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Abstract: A key feature of federated learning (FL) is that not all clients participate in every communi-
cation epoch of each global model update. The rationality for such partial client selection is largely to
reduce the communication overhead. However, in many cases, the unselected clients are still able to
compute their local model updates, but are not “authorized” to upload the updates in this round,
which is a waste of computation capacity. In this work, we propose an algorithm FEDUMF—Federated
Learning with Unauthorized Model Fusion that utilizes the model updates from the unselected clients.
More specifically, a client computes the stochastic gradient descent (SGD) even if it is not selected
to upload in the current communication epoch. Then, if this client is selected in the next round, it
non-trivially merges the outdated SGD stored in the previous round with the current global model
before it starts to compute the new local model. A rigorous convergence analysis is established for
FEDUMF, which shows a faster convergence rate than the vanilla FEDAVG. Comprehensive numerical
experiments on several standard classification tasks demonstrate its advantages, which corroborate
the theoretical results.

Keywords: federated learning; convergence analysis; model fusion
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1. Introduction

In various large-scale machine learning (ML) applications, a massive amount of
data is generated at the network edge nodes. Federated learning (FL) is a novel ML
algorithm paradigm, which can effectively enable massive participants (or organizations)
to execute ML algorithms and ensure privacy security without exchanging data. As a novel
distributed ML paradigm, FL can deal with data isolation, allowing collaborators to train
models together without sharing proprietary materials, breaking through data separation
in technology and achieving collaborative ML. In particular, rather than transferring a
plethora of data, all participants in FL smartly fit local ML models from their respective data
and upload to the back-end server, where a global model is aggregated. In recent years, FL
has achieved good performance on many commercial projects (e.g., Pixel 2 uses FL mode
to personalize settings for users) and ML tasks (e.g., Gboard uses FL for prediction) [1].

It is well known that increasing communication efficiency is one of the most urgent
bottlenecks in FL. There are two main reasons. First, the size of current deep learning
models is usually very significant, e.g., millions of parameters. Second, the number of
terminal devices participating the FL proliferates rapidly, e.g., a massive number of Internet-
of-Things (IoT) devices. To address these problems, the FEDAVG algorithm [2] adopts partial
client participation. In FEDAVG, the server randomly selects a certain portion of the total
clients for model upload in each communication round, and the selected (“authorized”)
clients perform local model training and upload the trained models to the server for
aggregation. This simple yet effective approach has enjoyed great empirical success, as it
provides a flexible trade-off between a large amount of participating clients and significant
communication overhead.
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The novel idea of this paper, however, is motivated by the existing partial client
participation mechanism in FEDAVG. In particular, the unselected clients stay idle in the
current communication round and only the authorized clients actively compute model
updates and send the new local models to the server. The key innovation of this work
is that those unselected clients are still able to execute the model update even without
authorization for model upload, which greatly wastes the computation power of those idle
clients. On the other hand, in the existing literature, it has been shown that more clients
participating in each round leads to a faster convergence rate. This paradox poses a new
challenge: how to allow the clients without authorization to join in FL while keeping the
communication overhead low.

In this paper, we propose a novel algorithm FEDUMF—Federated Learning with
Unauthorized Model Fusion to address the aforementioned challenge. FEDUMF effectively
leverages the computation capacity of the idle clients while keeping the number of selected
clients unchanged to maintain low communication overhead. More specifically, in each
round, rather than staying idle, the unselected clients also train the model in parallel with
the selected counterparts. The resulting model update by running, e.g., stochastic gradient
descent (SGD), will be temporarily stored locally at the clients and does not upload to the
server. If any unselected client receives authorization in the next round, the stored SGD
during the previous round will be fused with the global model before the new SGD is
calculated in a non-trivial way that is one of the key novelties of this paper. On the other
hand, if the client fails to be selected again in the next round, the previous stored SGD
will be overwritten with the new SGD computed from the new received global model.
Note that in this paper, we assume that all clients can receive the global model broadcast
by the server in each round. This is reasonable in a wireless broadcast scenario. In some
studies, it is assumed that only partial clients can receive broadcast from the server, which
is different from the setting in this paper. As we can see, the FEDUMF algorithm leverages
the computation capacity of the unselected clients without requiring increasing the selected
clients, which may also accelerate the convergence of FL. To the best of our knowledge, this
work is the first that exploits the “idle” clients without authorization in each round to boost
FL performance without increasing the communication overhead.

The main contributions of this paper are summarized as follows.

1. We propose FEDUMF, which enables clients that are not authorized to upload model
in each round to compute model updates and fuse the update later when they receive
the upload authorization.

2. We rigorously prove the convergence behavior of FEDUMF for both strongly convex
and non-convex loss functions. The results show that FEDUMF strictly dominates the
standard FEDAVG.

3. We selected the standard MNIST and CIFAR10 data set in the experiment, and carried
out standardized preprocessing. Extensive experiments were conducted on two
common data distributions (both independent and identically distributed (IID) and
non-IID data distributions).

4. We combine FEDUMF with the state-of-art algorithm to show good test accuracy and
the fastest convergence speed.

This paper will be described in the following sections. Related works are surveyed
in Section 2. The FEDUMF algorithm is described in Section 3 and rigorously analyzed in
Section 4. Numerical experiments are presented in Section 5. Finally, Section 6 concludes
the paper.

2. Related Works

Federated learning has gained much attention since its seminal work [2,3]. The pro-
posed FEDAVG design in [2] periodically aggregates the local SGD [4] updates from massive
clients with possibly non-IID datasets and obtains the global model. Detailed surveys of FL
can be found in [5–7].
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In [8–13], quantized compression is applied from multiple perspectives to improve the
communication efficiency of FL. Ref. [14] proposes an algorithm with periodic averaging us-
ing quantization. An efficient FL protocol involving a hierarchical aggregation mechanism
in a local area network (LAN) was proposed in [15], because it has abundant bandwidth
and almost negligible monetary cost over WAN. Ref. [16] proposes an algorithm that
achieves a compromise between gradient accuracy and communication efficiency. In [17],
a combination of random rotation, subsampling, and quantization is used to decrease
the transmission bandwidth. The authors in [18] applied quantization for both gradients
and model parameters, and [19] developed a new algorithm that outperforms FedAvg
in heterogeneous datasets. Ref. [20] proposed QSGD to achieve a compromise between
convergence time and communication cost. The authors in [21] derive the convergence rate
by using gradient quantization for non-convex optimization problems. Ref. [22] proposes
a novel mechanism, which uses heterogeneous models to optimize the training. Ref. [23]
designs an algorithm to efficiently solve the trade-off between the number of clients and
transmission energy.

