the admissible inputs.
The following assumption is mandatory: to each input u = u ∈ Du ⊂ R corresponds at
least one forced feasible equilibrium point of the bilinear nominal plant (Σ), i.e., there exists
x ∈ Dx such that f (x, u) = 0. The following notion of dissipative systems was introduced
in [2]:

Definition 3. A bilinear system (Σ) is dissipative with respect to a function ω : Rn ×R → R,
called the supply rate, if a storage function S : Rn → R+ of class C1 can be constructed such that:

∂S(x)
∂x

f (x, u) ≤ ω(x, u), (∀) (x, u) ∈ Rn ×R. (3)

However, as already proved in the previous work [13], in such classical approaches,
the resulting passivity operator cannot be used in the construction of a controller. A solution
to this issue consists in considering the extended system (Σe) by augmenting the system
(Σ) at the input with an extra integrator, as in [1]. As such, the new extended state vector
can be written as x̃ = [x> u]> ∈ Rn+1, the new input being ud ≡

∫
u. The Krasovskii

method of constructing a Lyapunov function was used in [11] to introduce an extension of
the passivity concept as follows:

Definition 4. Let hK : Rn ×R→ R be the function which describes the passivity output variable.
The nominal bilinear system (Σ) is said to be Krasovskii passive if its extended system (Σe) is
dissipative with respect to the supply rate:

ωK : Rn+1 ×R→ R, ωK(x̃, ud) = ud · hK(x̃),

with a storage function:

SK : Rn ×R→ R+, SK(x̃) =
1
2
‖ f (x, u)‖2

Q, with Q = Q> ≥ 0.

Next, a set of sufficient conditions for an input-affine nonlinear system to be Krasovskii
passive is described. Starting from the results presented in [11], a set of sufficient conditions
to construct an output such that the system is Krasovskii passive has been proposed in [13]
for the case of bilinear systems:

Theorem 1. The nominal system (Σ) is Krasovskii passive with the supply-rate ωK : Rn×R→ R,
ωK(x̃, ud) = ud · hK(x̃), where the output variable hK can be expressed as:

hK(x̃) ≡ hK(x, u) =
(

x>A>1 + b>1
)
·Q · f (x, u), (4)

and with the storage function:

SK(x̃) ≡ SK(x, u) =
1
2
‖ f (x, u)‖2

Q, (5)

if there exists a matrix Q ∈ Rn×n, Q = Q> ≥ 0, which satisfies the following condition:

QA0 + A>0 Q +
(

QA1 + A>1 Q
)

u ≤ 0, ∀u ∈ Du. (6)

Now, using the convexity of the LMI problem (6), the following theorem can be used
in order to reduce the order of this LMI problem.
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Theorem 2. Considering a bounded admissible input set Du = [u, u], the nominal system (Σ) is
Krasovskii passive with the supply-rate ωK : Rn ×R → R, ωK(x̃, ud) = ud · hK(x̃), where the
output variable hK can be expressed as:

hK(x̃) ≡ hK(x, u) =
(

x>A>1 + b>1
)
·Q · f (x, u), (7)

and with the storage function:

SK(x̃) ≡ SK(x, u) =
1
2
‖ f (x, u)‖2

Q, (8)

if there exists a matrix Q ∈ Rn×n, Q = Q> ≥ 0, which satisfies the following conditions:{
QA0 + A>0 Q +

(
QA1 + A>1 Q

)
u ≤ 0;

QA0 + A>0 Q +
(
QA1 + A>1 Q

)
u ≤ 0.

(9)

To design a passivity-based controller using the Krasovskii’s methodology to construct
Lyapunov functions, a SISO proportional–integrative (PI) structure can be considered, as
in [11,13]:

(Σc) : yc = ẋc = −k1(k2xc − uc) ≡ fc(xc, uc), (10)

where xc is the state vector, uc and yc are the input and output signals, respectively, and
terms k1, k2 ∈ R+ are controller parameters. According to [11], for each combination of
positive values chosen for the parameters k1 and k2, a controller having the structure as in
(10) is Krasovskii passive with respect to the supply-rate ωK,c(yc, uc) = yc · uc according to
the storage function:

SK,c : R→ R+, SK,c =
1
2

k2x2
c . (11)

The lower linear fractional transform (LLFT) interconnection between (Σe) and (Σc) is:[
ud
uc

]
=

[
0 1
1 0

][
hK
yc

]
+

[
0

u?

]
, (12)

where u? is the reference of the closed-loop system. The following theorem extended
from [11] characterizes the closed-loop system with input u? and output hK:

Theorem 3. The closed-loop system obtained using the extended system (Σe), which satisfies the
conditions of Theorem 1 for a matrix Q ∈ Rn×n, Q = Q> > 0, with a feasible forced equilibrium
point (x, u) ∈ Dx ×Du, having an LLFT interconnection with the controller given by (Σc), with
the states xc = u? − u, is dissipative with respect to the supply rate ωo(ud, u?) = ud · u? with the
storage function:

So(x, u, xc) =
1
2
‖ f (x, u)‖2

Q +
1
2

K2
2xc. (13)

Remark 1. If the integrator used to augment the bilinear system in order to obtain the extended
form (Σe) is inserted into the K-PBC, the state-space representation of the controller becomes:

(ΣK−PBC) :

{
ẋc = −k1k2xc − k1hK(x̃) + k1k2u?;
yc = xc.