Another line of research that is related to this work is the study of asynchronous FL,
that is, using out-of-date SGD. Synchronous training can make the model update more
orderly and accurate, but the number of clients participating in the training is limited. Asyn-
chronous training usually allows more clients to participate in model training [24,25] than
synchronous training, but the cost is that the SGD used might be very dated, which may
deteriorate the performance. Ref. [26] proposes a novel asynchronous adjustment method
for SGD, which adjusts the learning rate according to the staleness of the offline time of the
gradient, and provides theoretical guarantees for the convergence of the algorithm. In order
to adapt to the access of more edge devices and improve flexibility and scalability, a novel
joint optimization algorithm supporting heterogeneous terminals was proposed by [27].
Ref. [28] mitigates the straggler problem caused by device heterogeneity. Ref. [29] proposes
a novel technology to compensate delay caused by asynchronous learning. However, in the
previous literature, most research in FL have not considered utilizing the unselected clients
to enhance the performance, while this work aims to take advantage of these neglected
clients, which may bring extra benefits. In our paper, we also utilize the model updated
from the unselected clients in the previous round. However, the update is not staler than
one round, and the whole system is still synchronous.

3. The FEDUMF Algorithm

In this section, we introduce the federated learning system in detail and propose our
algorithm named FEDUMF.

3.1. The FL Model and FEDAVG

We aim to learn a global model parameterized by θ that minimizes the following
learning problem.

min
θ∈Rd

`(θ) = min
θ∈Rd

1
m ∑

z∈D
l(θ; z), (1)

where ` : Rd → R is the differentiable loss function averaged over the total dataset D with
size m, θ ∈ Rd is the variable of machine learning model (parameter vector) that we would
like to optimize, and l(θ; z) is the loss function evaluated at data sample z and model θ. We
assume that there are n clients in the FL setting. The problem can be redefined as

min
θ∈Rd

`(θ) = min
θ∈Rd

∑
i∈[n]

mi
m

`i(θ), (2)

where `i : Rd → R is the local loss function for client i, averaged over its local dataset
Di with mi data samples, and ∑i mi = m, i.e., `i(θ) = 1

mi
∑z∈Di

l(θ; z). Due to the space
limitation, we only present the analysis for equal dataset size. Our solution can be easily
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extended to the case when mi are heterogeneous. An illustration of the considered system
is given in Figure 1.

Figure 1. Illustration of federated learning. The server sends the model to all clients through broadcast
and the clients submit it to the server for aggregation after local training.

In order to deal with Problem (1), the authors put forward FEDAVG in [2]. At the start
of every epoch t ∈ [T] , {1, 2, · · · , T}, the server broadcasts the current global model θt
to all clients. Then, the server chooses a subset of clients St at random, with these clients
authorized to upload their models. Assume that |St| = M; that is, a total of M clients
are selected in each epoch. Then, each client i ∈ St updates its local model by using K
times of local SGD, obtaining θi

t+1. After the model update stage, the authorized clients
upload their updates to the parameter server through uplink communication. Then, the
server aggregates local model updates from selected clients to update the global model;
i.e., θt+1 = 1

M ∑i∈[St ] θi
t+1. After going through T rounds of learning process, the final

global model is obtained on the server.

3.2. FEDUMF Algorithm Description

We formally describe the FEDUMF algorithm in Algorithm 1. We denote gi
t as the

stored SGD for client i at round t, The number of all clients participating in training is N.
First, we initialize a global weight θ1 for the server and distribute it to all clients in the first
round. At the same time, an update gradient gi

0 = 0 is initialized for all clients. At the
start of each round t, the server randomly chooses an authorization set St, where clients are
allowed to upload their model updates. We adopt Sc

t to denote the complement set of St,
i.e., the set of unselected clients. As all the clients can obtain the global model broadcast
by the server in the beginning of every round, we denote θi

t,0 ← θt. In addition, if any
selected client i at this round was not selected in the previous round, i.e., i ∈ St ∩ Sc

t−1,
gradient fusion from the previous stored SGD is executed θi

t,0 ← θi
t,0 +

αηt
ηt−1

gi
t−1. α ∈ (0, 1]

is a fusion coefficient, which is a tuning parameter. Multiplying ηt
ηt−1

modulates the learning
rate. Notice that if the authorized client was also selected in the previous round, it indicates
that the client has already contributed its previous gradient and there is no need to fuse
its gradient. Then, each client i ∈ St updates its local model by using K times of local
SGD, obtaining θi

t+1. All clients compute and store the gradient for the current round by
gi

t = θi
t+1 − θi

t,0. After receiving the model updates uploaded from all authorized clients,
the server aggregates the global model by θt+1 ← 1

M ∑i∈St θi
t+1.

Figure 2 displays the algorithm workflow. It is clear that FEDUMF is novel because of
the fusion of previous SGD from unselected clients in the model update process.
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Figure 2. Illustration of FEDUMF.

Algorithm 1: FEDUMF

Initialize the weight θ1 ;
Initialize the gradient gi

0 = 0, ∀i;
S0 = ∅;
for t = 1 to T do

Server randomly selects St ;
for client i ∈ N do

θi
t,0 ← θt;

if client i ∈ St ∩ Sc
t−1 then

θi
t,0 ← θi

t,0 +
αηt

ηt−1
gi

t−1;

end
for τ = 0 to K− 1 do

θi
t,τ+1 = θi

t,τ − ηt∇̃`i(θ
i
t,τ);

end
θi

t+1 ← θi
t,K;

gi
t = θi

t+1 − θi
t,0 ;

if client i ∈ St then
Upload θi

t+1 to the server;
end

end
Server updates global model θt+1 ← 1

M ∑i∈St θi
t+1

end

4. Analysis of Convergence

In this section, we display the convergence performance analysis result of FEDUMF.
For the purpose of better illustrating of our key idea, we assume one local SGD occurs at
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each round, i.e., K = 1, while in the experiment section, we simulate multiple local SGD
updates scenarios. We also consider both strongly convex and non-convex loss functions.

4.1. Strongly Convex Loss Function

The optimal solution to Problem (2) is denoted by θ∗. We first claim some commonly
adopted assumptions used in literature, e.g., [14,21,30]. Specifically, ∀i ∈ [n]. We make the
following assumptions.

Assumption 1. Each function `i is L-smooth: ‖∇̃`i(θ)−∇̃`i(θ̂)‖ ≤ L‖θ− θ̂‖ for any θ, θ̂ ∈ Rd;

Assumption 2. Each function `i is µ-strongly convex: 〈∇̃`i(θ)− ∇̃`i(θ̂), θ − θ̂〉 ≥ µ‖θ − θ̂‖2

for any θ, θ̂ ∈ Rd;

Assumption 3. The second moment of a stochastic gradient for all function `i is bounded:
E‖∇̃`i(θ)‖2 ≤ σ2.

Assumption 1 indicates that the gradient of `i is Lipschitz continuous. In this sec-
tion, Assumption 2 assumes that the loss function is strongly convex. However, this
assumption no longer holds for the analysis of the non-convex situation in the next section.
Assumption 3 implies that the variance of stochastic gradients is uniformly bounded [31].

We first present three lemmas, which will be used to prove Theorem 1 later.