(14)

2.2. Dynamic Path-Planning

As stated before, the closed-loop system resulting from the LLFT interconnection
between the bilinear system (Σ) and the Krasovskii passivity-based controller (ΣK−PBC)
ensures the stability of the nonlinear system without imposing the desired steady-state
performance. As such, the outer controller is used as a dynamic path planning which
computes the trajectory u? based on the error signal ε = y? − y, where y? is the reference



Mathematics 2022, 10, 3750 6 of 19

signal and y is the measured output of the system (Σ), as in Figure 1. Moreover, the
uncertainty part of the bilinear system (Σ∆) must also be resolved using the outer dynamic
path planning. As such, the robust control framework (RCF) is a good choice for the
purpose of the proposed method.

Figure 1. The resulting closed-loop system composed of an inner loop which consists of an LLFT
interconnection between the plant Σ and K-PBC, ensuring the passivity of the closed-loop inner
system, along with an outer loop containing a dynamic path planning represented by the robust
controller Krob designed to ensure robust performance.

Although the RCF is developed for linear and time-invariant (LTI) systems, it can be
used to design a controller for the resulting linearized model of a nonlinear plant around
a forced equilibrium point. As such, the current subsection briefly describes the robust
control framework used for the linearized plant, based on our previous papers [13,21]. The
linearized plant around a forced equilibrium point (u, x, y) of a nonlinear system has the
following state-space form:

(Σlin) :

{
∆̇x = A∆x + B∆u;
∆y = C∆x + D∆u,

(15)

where ∆x = x− x, ∆y = y− y, ∆u = u− u. For the purpose of this paper, we consider the
case of fixed forced equilibrium points, i.e., u, x, and y as constant. As mentioned in [13],
for a finite-order SISO bilinear system (Σ), the matrices involved in the state equations of
the linearized system have the following representations:

A =
∂ f
∂x

∣∣∣∣
(x,u)

= A0 + A1u and B =
∂ f
∂u

∣∣∣∣
(x,u)

= A1x + b1. (16)

In order to integrate the linearized system (Σlin) into the RCF, two assumptions are
mandatory: the pair (A, B) must be stabilizable and the pair (C, A) must be detectable.
Moreover, if these assumptions are fulfilled, the RCF encompasses both uncertainties and
performance indices. As such, the resulting controller manages to ensure both robust
performance (RP) and robust stability (RS). Both unstructured and parametric or lumped
uncertainties can be modeled using the following structured set of uncertainties:

∆ = {diag(∆1, . . . , ∆ f , ra1 In1 , . . . , ras Ins)}, (17)

containing f unstructured blocks ∆i and s blocks ri I for lumped uncertainties. In order to
impose the performance specifications, an extra pair of exogenous inputs and exogenous
outputs is mandatory. As such, the generalized plant P(s) is:

P(s) :


ẋ(t)

v(t)
z(t)
y(t)

 =


A Bd Bw Bu

Cv Dvd Dvw Dvu
Cz Dzd Dzw Dzu
Cy Dyd Dyw Dyu




x(t)

d(t)
w(t)
u(t)

, (18)
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having the following input signals and their corresponding sets: v ∈ Rnv for uncertainties,
u ∈ Rn

u for control, and w ∈ Rnw for performance. The output sets of signals are: d ∈ Rnd

for uncertainties, y ∈ Rn
y for control, and z ∈ Rnz for performance. Both the uncertainty

block ∆ and controller K present a linear fractional transform (LFT) interconnection as such:
the uncertainties block has an upper LFT (ULFT) interconnection, while the controller block
has a lower LFT (LLFT) interconnection.

RCF uses the structural singular value (SSV) to integrate uncertainties. The SSV
µ∆(LLFT(P, K)) is defined for the LLFT interconnection between the plant and the controller
with respect to the uncertainty set ∆. The controller K ensures RS and RP if the Main Loop
Theorem from [22] is fulfilled. However, this NP-hard computational problem can be
converted into a quasi-convex optimization problem, using the upper bound proposed
in [22]:

µ∆(LLFT(P, K)(jω) ≤ sup
ω∈R+

inf
D∈D

σ
(

D · LLFT(P, K)(jω) · D−1
)

, (19)

where set D is defined as:

D = {diag(d1 Im1 , . . . , d f Im f , D1, . . . , Ds)}. (20)

The new µ-synthesis optimum problem becomes:

inf
K stabilizable

sup
ω∈R+

inf
D∈D

σ
(

D(jω) · LLFT(P, K)(jω) · (D(jω))−1
)

, (21)

having the so-called D–K iteration algorithm as a classical solution for this quasi-convex
approximation of the µ-synthesis problem [23].

As such, based on the briefly mentioned aspects, the dynamic path-planning regulator
can be synthesized using the closed-loop shaping robust methodology, as illustrated in
Figure 2, which has the LTI plant model G, linearized around an operating point, with an
additional uncertainty model ∆, the resulting controller K, and the additional weighting
filters WS, WKS and WT for the sensitivity function S, control effort R = K · S and comple-
mentary sensitivity T, respectively. Moreover, the same figure presents all signals involved
by considering a linearized system around a given forced equilibrium point.