Lemma 1. Under the conditions that Assumptions 1 to 3 hold, we have E‖θt+1 − θ∗‖2 =
E‖θ̄t+1 − θ∗‖2 +E‖θt+1 − θ̄t+1‖2, where θ̄t+1 = ∑i∈[n]

1
n θi

t+1.

Proof. First we have

E‖θt+1 − θ∗‖2 = E‖θt+1 − θ̄t+1 + θ̄t+1 − θ∗‖2

= E‖θ̄t+1 − θ∗‖2 +E‖θt+1 − θ̄t+1‖2

+ 2E〈θt+1 − θ̄t+1, θ̄t+1 − θ∗〉. (3)

Notice that

E[θt+1] = E
[

∑
i∈St

1
M

θi
t+1

]
(a)
= ∑

i∈[n]

1
n

θi
t+1 = θ̄t+1, (4)

where the equality (a) is because of the randomness of St.
Noticing that the random sampling error θt+1 − θ̄t+1 is independent of θ̄t+1 − θ∗,

which leads to the desired result.

Lemma 2. When Assumptions 1 to 3 hold, we have

E‖θt+1 − θ̄t+1‖2 ≤ (n−M)(n + 3M)η2
t σ2

M(n− 1)n
. (5)

Proof. First, we can write:

ESt‖θt+1 − θ̄t+1‖2 = ESt‖ ∑
i∈St

1
M

θi
t+1 − θ̄t+1‖2

= ESt‖
1
M

(∑
i∈St

θi
t+1 − ∑

i∈St

θ̄t+1)‖2

=
1

M2ESt‖ ∑
i∈[n]

1(i ∈ St)(θ
i
t+1 − θ̄t+1)‖2
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=
1

M2

[
∑

i∈[n]
Pr(i ∈ St)‖(θi

t+1 − θ̄t+1)‖2 + ∑
i 6=j

Pr(i, j ∈ St)〈θi
t+1 − θ̄t+1, θ

j
t+1 − θ̄t+1〉

]
=

1
nM

[
∑

i∈[n]
‖(θi

t+1 − θ̄t+1)‖2 +
M− 1

nM(n− 1) ∑
i 6=j
〈θi

t+1 − θ̄t+1, θ
j
t+1 − θ̄t+1〉

]
=

1
M(n− 1)

(1− M
n
) ∑

i∈[n]
‖(θi

t+1 − θ̄t+1)‖2, (6)

where we adopt the equation that

∑
i∈[n]
‖(θi

t+1 − θ̄t+1)‖2 + ∑
i 6=j
〈θi

t+1 − θ̄t+1, θ
j
t+1 − θ̄t+1〉 = 0.

On the other hand, the following holds

∑
i∈[n]

E‖(θi
t+1 − θ̄t+1)‖2

= ∑
i∈[n]

E‖(θi
t+1 − θt)− (θ̄t+1 − θt)‖2

≤ ∑
i∈[n]

E‖(θi
t+1 − θt)‖2, (7)

where the last inequality holds due to E‖θ −Eθ‖2 ≤ E‖θ‖2 .
There are three cases for θi

t+1.

(1). For client i ∈ St ∩ St−1, we have

θi
t+1 = θt − ηt∇̃`i(θt).

(2). For client i ∈ St ∩ SC
t−1, we have

θi
t+1 = (θt − ηt∇̃`i(θt−1))− ηt∇̃`i(θt − ηt∇̃`i(θt−1)).

(3). For the other client i ∈ SC
t , we have

θi
t+1 = θt − ηt∇̃`i(θt).

Thus, it follows

∑
i∈[n]
‖(θi

t+1 − θt)‖2

= ∑
i∈(St∩St−1)

‖θt − ηt∇̃`i(θt)− θt‖+ ∑
i∈St∩SC

t−1

‖θt − ηt∇̃`i(θt−1)− ηt∇̃`i(θt − ηt∇̃`i(θt−1)− θt‖

+ ∑
i∈St∩SC

t−1

‖θt − ηt∇̃`i(θt)− θt‖

= ∑
i∈(St∩St−1)∪SC

t

‖ηt∇̃`i(θt)‖2 + ∑
i∈St∩SC

t−1

‖ηt∇̃`i(θt−1) + ηt∇̃`i(θt − ηt∇̃`i(θt−1))‖2

≤ η2
t

[
∑

i∈(St∩St−1)∪SC
t

‖∇̃`i(θt)‖2 + 2 ∑
i∈St∩SC

t−1

‖∇̃`i(θt−1)‖2 + 2 ∑
i∈St∩SC

t−1

‖∇̃`i(θt − ηt∇̃`i(θt−1))‖2
]
. (8)

The reason for the last inequality is that ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2.
Plugging Equation (8) into (6) and taking the expectation on both sides yields

E‖θt+1 − θ̄t+1‖2 ≤ (n−M)(n + 3M)η2
t σ2

M(n− 1)n
, (9)
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where we have used the fact that |St ∩ SC
t−1| ≤ M and Assumption 3.

Lemma 3. When Assumptions 1 to 3 hold, we have

E‖θ̄t+1 − θ∗‖2 ≤

(1− 2µηt −
2M(n−M)µηt

n2 +
2η2

t M(n−M)

n3 )E‖θt − θ∗‖2

+
4M(n−M)L2η2

t−1σ2

n
+

L2η2
t M(n−M)σ2

n

+
η2

t (n + M)2σ2

n2 . (10)

Proof. First of all, we can know that

‖θ̄t+1 − θ∗‖2 = ‖ 1
n ∑

i∈[n]
θi

t+1 − θ∗‖2

= ‖ 1
n
( ∑

i∈St∩St−1

θi
t+1 + ∑

i∈St∩SC
t−1

θi
t+1 + ∑

i∈SC
t

θi
t+1)− θ∗‖2

= ‖ 1
n
( ∑

i∈(St∩St−1)∪SC
t

(θt − ηt∇̃`i(θt)) + ∑
i∈St∩SC

t−1

((θt − ηt∇̃`i(θt−1))− ηt∇`i(θt − ηt∇̃`i(θt−1)))− θ∗‖2

= ‖θt −
1
n ∑

i∈[n]
ηt∇̃`i(θt)−

1
n ∑

i∈St∩SC
t−1

ηt∇̃`i(θt−1) +
1
n ∑

i∈St∩SC
t−1

ηt(∇̃`i(θt)− ∇̃`i(θt − ηt∇̃`i(θt−1)))− θ∗‖2

= ‖θt − θ∗‖2 − 2〈θt − θ∗,
1
n ∑

i∈[n]
ηt∇̃`i(θt)〉

− 2〈θt − θ∗,
1
n ∑

i∈St∩SC
t−1

ηt∇̃`i(θt−1)〉+ 2〈θt − θ∗,
1
n ∑

i∈St∩SC
t−1

ηt(∇̃`i(θt)− ∇̃`i(θt − ηt∇̃`i(θt−1)))〉

+ ‖ 1
n ∑

i∈(St∩St−1)∪SC
t

ηt∇̃`i(θt) +
1
n ∑

i∈St∩SC
t−1

ηt∇̃`i(θt−1) +
1
n ∑

i∈St∩SC
t−1

ηt∇̃`i(θt − ηt∇̃`i(θt−1))‖2. (11)

We will investigate the expectation of each term in the right hand side of Equation (11).
In regard to the second term, we can obtain that

− 2E〈θt − θ∗,
1
n ∑

i∈[n]
ηt∇̃`i(θt)〉 ≤ −2µηtE‖θt − θ∗‖2, (12)

which is due to Assumption 2.
For the third term in the right hand side of Equation (11), we take the expectation,

which yields

2E〈θt − θ∗,
1
n ∑

i∈St∩SC
t−1

ηt∇̃`i(θt−1)〉

=
2ηt

n
E〈θt − θ∗, ∑

i∈St∩SC
t−1

∇̃`i(θt)〉+
2ηt

n
E〈θt − θ∗, ∑

i∈St∩SC
t−1

(∇̃`i(θt−1)− ∇̃`i(θt))〉

(a)
=

2ηt

n
E〈θt − θ∗,

M(n−M)

n2 ∑
i∈[n]
∇̃`i(θt)〉+

2ηt

n
E〈θt − θ∗,

M(n−M)

n2 ∑
i∈[n]

(∇̃`i(θt−1)− ∇̃`i(θt))〉

≥ 2M(n−M)µηt

n2 E‖θt − θ∗‖2 − η2
t M(n−M)

n3 E‖θt − θ∗‖2 − M(n−M)

n3 E‖ ∑
i∈[n]

(∇̃`i(θt−1)− ∇̃`i(θt))‖2, (13)
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where the equality (a) is established because of the randomness of St, and the reason why
the last inequality holds is due to the help of the inequality 2〈a, b〉 ≥ −‖a‖2 − ‖b‖2.

For the expectation of the fourth term in Equation (11), it follows

2E〈θt − θ∗,
1
n ∑

i∈St∩SC
t−1

ηt(∇̃`i(θt)− ∇̃`i(θt − ηt∇̃`i(θt−1)))〉

(a)
= 2E〈θt − θ∗,

M(n−M)

n3 ∑
i∈[n]

ηt(∇̃`i(θt)− ∇̃`i(θt − ηt∇̃`i(θt−1)))〉

(b)
≤ η2

t M(n−M)

n3 E‖θt − θ∗‖2 +
M(n−M)

n3 E‖ ∑
i∈[n]

(∇̃`i(θt)− ∇̃`i(θt − ηt∇̃`i(θt−1)))‖2

(c)
≤ η2

t M(n−M)

n3 E‖θt − θ∗‖2 +
L2η2

t M(n−M)

n3 E‖ ∑
i∈[n]
∇̃`i(θt−1)‖2

(d)
≤ η2

t M(n−M)

n3 E‖θt − θ∗‖2 +
L2η2

t M(n−M)σ2

n
, (14)

where the equality (a) holds because of the randomness of St, the inequality (b) holds due
to 2〈a, b〉 ≤ ‖a‖2 + ‖b‖2, and the inequalities (c) and (d) come from Assumptions 1 and 3,
respectively.

Regarding the expectation of the last term in Equation (11), we have

E‖ 1
n ∑

i∈(St∩St−1)∪SC
t

ηt∇̃`i(θt) +
1
n ∑

i∈St∩SC
t−1

ηt∇̃`i(θt−1) +
1
n ∑

i∈St∩SC
t−1

ηt∇̃`i(θt − ηt∇̃`i(θt−1))‖2

≤ η2
t (n + M)

n2 E
[

∑
i∈(St∩St−1)∪SC

t

‖∇̃`i(θt)‖2 + ∑
i∈St∩SC

t−1

‖∇̃`i(θt−1)‖2 + ∑
i∈St∩SC

t−1

‖∇̃`i(θt − ηt∇̃`i(θt−1))‖2]
≤ η2

t (n + M)2σ2

n2 , (15)

where the first inequality is because of the Cauchy–Schwarz inequality, and the last inequal-
ity holds due to Assumption 3.

Taking the expectation on both sides of Equation (11) and plugging in Equations (13)–(15)
yields

E‖θ̄t+1 − θ∗‖2

≤ (1− 2µηt −
2M(n−M)µηt

n2 +
2η2

t M(n−M)

n3 )E‖θt − θ∗‖2

+
M(n−M)

n3 E‖ ∑
i∈[n]

(∇̃`i(θt−1)− ∇̃`i(θt))‖2

+
L2η2

t M(n−M)σ2

n
+

η2
t (n + M)2σ2

n2 . (16)

Next we analyze the second term in the right hand side of Equation (16).

E‖ ∑
i∈[n]

(∇̃`i(θt−1)− ∇̃`i(θt))‖2

≤ E‖ ∑
i∈[n]

(L(θt−1 − θt))‖2

= L2n2E‖θt−1 − θt‖2

= L2n2E‖ 1
M ∑

i∈St−1∩St−2

ηt−1∇̃`i(θt−1) +
1
M ∑

i∈St−1∩SC
t−2

ηt−1∇̃`i(θt−2)



Mathematics 2022, 10, 3751 10 of 31

+
1
M ∑

i∈St−1∩SC
t−2

ηt−1∇̃`i(θt−1 − ηt−1∇̃`i(θt−2))‖2

(a)
≤

2L2n2η2
t−1

M

[
∑

i∈St−1∩St−2

E‖∇̃`i(θt−1)‖2 + ∑
i∈St−1∩SC

t−2

E‖∇̃`i(θt−2)‖2

+ ∑
i∈St−1∩SC

t−2

E‖∇̃`i(θt−1 − ηt−1∇̃`i(θt−2))‖2
]

(b)
≤ 4L2n2η2

t−1σ2, (17)

where the inequality (a) comes from Cauchy–Schwarz inequality and (b) is due to Assumption 3.
Therefore, we have

E‖θ̄t+1 − θ∗‖2

≤ (1− 2µηt −
2M(n−M)µηt

n2 +
2η2

t M(n−M)

n3 )

∗E‖θt − θ∗‖2 +
4M(n−M)L2η2

t−1σ2

n

+
L2η2

t M(n−M)σ2

n
+

η2
t (n + M)2σ2

n2 . (18)

We are now put forward the key theorem on the convergence of FEDUMF as follows.

Theorem 1. With the condition that Assumptions 1 to 3 hold, and if the step size is chosen as
ηt = 1

µt , there exists a constant t0 such that for any t > t0, the convergence rate of FEDUMF

satisfies:

E‖θt − θ∗‖2 ≤ t0

t
E‖θt0 − θ∗‖2 +

2C0

t− 1
+

C1

t
, (19)

where C0 = 4M(n−M)L2σ2

nµ2 , C1 = L2 M(n−M)σ2

nµ2 + (n+M)2σ2

n2µ2 + (n−M)(n+3M)σ2

M(n−1)nµ2 .