Figure 2. Path-planning regulator design methodology using the closed-loop shaping robust control
framework, which can impose the desired bandwidth compared to the K-PBC from Figure 1 [21].

3. Sensitivity Analysis
3.1. Problem Formulation

In this subsection, we recall the problem formulation steps described in our conference
paper [19], and we extend the ad hoc analysis by introducing a sensitivity measurement
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method and by formulating two optimization problems. The closed-loop system repre-
sented by the LLFT interconnection between the nominal bilinear plant (Σ) and the PI-type
K-PBC controller (Σc) from (10) has the following nonlinear state-space representation:

(Σo) :

{
ẋ = A0x + b0 + (A1x + b1)xc;
ẋc = −k1(k2xc − k2u? − hK(x)).

(22)

The resulting state vector of the closed-loop system consists of xo = [x> xc]>. The
previously mentioned state-space representation (Σo) could now be rewritten in the follow-
ing manner:

ẋo = fo(xo) +

(
0n,1
k1k2

)
u? ≡

(
g0(x) + g1(x)xc

−k1k2xc+k1g1(x)>Q(g0(x)+g1(x)xc)

)
+

(
0n,1
k1k2

)
u?. (23)

As such, for a point xo ≡ (x, u = xc) ∈ Dx ×Du of forced equilibrium, the linearized
system preserves the input matrix, while the resulting state matrix is given by:

Ao=
∂ fo

∂xo

∣∣∣∣
xo

=

(
A0 + A1xc A1x + b1

a21 −k1k2 + k1g1(x)>Qg1(x)

)
, (24)

where the shorthand notation a21 emphasizes the term:

a21 = −k1

(
A>1 Qg0(x)+A>0 Qg1(x)+2A>1 Qg1(x)xc

)
. (25)

The main purpose of this paper is to design a controller using the Krasovskii passivity
methodology which minimizes the sensitivity of the resulting system. For analyzing the
sensitivity of the closed-loop system according to the K-PBC’s parameters, the metric used is
based on the evolution of the spectrum of the Jacobian Λ(Ao) for a set of forced equilibrium
points E . As such, starting from a considered forced equilibrium point xo = (x, xc ≡ u), the
ε-closed ball B(u, ε) = [u− ε, u + ε] around the forced equilibrium input u is considered,
resulting in the following set of forced equilibrium points:

Eu,ε = {(x, u)| f (x, u) = 0, u ∈ B(u, ε)}. (26)

The eigenvalues of the linearized state matrix Ao are dependent in terms of the desired
equilibrium point xo and in terms of the controller’s parameters k1, k2 and Q. One possible
problem here consists of the construction mechanism of matrix Q, because the feasible
solution of the LMI problem (9) is deterministic, offering the same solution in a consistent
manner for a given arbitrary starting point.

Remark 2. In order to avoid solving the LMI problem (9) for various initial starting points, it can
be noticed that such an LMI problem is homogenous in terms of Q. Therefore, if a point Q is a
solution, i.e., it belongs in the feasible cone of the problem (9), then each point αQ is also a solution,
for α > 0, being a point on the ray of the feasible cone generated by the point Q.

Remark 3. The term k1 can be included in the remaining K-PBC parameters for the SISO case
as follows: k2 ≡ k1 · k2 and Q ≡ k1 · Q in order to reduce the redundant dimension of the
optimization problem.

According to Remarks 1 and 2, the Jacobian of the closed-loop system can be seen as a
function in the following manner:

Ao ≡ Ao(xo, k2, α) : Dx ×Du ×R+ ×R+ → R(n+1)×(n+1). (27)
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However, the dominant dynamics of the system reduce to the eigenvalues having the
largest real part. As such, the following operator is considered:

λmax : R(n+1)×(n+1) → R, λmax(Ao) = arg max{Re(λ) | λ ∈ Λ(Ao)}, (28)

where if the maximum is obtained for two different eigenvalues, then the eigenvalue having
the positive real part is considered or, in case of equality, it can be chosen arbitrarily. After
said considerations, the sensitivity problem consists of analyzing the dominant eigenvalues
of the matrices Ao and choosing the parameters k2 and α, which produce the smallest
possible variations for all equilibrium points xo ∈ Eu,ε:

min
k2,α

fu,ε(k2, α) ≡ l(C) =
∫
C

ds, where C = {λmax(Ao) | xo ∈ Eu,ε}. (29)

In order to compute the line integral involved in (29), the closed ball B(u, ε) can be
reduced to a finite and equidistant division set ΞN = {u−ε = u0 < u2 < · · · < uN = u+ε}
having the norm ‖Ξ‖ = 2ε

N , resulting in the following approximation:

fu,ε(k2, α) = l(C) ≈ ‖Ξ‖
N−1

∑
k=0

(λmax(Ao(uk+1, k2, α))− λmax(Ao(uk, k2, α)))2, (30)

where Ao(uk, k2, α) is the Jacobian matrix computed for the forced equilibrium point having
the input component uk. Therefore, the following optimization problem can be considered
for designing the K-PBC parameters:

Problem 1. Considering an equilibrium point xo = (x, u) and an N-th order discretization ΞN
of the closed ball B(u, ε) of radius ε > 0, the optimum values of the parameters α > 0 and k2 > 0
which induce the lowest sensitivity of the inner closed-loop system are the solution of the following
optimization problem:

min
k2,α

N−1

∑
k=0

(λmax(Ao(uk+1, k2, α))− λmax(Ao(uk, k2, α)))2, (31)

s.t. k2 > 0, α > 0.

Moreover, the inner loop must be faster than the outer loop in a cascade control structure.
As such, after the dynamical path-planning controller is computed, the dominant dynamics of the
outer loop are given by the maximum magnitude of the eigenvalues λ = λmax(LLFT(Σlin, Krob)).
Therefore, the inner loop’s dominant dynamics must be at least two times faster, which implies:

Re{λmax(Ao(xo, k2, α))} < 2Re
{

λ
}

, ∀xo ∈ Eu,ε. (32)

Problem 2. Considering an equilibrium point xo = (x, u) and an N-th order discretization ΞN
of the closed ball B(u, ε) of radius ε > 0, the optimum values of the parameters α > 0 and k2 > 0
which induce the lowest sensitivity of the inner closed-loop system and fulfill the faster inner loop
condition in terms of maximum eigenvalue λ of the outer loop are the solution of the following
optimization problem:

min
k2,α

N−1

∑
k=0

(λmax(Ao(uk+1, k2, α))− λmax(Ao(uk, k2, α)))2, (33)

s.t. k2 > 0, α > 0,

Re{λmax(Ao(uk, k2, α))} < 2Re
{

λ
}

, k = 0, N.
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3.2. Metaheuristic Solution

Both optimization problems Problems 1 and 2 are non-convex by nature, requiring a
global optimization technique to solve such problems. As such, we consider a metaheuristic
approach in order to increase the searching area and to avoid a premature stopping at a local
minimum point. For this paper, we consider a slightly modified version of the artificial bee
colony (ABC) optimization procedure due to its flexibility, simplicity and proper exploration
ability. As such, in this subsection, we briefly present the ABC optimization procedure,
starting from [20]. First, for better readability, the following shorthand notation will be used
for the N-th order approximation of the length of the curve C described by the dominant
eigenvalues of the Jacobian of the inner closed-loop system for a forced equilibrium point
in the closed ball B(u, ε):

FΞ
u,ε(k2, α) : R+ ×R+ → R+, (34)

FΞ
u,ε(k2, α) = ‖Ξ‖

N−1

∑
k=0

(λmax(Ao(uk+1, k2, α))− λmax(Ao(uk, k2, α)))2.

The ABC algorithm mimics the behavior of real honeybees, which was modeled using three
categories: employed bees, onlooker bees and scout bees. The numbers of employed bees
and onlooker bees are the same and represent the swarm problem’s dimension, which is
denoted byN in our case. The position of the i-th employed bee at iteration j is represented
by p(j)

i ∈ R+ ×R+. As the initialization step, each employed bee i = 1,N has an initial
position randomly initialized in R+ ×R+. At the k-th step, a new set of possible positions
for each employed bee can be computed using the current locations p(k)

i , for each i = 1,N ,

using another randomly selected position p(k)
j as follows:

p(k)
i = sat

(
p(k)

i + φ
(k)
i

(
p(k)

i − p(k)
j

))
, (35)

where φ
(k)
i ∈ [−1, 1]2 are random numbers and sat is the classical saturation function which

maintains the position in the feasible domain R+ ×R+. Based on the current position and
on the next possible position, the next position of an employed bee is:

p(k+1)
i = arg min

{
FΞ

u,ε

(
p(k)

i

)
,FΞ

u,ε

(
p(k)

i

)}
. (36)

If the next position coincides with the current position, the i-th employed bee’s abandon-
ment counter increases; otherwise, it is reset to zero. Based on the information provided by
all employed bees, the onlooker bees search another location using the fitness values g(i)
of the positions pk

i given by:

log g(i) = −
FΞ

u,ε

(
p(k)

i

)
1
N ∑j FΞ

u,ε

(
p(k)

j

) , (37)

which are then normalized in order to obtain a probability distribution:

ρi =
g(i)

∑j g(j)
. (38)

This probability distribution is fed into a roulette wheel selection mechanism and, for each
onlooker bee, a position p(k)

i is selected. Using the same mechanism as in relation (36), the
position of each onlooker bee is computed. If an onlooker bee finds a better solution than
an employed bee, then they exchange their roles or, otherwise, the abandonment counter
for the i-th employed bee increases.
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If the abandonment counter for a specific employed bee exceeds a predefined threshold,
such an employed bee becomes a scout bee, and a new initialization step is performed. As a
particularity for solving Problem 2, in order to increase the speed of the proposed method,
the unfeasible domain will be characterized by all pairs of positive real numbers (k2, α)
which lead to an inner closed-loop system having at least one eigenvalue of the Jacobian
with the real part greater or equal to twice the real part of the dominant eigenvalue λ for
at least one equilibrium point corresponding to the closed ball B(u, ε). Each bee which
reaches an unfeasible position will be reinitialized in the scout bee step in order to avoid
searching near an unfeasible point.