Proof. Through Lemmas 1, 2, and 3, we can obtain

E‖θt+1 − θ∗‖2

≤ (1− 2µηt −
2M(n−M)µηt

n2 +
2η2

t M(n−M)

n3 )E‖θt − θ∗‖2 +
4M(n−M)L2η2

t−1σ2

n

+
L2η2

t M(n−M)σ2

n
+

η2
t (n + M)2σ2

n2 +
(n−M)(n + 3M)η2

t σ2

M(n− 1)n
. (20)

Notice that when ηt ≤ 1
n , we have 2M(n−M)µηt

n2 >
2η2

t M(n−M)

n3 . We substitute the step
size ηt =

1
µt , and at , E‖θt − θ∗‖2. This leads to

at+1 ≤
(

1− 2
t

)
at +

C0

(t− 1)2 +
C1

t2 . (21)

Now, we prove the theorem using induction. First, we notice that Equation (19)
obviously holds when t = t0. Next, we assume Equation (19) holds when s > t0, i.e., as ≤
t0
s at0 +

2C0
s−1 + C1

s . We can know

as+1 ≤
(

1− 2
s

)
as +

C0

(s− 1)2 +
C1

(s)2
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≤
(

1− 2
s

)(
t0

s
at0 +

2C0

s− 1
+

C1

s

)
+

C0

(s− 1)2 +
C1

s2

=
s− 2

s2 t0at0 +
2s2 − 5s + 4

s(s− 1)2 C0 +
s− 1

s2 C1

≤ t0

s + 1
at0 +

2C0

s
+

C1

s + 1
, (22)

which leads to the final result.

Remark 1. Theorem 1 demonstrates that the convergence rate of FEDUMF is O(1/T), which
is as same as the conventional parallel SGD [31].

Remark 2. In Equation (19), the term 2M(n−M)µηt
n2 − 2η2

t M(n−M)

n3 represents the extra benefit
brought by FEDUMF, i.e., a greater decay rate for the distance between the current model
and the optimum than the counterpart in FEDAVG, which implies a faster convergence rate.

4.2. Non-Convex Loss Function

Neural networks are often trained using non-convex loss functions. We now pay
attention to the convergence performance for non-convex loss functions; i.e., we will not
consider Assumption 2 in the analysis. Specially, it is well-known that SGD may converge
to a local optimum for a non-convex loss function, and evaluating the expected gradient
norm as an indicator of convergence is a common practice. In particular, an algorithm
achieves an ε-suboptimal solution if

T

∑
t=1

E‖∇`(θt)‖2 ≤ ε,

which guarantees the convergence to a stationary point [11,32,33].

Theorem 2. Suppose Assumptions 1 and 3 are established. When the step size is substituted as
ηt =

1
L
√

T
, the convergence of FEDUMF with non-convex loss functions satisfies

1
T

T

∑
t=1

E‖∇`(θt)‖2 ≤ 2L(`(θ0)− f ∗)√
T

+
D√

T
, (23)

where D = 2Lσ2 M(n−M)
n + LM(n−M)σ2

2n + (n+M)2σ2

2n2 + (n−M)(n+3M)σ2

2M(n−1)n .

We establish the following lemma before providing the full proof of Theorem 2.

Lemma 4. When Assumption 1 holds, we can obtain

E`(θt+1) ≤ E`(θ̄t+1) +
L
2
E‖θt+1 − θ̄t+1‖2, (24)

E`(θ̄t+1) ≤ E`(θt)− ηtE‖∇`(θt)‖2−
M(n−M)ηt

n2 E‖∇`(θt)‖2 +
η2

t M(n−M)

n3 E‖∇`(θt)‖2 +
2L2η2

t−1σ2M(n−M)

n
+

L2η2
t M(n−M)σ2

2n
+

η2
t (n + M)2σ2L

2n2 . (25)

Proof. To prove Equation (24), we note that

`(θt+1) = `(θ̄t+1 + θt+1 − θ̄t+1)

≤ `(θ̄t+1) + 〈∇`(θ̄t+1), θt+1 − θ̄t+1〉+
L
2
‖θt+1 − θ̄t+1‖2, (26)
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where the inequality is established because of the L-smoothness of function `. Taking
expectation on both sides, we can know that E[θt+1] = E[θ̄t+1] and the random sampling
error θt+1− θ̄t+1 is independent of∇`(θ̄t+1). This yields E`(θt+1) ≤ E`(θ̄t+1) +

L
2E‖θt+1−

θ̄t+1‖2.
In order to prove Equation (25), we have `(θ̄t+1) = `( 1

n ∑i∈[n] θi
t+1)

= `(
1
n ∑

i∈St∩St−1

(θt − ηt∇̃`i(θt)) +
1
n ∑

i∈St∩SC
t−1

(θt − ηt∇̃`i(θt−1))− ηt∇̃`i(θt − ηt∇̃`i(θt−1))

+
1
n ∑

i∈St∩SC
t−1

(θt − ηt∇̃`i(θt))

= `
(

θt −
1
n ∑

i∈(St∩St−1)∪SC
t

ηt∇̃`i(θt)−
1
n ∑

i∈St∩SC
t−1

ηt∇̃`i(θt) +
1
n ∑

i∈St∩SC
t−1

ηt∇̃`i(θt)

− 1
n ∑

i∈St∩SC
t−1

ηt∇̃`i(θt−1)−
1
n ∑

i∈St∩SC
t−1

ηt(∇̃`i(θt − ηt∇̃`i(θt−1)))
)

= `
(

θt −
1
n ∑

i∈[n]
ηt∇̃`i(θt)−

1
n ∑

i∈St∩SC
t−1

ηt∇̃`i(θt−1) +
1
n ∑

i∈St∩SC
t−1

ηt(∇̃`i(θt)− ∇̃`i(θt − ηt∇̃`i(θt−1)))
)

≤ `(θt)− 〈∇`(θt),
1
n ∑

i∈St∩SC
t−1

ηt∇̃`i(θt−1)〉

− 〈∇`(θt), ηt∇`(θt)〉+ 〈∇`(θt),
1
n ∑

i∈St∩SC
t−1

ηt(∇̃`i(θt)− ∇̃`i(θt − ηt∇̃`i(θt−1)))〉+

Lη2
t

2
‖ 1

n ∑
i∈(St∩St−1)∪SC

t

∇̃`i(θt) +
1
n ∑

i∈St∩SC
t−1

∇̃`i(θt−1) +
1
n ∑

i∈St∩SC
t−1

∇̃`i(θt − ηt∇̃`i(θt−1))‖2. (27)

The reason why the inequality holds relies on the L-smoothness of `.
We will investigate the expectation of each term in the right hand side of Equation (27).
For the second term in the right hand side of Equation (27), we can obtain