After an employed–onlooker–scout bee cycle is performed, the best solution found
in this stage is compared to the old best solution, and if no improvement is found, the
no_improve counter increases; otherwise, it is reset. As stopping criteria, we check if the
no_improve counter exceeds a predefined threshold or a predefined maximum number of
full employed-onlooker-scout steps have been performed.

4. Numerical Results

For the numerical results section, we consider, for consistency, the same process as in
the conference paper [19], namely the single-ended primary-inductor DC-DC converter
topology (SEPIC). As stated in [13], such a DC-DC converter can be modeled as a bilinear
system even if the parasitic terms are considered. As such, the following components are
considered for such a DC-DC converter having the electrical scheme as in Figure 3:

• The inductors L1 and L2 with the associated parasitic resistances rL1 and rL2 ;
• The capacitors C1, C2 and Cin with the associated parasitic resistances rC1 , rC2 and rCin ;
• For the ON state of each switching element: the parasitic resistance rSi and voltage

drop VSi ;
• The variable resistor R considered the output load;
• The external voltage source E.

Figure 3. Electrical schemes of nonideal SEPIC DC-DC converter.

The switching elements S1 and S2 must be complementary in order to obtain the
desired buck-boost effect, the switching element S1 being the command element represented
by a transistor, while the complementary switching element S2 may be a transistor or a
diode.

To obtain the mathematical model of this DC-DC converter, Kirchhoff’s laws and
Ohm’s law were used. The state variables are selected according to the energy storage
principle, giving the following state vector:

x(t) =
(
uCin(t) iL1(t) uC1(t) iL2(t) uC2(t)

)>, (39)

where iLi is the inductor current through Li and uCj is the capacitor voltage across Cj. For
each state of the switching element S1 ∈ {ON, OFF}, we gather a state-space model:

ẋ(t) = fON(x(t), E(t)) and ẋ(t) = fOFF(x(t), E(t)). (40)



Mathematics 2022, 10, 3750 12 of 19

However, the previous system has a switching linear model which can be approxi-
mated by a bilinear system as follows: considering µ the normalized value of the duty cycle
of the switching element S1, a convex combination of the ON and OFF state-space models
leads to a nonlinear approximation of such a switching system:

ẋ(t) = fON(x(t), E(t)) · µ(t) + fOFF(x(t), E(t)) · (1− µ(t)). (41)

The normalized duty cycle is the control input, while the external voltage source E can be
seen as a perturbation. The resulting average nonlinear model for such a DC-DC converter
is a bilinear system which can now be used in the proposed framework:

(Σ) : ẋ(t) = g0(x(t)) + g1(x(t))µ(t) = A0x(t) + b0 + (A1x(t) + b1)µ(t). (42)

The bilinear model of the DC-DC SEPIC converter is:

(ΣSEPIC) : ẋ(t) = A0x(t) + b0 + A1x(t)µ(t) + b1µ(t), (43)

where the matrices involved in the state-space model are [13]:

A0 =



− 1
rCinCin

0 0 0 0
1
L1

− rCin
+rL1+rC1

+rS1
+rC2

L1
− 1

L1

rS1
+rC2
L1

− 1
L1

0 1
C1

0 0 0

0
rS2+rC2

L2
0 − rS2+rL2+rC2

L2
1
L2

0 R
C2(R+rC2 )

0 − R
C2(R+rC2 )

− 1
C2(R+rC2 )


; b0 =



E
rCin

Cin

−VS1
L1

0
VS1
L2
0

; (44a)

A1 =



0 0 0 0 0
0

rC1
+rC2
L1

1
L1

− rC2
L1

1
L1

0 − 1
C1

0 1
C1

0

0 − rC2+rDS1
+rDS2

L2
− 1

L2

rC2−rC1
+rDS2−rDS1
L2

− 1
L2

0 − R
C2(R+rC2 )

0 R
C2(R+rC2 )

0

; b1 =


0

− 1
L1
(VS1 −VS2)

0
1
L2
(VS1 −VS2)

0

. (44b)

The matrices A0 and A1, which are involved for studying the Krasovskii passivity of
the system, according to (9), are dependent on the output load R, which can vary and must
be seen as an exogenous input. As such, the matrices A0 and A1 can be written as:

A0 =



− 1
rCin

Cin
0 0 0 0

1
L1

− rCin
+rL1+rC1

+rDS1
+rC2

L1
− 1

L1

rDS2+rC2
L1

− 1
L1

0 1
C1

0 0 0

0
rDS2+rC2

L2
0 − rDS+rL2+rC2

L2
1
L2

0 1
C2

0 − 1
C2

0


︸ ︷︷ ︸

A01

+
1

rC2 + R


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 − rC2

C2
0

rC2
C2

− 1
C2


︸ ︷︷ ︸

A02

; (45a)