E〈∇`(θt),
1
n ∑

i∈St∩SC
t−1

ηt∇̃`i(θt−1)〉

=
ηt

n
E〈∇`(θt), ∑

i∈St∩SC
t−1

∇̃`i(θt)〉

+
ηt

n
E〈∇`(θt), ∑

i∈St∩SC
t−1

(∇̃`i(θt−1)− ∇̃`i(θt))〉

(a)
=

ηt

n
E〈∇`(θt),

M(n−M)

n2 ∑
i∈[n]
∇̃`i(θt)〉+

ηt

n
E〈∇`(θt),

M(n−M)

n2 ∑
i∈[n]

(∇̃`i(θt−1)− ∇̃`i(θt))〉

(b)
≥ M(n−M)ηt

n2 E‖∇`(θt)‖2 − η2
t M(n−M)

2n3 E‖∇`(θt)‖2

− M(n−M)

2n3 E‖ ∑
i∈[n]

(∇̃`i(θt−1)− ∇̃`i(θt))‖2

(c)
≥ M(n−M)ηt

n2 E‖∇`(θt)‖2 − η2
t M(n−M)

2n3 E‖∇`(θt)‖2

−
2L2η2

t−1σ2M(n−M)

n
, (28)
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where the equality (a) holds because of the randomness of St, the inequality (b) holds due
to 2〈a, b〉 ≥ −‖a‖2 − ‖b‖2, and the inequality (c) comes from Equation (17).

For the third term in the right hand side of Equation (27), we have

E〈∇`(θt), ηt∇`(θt)〉 = ηtE‖∇`(θt)‖2. (29)

For the fourth term in the right hand side of Equation (27), we have

E〈∇`(θt),
1
n ∑

i∈St∩SC
t−1

ηt(∇̃`i(θt)− ∇̃`i(θt − ηt∇̃`i(θt−1)))〉

(a)
= E〈∇`(θt),

M(n−M)

n3 ∑
i∈[n]

ηt(∇̃`i(θt)− ∇̃`i(θt − ηt∇̃`i(θt−1)))〉

(b)
≤ η2

t M(n−M)

2n3 E‖∇`(θt)‖2 +
M(n−M)

2n3 E‖ ∑
i∈[n]

(∇̃`i(θt)− ∇̃`i(θt − ηt∇̃`i(θt−1)))‖2

(c)
≤ η2

t M(n−M)

2n3 E‖∇`(θt)‖2 +
L2η2

t M(n−M)

2n3 E‖ ∑
i∈[n]
∇̃`i(θt−1)‖2

(d)
≤ η2

t M(n−M)

2n3 E‖∇`(θt)‖2 +
L2η2

t M(n−M)σ2

2n
, (30)

where the equality (a) holds because of the randomness of St, the inequality (b) holds due
to 2〈a, b〉 ≤ ‖a‖2 + ‖b‖2, the inequality (c) comes from Assumption 1, and the inequality
(d) comes from Assumption 3.

For the last term in the right hand side of Equation (27), it follows

Lη2
t

2
E‖ 1

n ∑
i∈(St∩St−1)∪SC

t

∇̃`i(θt) +
1
n ∑

i∈St∩SC
t−1

∇̃`i(θt−1) +
1
n ∑

i∈St∩SC
t−1

∇̃`i(θt − ηt∇̃`i(θt−1))‖2

≤ η2
t (n + M)2σ2L

2n2 , (31)

where the last inequality comes from Equation (15).
Plugging Equations (28)–(31) into (27) and taking the expectation on both sides yields

E`(θ̄t+1) ≤ E`(θt)− ηtE‖∇`(θt)‖2

− M(n−M)ηt

n2 E‖∇`(θt)‖2 +
η2

t M(n−M)

n3 E‖∇`(θt)‖2

+
2L2η2

t−1σ2M(n−M)

n
+

L2η2
t M(n−M)σ2

2n

+
η2

t (n + M)2σ2L
2n2 . (32)

Proof of Theorem 2. From Lemmas 2 and 4, we have

E`(θt+1) ≤ E`(θt)− ηtE‖∇`(θt)‖2−
M(n−M)ηt

n2 E‖∇`(θt)‖2 +
η2

t M(n−M)

n3 E‖∇`(θt)‖2

+
2L2η2

t−1σ2M(n−M)

n
+

L2η2
t M(n−M)σ2

2n

+
η2

t (n + M)2σ2L
2n2 +

(n−M)(n + 3M)η2
t σ2L

2M(n− 1)n
. (33)
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When the step size ηt = ηt−1 = 1
L
√

T
, it follows M(n−M)ηt

n2 ≥ M(n−M)η2
t

n3 and we have

E`(θt+1) ≤ E`(θt)− ηtE‖∇`(θt)‖2 + Dη2
t L. (34)

Summing Equation (34) over t = 0, · · · , T and rearranging the terms, we obtain

T

∑
t=0

ηtE‖∇`(θt)‖2 ≤ `(θ0)−E`(θT+1) + Dη2
t LT

≤ `(θ0)− `∗ + Dη2
t LT. (35)

We divide T for both sides of Equation (35), which leads to

1
T

T

∑
t=0

ηtE‖∇`(θt)‖2 ≤ `(θ0)− `∗

T
+ Dη2

t L. (36)

We can obtain the final result (23) by plugging in the step size ηt =
1

L
√

T
.

Remark 3. Theorem 2 demonstrates that FEDUMF has a convergence rate of O(1/
√

T) for
non-convex loss functions, which is as same as the conventional parallel SGD without
quantization [33].

5. Experiments
5.1. Experimental Setup
5.1.1. Models and Datasets

In this experiment, we employ real-world datasets for standard image classification
tasks, including the commonly used MNIST and CIFAR10. In Appendix A, we show more
experimental results; the dataset is extended to MNIST, EMNIST, Fashion-MNIST, CIFAR10
and CIFAR100.

MNIST is a simple digit classification dataset; the training set contains 60,000 (28∗28)
samples and the test set contains 10,000 samples. In addition, CIFAR10 is also intended
for an image classification task with 10 classes, and its data set contains a total of 60,000
(32∗32) samples available for use. In particular, our network setup follows that described
in the literature [2] on MNSIT, ResNet18 [34] on CIFAR10.

The experimental design mainly includes two mainstream balance settings: IID setting
and non-IID setting. For the IID setup, we shuffle the dataset randomly; all clients receive
the same number of samples, which are independently and equally distributed over the
training data set. The non-IID setup has a very different setting than IID. We divide the
data into blocks by category and each person extracts several blocks. According to the
client settings, the client will hold categories ranging from 1 to n. In this case, we make it
have at most two classes.