A1 =


0 0 0 0 0
0

rC1
+rC2
L1

1
L1

− rC2
L1

1
L1

0 − 1
C1

0 1
C1

0

0 − rC2+rS1
+rS2

L2
− 1

L2

rC2−rC1
+rS2−rS1
L2

1
L2

0 0 0 0 0


︸ ︷︷ ︸

A10

+
R

rC2 + R


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 − 1

C2
0 1

C2
0


︸ ︷︷ ︸

A11

. (45b)
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If we consider R→ 0 and R→ ∞, the LMI problem (9) used to study the Krasovskii
passivity of the DC-DC SEPIC converter can be written as follows:

QA01 + A>01Q ≤ 0;
QA01 + A>01Q + 1

rC

(
QA02 + A>02Q

)
≤ 0;

QA01 + A>01Q + 1
rC

(
QA02 + A>02Q

)
+ QA10 + A>10Q ≤ 0;

QA01 + A>01Q + 1
rC

(
QA02 + A>02Q

)
+ QA10 + A>10Q +

(
QA11 + A>11Q

)
≤ 0;

QA01 + A>01Q + QA10 + A>10Q ≤ 0;
QA01 + A>01Q ++QA10 + A>10Q +

(
QA11 + A>11Q

)
≤ 0.

(46)

For numerical simulation, we consider the configuration of the DC-DC SEPIC con-
verter with the parameters exposed in Table 1.

Table 1. Nominal circuit element values and tolerances for the SEPIC DC-DC converter.

Parameter Nominal Value Tolerance Parameter Nominal Value Tolerance

L1 2.57 (mH) ±20% L2 1.71 (mH) ±20%
rL1 130 (mΩ) ±10% rL2 110 (mΩ] ±10%

rDS1 0.01 (Ω) ±10% rDS2 80 (mΩ) ±10%
C1 4.7 (µF) ±20% C2 3.57 (µF) ±20%
rC1 270 (mΩ) ±10% rC2 350 (mΩ) ±10%
Cin 3.57 (µF) ±20% rCin 270 (mΩ) ±10%
VF1 0.2 (V) ±10% VF2 0.62 (V) ±10%

Solving the set of LMI problems from (46) by a imposing a diagonal structure of the
matrix Q, an initial feasible point from the convex cone of the solutions is [19]:

Q =


3.57× 10−6 0 0 0 0

0 2.57× 10−3 0 0 0
0 0 0.47× 10−5 0 0
0 0 0 1.71× 10−3 0
0 0 0 0 0.357× 10−5

. (47)

Using the principle presented in (15), the minimum order nominal input-output model
of the DC-DC SEPIC converter is:

GSEPIC
n (s) =

−4.137(s + 8.003× 105)(s− 2.305× 104)(s2 − 717.6s + 5.147× 107)

(s2 + 2673s + 3.795× 107)(s2 + 1339s + 6.496× 107)
. (48)

In addition, based on the methodology presented in paper [21], the dynamical path-
planning can be computed by solving the mixed-sensitivity µ-synthesis control problem
with the following hyperparameters:

• For sensitivity weighting: the bandwidth ωB = 215 (rad/s), with a peak amplitude
MS = 2, and a maximum allow steady-state error AS = 1× 10−2;

• For complementary sensitivity: the bandwidth ωBT = 2150 (rad/s), with a peak
amplitude MT = 2, a roll-off n = −40 (dB/dec), and a maximum amplitude at high
frequencies AT = 1× 10−4;

• For control effort: the main goal was to have a command with amplitude less than 1.

After 5 D–K iterations, the resulting controller is of order 10, with an upper bound
of the structural singular value equal to 0.8835 < 1, which guarantees that the controller
ensures robust stability, along with robust performance. Moreover, after an order-reduction
step using the balanced model truncation method, a 3rd order controller which also main-
tains both RS and RP is:
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KSEPIC
rob (s) :


−1.996 3.233 −4.02 0.5323
−3.233 −2218 6800 0.4308
−4.025 −6800 −1.824× 104 0.5359

0.5323 −0.4308 0.5359 0

. (49)

As such, the outer linear closed-loop system has the dominant poles ŝo1,2 = −67.644±
804.29j, which implies that the dominant dynamics of the inner system must be at least
twice as fast as Re{so1} ≈ −68. We thus consider λ = −150 as a hyperparameter of the
optimization problem (31). The swarm dimension of the ABC optimization problem was
N = 2000. After eight such iterations, the controller which minimizes the sensitivity of the
resulting inner closed-loop system has the parameters α? = 1× 10−3 and K?

2 = 8.9189× 104.
The resulting cascade control scheme has the structure proposed in Figure 1, where

the plant Σ is the bilinear representation of the linearized SEPIC DC-DC converter, the
inner controller KK-PBC is the proposed Krasovskii passivity-based controller, while the
outer dynamical path-planning Krob was designed using the robust control framework.
The difference between the desired reference value y? and the measured output y is fed
into the dynamical path planning, which computes the trajectory u? which must be tracked
by the inner loop.