5.1.2. Hyperparameters

In this section, we describe in detail the meanings and settings of some of the hyperpa-
rameters used in the experiments. We set T as the communication rounds. B is the local
batch size for training at each round and C ∈ (0, 1] is the proportion of clients authorized
by the server each round. Let K represent the local training times of each client. We test
multiple learning rate settings. The low learning rate η is set as 0.01, while the high one is
set as 0.05. In addition, the low client fraction C is set as 0.1, while the high one is set as 0.5.
Mo stands for the momentum choice of the optimizer. λ stands for the weight decay of the
optimizer, which is set to be 0.0005. For MNIST, the settings are B = 50, T = 150, K = 1,
and Mo = 0.5. For CIFAR10, the settings are B = 50, T = 300, K = 1, and Mo = 0.5 .
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5.1.3. Criteria

All models are appraised at each epoch using the test accuracy, and we also record the
number training rounds to arrive at a given test accuracy. The loss function is calculated
using cross-entropy. In the main text, we use FedAvg as the baseline, and in the Appendix A,
we compare more algorithms, such as FedProx, FedScaff, FedDyn, and FedDC (state of
the art). All experiments are run using Tesla V100 with 125GB RAM. In addition to using
a figure to show the test accuracy curve, we also use a table to show the communication
rounds when the specified test accuracy is achieved.

5.2. MNIST Results
5.2.1. IID Setting

Table 1 records the experimental results for the MNIST dataset with the IID partition
for the case of α = 1, which means that the full SGD of the unselected clients in the previous
round will be fused in this round. In the top two rows of the table, the learning rate is set as
η = 0.01 and C is set to be 0.1 and 0.5, respectively. In the bottom two rows of the table, we
have η = 0.05, and C is also set to be 0.1 and 0.5, respectively. We can see that the FEDUMF

outperforms FEDAVG for all cases. For example, the number of rounds to reach the test
accuracy of 98% is 34–48% smaller.

Table 1. Accuracy on MNIST dataset. IID partition.

Parameters, α = 1 Schemes
Accuracy

92% 93% 94% 95% 96% 97%

η = 0.01, C = 0.1
FEDAVG 23 34 48 69 103 *

FEDUMF 14 21 28 39 55 99

η = 0.01, C = 0.5
FEDAVG 23 35 46 70 101 *

FEDUMF 17 24 32 47 66 110

η = 0.05, C = 0.1
FEDAVG 6 9 11 15 23 38

FEDUMF 5 6 7 10 15 25

η = 0.05, C = 0.5
FEDAVG 4 5 6 11 15 46

FEDUMF 4 5 6 9 15 29
‘*’ is used to denote that the model fails to achieve the target accuracy.

Subfigures (a) and (b) in Figures 3 and 4 plot the number of communication rounds
versus test accuracy for the two aforementioned scenarios. Subfigures (c) and (d) in
Figures 3 and 4 plot the number of communication rounds versus the corresponding
training loss. For a given learning rate, a greater C leads to a smaller gap between FEDUMF

and FEDAVG, because a larger C implies increasing the number of clients selected at each
round, which results in a reduction of the number of unselected clients whose gradient can
be leveraged. In addition, to illustrate the effect of the coefficient α, we also add two curves
for α = 0.1 and α = 0.5 as comparison. As α increases, performance becomes better, which
means that adding the full gradient is the best choice for the current setting. When the
learning rate increases from 0.1 to 0.5, a similar performance enhancement can be observed,
which indicates the wide applicable range of our algorithm.
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Figure 3. Server test accuracy and client-side training loss curve performance, IID partition and
η = 0.01 on MNIST. (a) Test accuracy. C = 0.1. (b) Test accuracy. C = 0.5. (c) Training loss. C = 0.1.
(d) Training loss. C = 0.5.

5.2.2. Non-IID Setting

Table 2 records the experimental results for the MNIST dataset with the non-IID
partition for the case of α = 1. Similar settings are adopted as in the IID case. We can see
that the performance of FEDUMF dominates FEDAVG for all cases as well.

Table 2. Accuracy on MNIST dataset, Non-IID partition.

Parameters, α = 1 Schemes
Accuracy

91% 92% 93% 94% 95% 96%

η = 0.01, C = 0.1
FEDAVG 24 34 44 71 92 141

FEDUMF 12 18 29 34 54 69

η = 0.01, C = 0.5
FEDAVG 22 33 44 64 92 135

FEDUMF 15 23 32 44 62 87

η = 0.05, C = 0.1
FEDAVG 7 8 11 14 22 31

FEDUMF 5 7 8 10 11 23

η = 0.05, C = 0.5
FEDAVG 7 8 11 14 19 26

FEDUMF 5 6 8 10 14 21
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Figure 4. Server test accuracy and client-side training loss curve performance, IID partition and
η = 0.05 on MNIST. (a) Test accuracy. C = 0.1. (b) Test accuracy. C = 0.5. (c) Training loss. C = 0.1.
(d) Training loss. C = 0.5.

Subfigures (a) and (b) in Figures 5 and 6 plot the number of communication rounds
versus test accuracy for the two aforementioned scenarios, while subfigures (c) and (d)
plot the corresponding training loss. We can still observe a clear performance boost for
FEDUMF compared to FEDAVG. Similarly, it can be seen that a larger C implies a smaller
gap between FEDUMF and FEDAVG, for the same reason as in the IID case.

5.3. CIFAR10 Result
5.3.1. IID Setting

We adopt the ResNet18 CNN model used in [34] with α = 1. Table 3 reports the
results. ‘*’ is used to denote that the model fails to achieve the target accuracy. In the top
two rows of the table, the learning rate is set as η = 0.05 and C is set to be 0.1 and 0.5,
respectively. In the bottom two rows of the table, we have η = 0.1 and C is also set to
be 0.1 and 0.5, respectively. Similar to the experiment on MNIST dataset, we notice that
FEDUMF outperforms FEDAVG significantly in all cases; e.g., the number of rounds to
reach an accuracy of 70% is 42–50% less for all cases. When C increases, we can see that
the benefits of our algorithm gradually diminish, which is because the chance of utilizing
gradient fusions decreases.
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Figure 5. Server test accuracy, and client-side training loss curve performance, non-IID partition and
η = 0.01 on MNIST. (a) Test accuracy. C = 0.1. (b) Test accuracy. C = 0.5. (c) Training loss. C = 0.1.
(d) Training loss. C = 0.5.
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Figure 6. Server test accuracy, and client-side training loss curve performance, non-IID partition and
η = 0.05 on MNIST. (a) Test accuracy. C = 0.1. (b) Test accuracy. C = 0.5. (c) Training loss. C = 0.1.
(d) Training loss. C = 0.5.
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Table 3. Accuracy on CIFAR10 dataset, IID partition.