The numerical results of the proposed control scheme are illustrated in Figure 4. The
exogenous disturbance inputs are represented in the first row, with the additional reference
signal adjacent to the output signals shown in the second row, and they vary as follows:

• The external voltage E(t) has an initial value of 300 (V), while at t1 = 0.035 (s) a ramp
evolution is present until t2 = 0.115 (s) when the value of 320 (V) is reached;

• the output load R(t) has an initial value of 80 (Ω), while at t3 = 0.045 (s) its value is
90 (Ω) and 70 (Ω) at t4 = 0.075 (s), the final value being again 80 (Ω);

• the reference signal y? has an initial value of 400 (V), and is successively changed to
550 (V) at t5 = 0.025 (s), to 250 (V) at t6 = 0.06 (s), to 550 (V) at t7 = 0.085 (s), and to
450 (V) at t9 = 0.115 (s).

Figure 4. The averaged bilinear model of the DC-DC SEPIC converter for both nominal plants,
along with 30 Monte Carlo simulations according to Figure 1 and using the sub-optimal parameters
α? = 1 × 10−3 and K?

2 = 8.9189 × 104 of the K-PBC; the first plot—the exogenous inputs, the
second plot—the reference signal (dotted red) and the output voltage (blue), and the third plot—the
command signal.
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The reference signal is represented with a dotted red line in the second row of the
same figure, where with blue indicates the 30 Monte Carlo simulations of the closed-loop
system with uncertain nonlinear plants considered. It can be noticed that the reference
signal is successfully tracked with a settling time of ts ≈ 0.01 (s), and also all disturbances
in terms of E and R are successfully rejected after the same duration. Moreover, the duty
cycle presented in the third row of the figure manages to fulfill the constraints imposed by
the physical process.

5. Discussion

In order to prove the importance of this design step, a set of numerical simulations
with several configurations of parameters α and K2 has been performed in the otherwise
same conditions: the evolution of the exogenous inputs E, R and the reference signal y?

remain the same, as noticeable in Figure 5. Starting from the sub-optimal values of the K-
PBC parameters α? and K?

2 , 30 Monte Carlo simulations have been performed considering
values for α and K2 in a two-decade range centered in the sub-optimal value of each
parameter, while for the process, only the nominal case has been considered, for brevity.
It can be noticed that the closed-loop system having the K-PBC parameters obtained
as a solution of the proposed optimization problem presents a good tracking regime
and good disturbance rejection, while other configurations of the parameters lead to
practically unfeasible responses, with high overshoot and settling time. Moreover, the
duty cycle cannot be maintained between the values of 0 and 1 as physically required,
and the saturation applied for the command signal leads to even worse time-domain
performance. As such, the optimization step is mandatory in order to obtain parameters
for the Krasovskii passivity-based controller which lead to desirable time performance and
reduce the sensitivity to the uncertainties presented in the process.

Figure 5. Average nominal bilinear DC-DC SEPIC converter model with 30 parameters sets for the
K-PBC around sub-optimal values α? = 1× 10−3, K?

2 = 8.9189× 104; the first plot—exogenous
inputs, the second plot—reference (dotted red) and output voltage: sub-optimal (orange) versus
other configurations (blue); the third plot—command signal: sub-optimal case (orange) and other
configurations (blue).
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Moreover, in a similar manner to the ad hoc approach presented in our previous
paper [19], the evolution of the dominant eigenvalues of the Jacobian of the LLFT con-
nection between the plant Σ and the K-PBC is shown in Figure 6 considering values for
α ∈ {α?/100, α?/10, α?, α? · 10, α? · 100} and for K2 ∈ {K?

2 /100, K?
2 /10, K?

2 , K?
2 · 10, K?

2 · 100}.
As noticed, there are combinations which can lead to a smaller sensitivity of these dom-
inant eigenvalues but having a position close to the stability limit, which leads to worse
performance indices, as noticed in Figure 5. As such, the proposed Problem 1 can be used
if only the stabilization problem is relevant without any additional interest in terms of
proposed performance, while a solution of Problem 2 manages to additionally fulfill a
desired set of performance indices, especially via the dynamical path-planning component.
The time-domain simulations from Figures 4 and 5 were performed using the following
settings: the variable-order method for fully implicit equations ode15i from MATLAB,
with a relative tolerance of 10−6 and by controlling the step error using the norm of the
solution, compared to its absolute value alternative. This solver was considered due to
its numerical robustness for more complicated control system architectures, as utilized in
Figure 1.

Figure 6. The evolution of the dominant eigenvalues of the Jacobian of the inner closed-loop system
considering 100 experimental forced-equilibrium points which correspond to an input signal from the
closed ball B(u = 0.5, ε = 0.1) for the sub-optimal values α? = 1× 10−3 and K?

2 = 8.9189× 104, along
with 24 other experiments where these parameters vary by two decades on the left and right sides.

In order to better illustrate the differences between the ad hoc analysis presented
in our previous conference paper [19] and the results presented in the previous sections,
the evolution of the cost functional fu,ε(α, k2) from (30) is illustrated in Figure 7. The
left subfigure presents the evolution of the functional over the entire grid, while the right
side subfigure displays only the feasible zone, i.e., only where the resulting closed-loop
system has the dominant dynamics under the prescribed threshold. Additionally, both
plots also have the following elements: the sub-optimal values of the K-PBC’s parameters
are marked with a red circle, while the optimal value of the parameters determined with
the ad hoc analysis is marked with the purple circle; also, the dotted red line represents the
points considered for choosing the value of α by keeping K2 constant, which is followed
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by a second iteration represented with a continuous red line where the value of parameter
α has been fixed and the value of parameter K2 was selected. It can be noticed that the
ad hoc analysis considers only two straight line trajectories (one horizontal direction
and one vertical direction) resulting in a point which is near the feasible zone without
ensuring the minimum sensitivity of the resulting inner closed-loop system, while the
optimization-based technique presented in this paper is able to find the nearly-optimal
value of the controller parameters by searching only in the feasible region and exploring all
possible directions.

Figure 7. The evolution of the cost function fu,ε in terms of α and k2 with (right) and without (left)
considering the feasible region, along with the location of the sub-optimal solution (red circle), the
location of the solution obtained based in the ad hoc analysis (purple circle), and the two iterations
used in the ad hoc analysis (dotted red and red lines).

6. Conclusions

The current paper manages to present an optimization-based technique to find the
sub-optimal values of the PI-type Krasovskii passivity-based controller parameters which
can successfully replace the initially-proposed ad hoc analysis from our previous paper [19].
The sensitivity analysis of the Krasovskii passivity-based controller has been studied
by introducing a functional which describes the length of the curve of the dominant
eigenvalue of the Jacobian of the resulting inner closed-loop system. However, the resulting
optimization problem is non-convex by nature, which leads to the necessity of using
a global metaheuristic approach in order to find a sub-optimal set of parameters. As
such, for the purpose of this paper, we considered a modified version of the artificial bee
colony optimization technique. The main modifications are in terms of stopping criteria,
all modifications leading to an increased execution speed of the algorithm by avoiding
the search in the unfeasible domain. Moreover, the benefit of the proposed method has
been illustrated on a nonideal DC-DC SEPIC converter. The Numerical Results section
presents an end-to-end approach to design both the Krasovskii passivity-based controller
and dynamic path planning for the proposed process modeled as a bilinear system.

As further research directions, the following ideas are of interest: (i) formulating the
optimization problem for a more general class of nonlinear systems, starting from the idea
presented in [14]; (ii) formulating a similar optimization problem in a convex manner in
terms of linear matrix inequalities; (iii) directly including the matrix Q in the optimization
problem with greater possibilities of ensuring a better set of performances, but with the
downside of increasing the dimensionality of the problem; (iv) studying the quantization
effects of the proposed method for the practical implementability of the proposed structure.



Mathematics 2022, 10, 3750 18 of 19

Author Contributions: Conceptualization, V.M.; methodology, V.M.; software, V.M. and M.Ş.; valida-
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LFT Linear Fractional Transform
LLFT Lower Linear Fractional Transform
LMI Linear Matrix Inequality
LTI Linear and Time-Invariant
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ULFT Upper Linear Fractional Transform

References
1. Willems, J.C. Dissipative dynamical systems part II: Linear systems with quadratic supply rates. Arch. Ration. Mech. Anal. 1972,

45, 352–393. [CrossRef]
2. Khalil, H. Nonlinear Systems; Prentice Hall: Prentice, NJ, USA, 1996.
3. van der Schaft, A.J. L2-Gain and Passivity Techniques in Nonlinear Control, 3rd ed.; Springer: Cham, Switzerland, 2017.
4. Bao, J.; Lee, P.L. Process Control—The Passive Systems Approach, 1st ed.; Springer: London, UK, 2007.
5. Pavlov, A.; Marconi, L. Incremental passivity and output regulation. In Proceedings of the 45th IEEE Conference on Decision and

Control, San Diego, CA, USA, 13–15 December 2006.
6. Pang, H.; Zhao, J. Incremental passivity and output regulation for switched nonlinear systems. Int. J. Control 2017, 90, 2072–2084.

[CrossRef]
7. van der Schaft, A.J. On differential passivity. IFAC Proc. Vol. 2013, 46, 21–25. [CrossRef]
8. Forni, F.; Sepulchre, R.; van der Schaft, A.J. On differential passivity of physical systems. In Proceedings of the 52nd IEEE

Conference on Decision and Control, Firenze, Italy, 10–13 December 2013; pp. 6580–6585.
9. Li, N.; Scherpen, J.; van der Schaft, A.; Sun, Z. A passivity approach in port-Hamiltonian form for formation control and velocity

tracking. In Proceedings of the 2022 European Control Conference (ECC), London, UK, 12–15 July 2022.
10. Simpson-Porco, J.W. Equilibrium-Independent Dissipativity With Quadratic Supply Rates. IEEE Trans. Autom. Control 2019, 64,

1440–1455. [CrossRef]
11. Kosaraju, K.C.; Kawano, Y.; Scherpen, J.M.A. Krasovskii’s Passivity. In Proceedings of the 11th IFAC Symposium on Nonlinear

Control Systems NOLCOS, Vienna, Austria, 4–6 September 2019; Volume 52, pp. 466–471.
12. Kawano, Y.; Kosaraju, K.C.; Scherpen, J.M.A. Krasovskii and Shifted Passivity-Based Control. IEEE Trans. Autom. Control 2021, 66,

4926–4932. [CrossRef]
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