Parameters, α = 1 Schemes
Accuracy

30% 40% 50% 55% 60% 65% 70%

η = 0.01, C = 0.1
FEDAVG 6 25 82 130 207 * *

FEDUMF 4 15 45 66 103 165 288

η = 0.01, C = 0.5
FEDAVG 4 25 78 128 200 * *

FEDUMF 3 17 52 85 129 206 *

η = 0.05, C = 0.1
FEDAVG 4 11 33 53 76 108 157

FEDUMF 4 8 21 31 45 64 90

η = 0.05, C = 0.5
FEDAVG 3 10 30 46 67 97 140

FEDUMF 3 9 22 34 49 70 101

Subfigures (a) and (b) in Figures 7 and 8 plot the number of communication rounds
versus the test accuracy for the two aforementioned scenarios. Subfigures (c) and (d)
in Figures 7 and 8 plot the number of communication rounds versus the corresponding
training loss for these two scenarios. We have also simulated α = 0.1 and α = 0.5 cases.
The results show a descending trend as α becomes smaller, similar to the MNIST dataset.
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Figure 7. Server test accuracy and client-side training loss curve performance, IID partition and
η = 0.01 on CIFAR. (a) Test accuracy. C = 0.1. (b) Test accuracy. C = 0.5. (c) Training loss. C = 0.1.
(d) Training loss. C = 0.5.
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Figure 8. Server test accuracy and client-side training loss curve performance, IID partition and
η = 0.05 on CIFAR. (a) Test accuracy. C = 0.1. (b) Test accuracy. C = 0.5. (c) Training loss. C = 0.1.
(d) Training loss. C = 0.5.

5.3.2. Non-IID Partition

Figures 9 and 10 and Table 4 show the results for CIFAR10 with the non-IID partition.
We set η = 0.01 and simulate the cases with C = 0.1 and C = 0.5. In addition, we set
η = 0.05 and simulate the cases with C = 0.1 and C = 0.5. It can be seen that FEDUMF still
achieves a faster convergence rate than FEDAVG.

Table 4. Accuracy on CIFAR10 dataset, non-IID partition.

Parameters, α = 0.5 Schemes
Accuracy

45% 50% 55% 60% 65% 70%

η = 0.01, C = 0.1
FEDAVG 74 129 224 * * *

FEDUMF 43 65 103 146 230 *

η = 0.01, C = 0.5
FEDAVG 69 124 194 * * *

FEDUMF 44 78 122 183 290 *

η = 0.05, C = 0.1
FEDAVG 31 43 65 95 129 191

FEDUMF 17 25 39 54 74 108

η = 0.05, C = 0.5
FEDAVG 24 37 57 82 116 167

FEDUMF 18 26 40 57 81 116
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Figure 9. Server test accuracy and client-side training loss curve performance. non-IID partition,
η = 0.01 on CIFAR10. (a) Test accuracy. C = 0.1. (b) Test accuracy. C = 0.5. (c) Training loss. C = 0.1.
(d) Training loss. C = 0.5.
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Figure 10. Server test accuracy and client-side training loss curve performance. non-IID partition,
η = 0.05 on CIFAR10. (a) Test accuracy. C = 0.1. (b) Test accuracy. C = 0.5. (c) Training loss. C = 0.1.
(d) Training loss. C = 0.5.
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In conclusion, by taking the advantage of previous unexploited client gradients,
the rate of convergence can be greatly expedited with FEDUMF compared to the vanilla
FEDAVG.

6. Conclusions

In this paper, we have proposed a federated learning algorithm—FEDUMF—that al-
lows unselected clients to train model update and fuses the resulting new model later when
the clients receive authorization to upload. This design can avoid wasting computation ca-
pacity and expedite the convergence rate of FL. A rigorous convergence analysis was given
for FEDUMF, which proved a faster convergence rate than vanilla FEDAVG. The simulation
performance demonstrated that FEDUMF performs better than the traditional FEDAVG,
where unselected clients are idle. It also shows satisfactory results in combination with the
SOTA algorithms.
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Appendix A. Additional Experiments

To better illustrate the generality of our algorithm, as well as its superiority, we
conducted a comparative experiment combining FedUmf with the state-of-the-art algo-
rithm (FedDC), compared with existing algorithms as baselines, for example, FedAvg,
FedProx [19], Scaffold [35], and FedDyn [36], FedDC [37].

We used the same experimental setup as some state-of-the-art algorithms and con-
ducted rigorous and extensive experimental demonstrations on five open-source datasets,
including MNIST [38], EMNIST-L(EMNIST) [39], CIFAR10, CIFAR100 [40], and synthetic
datasets [19]. For the experimental setting, we adopted the same training method, dataset,
and classification. In the IID case, the training set was randomly and equally distributed
among all specified clients. In the unbalanced distribution, we used a different lognormal
distribution sampling with a standard deviation of 0.3 to ensure that the total amount
was not equal under the random distribution of the sample. Under the non-IID case, we
adopted the Dirichlet method [41] to generate the label heterogeneous distribution, which
we set as non-IID. The representative parameters were set to 0.6. For synthetic datasets,
we still used the previous three different data allocation settings; we use Synthetic (0, 0),
Synthetic (0, 1), and Synthetic (1, 0) Three heterogeneous assignments were used as the
experimental setup.

We set the clients’ local training batch size to 50. The authorized number of training
rounds was 1 round, the learning rate was 0.1, and the learning rate decay was 0.998 per
round. We used the same setup as in the previous work in order to cross-check the literature
to compare the results. In the baseline algorithm settings, the parameters used by FedProx
are set to µ = 1e− 4, the parameters of FedDyn are set to α = 1e− 2, and the parameters of
FedDC are set to α = 1e− 2. For the synthetic dataset, we follow the [37] settings, setting
the total number of clients as 20 and the local training batch as 10.

As pointed out in the literature [37], we used a simple fully-connected network (FCN)
on MNIST and EMNIST. The slight difference is that although both contain only two fully
connected layers, MNIST uses 100 neurons per layer, while EMNIST uses 200 neurons. We
used a convolutional neural network (CNN) on CIFAR10 and CIFAR100. CNN consists of
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two convolutional layers with a kernel size of 5∗5. It is followed by two fully connected
layers, containing 384 and 192 parameters, respectively.

We observe from Tables A1 and A2 that our algorithm has strong gains as well as
generality; more detailed training curves are given in Figures A1–A5.

Table A1. The test accuracy (%) on IID, non-IID, and unbalanced data for partial client participation
(15% and 65%). “ACCURACY” is recorded as first accuracy.

Methods FedAvg FedProx SCAFFOLD FedDyn FedDC FedUmf

Setting 100 clients 15% participation

MNIST-iid 96.90 96.90 96.99 97.779 98.13 98.25
MNIST-unbalance 97.06 97.01 96.87 97.66 98.09 98.20
MNIST-noniid 96.45 96.44 96.85 97.56 98.09 98.21

EMNIST-iid 92.22 92.12 92.48 93.51 94.30 94.98
EMNIST-unbalance 92.41 92.31 92.01 93.48 94.15 94.78
EMNIST-noniid 91.36 91.26 92.06 93.36 94.13 94.16

CIFAR10-iid 74.12 74.24 74.1 81.90 81.89 82.90
CIFAR10-unbalance 74.14 74.25 72.30 81.77 81.92 82.45
CIFAR10-noniid 73.72 73.79 73.55 78.83 78.17 81.35

CIFAR100-iid 36.6 36.54 36.04 50.68 52.05 53.29
CIFAR100-unbalance 38.7 38.67 34.76 51.07 52.01 53.58
CIFAR100-noniid 35.92 36.15 35.88 43.08 43.43 51.11

Setting 100 clients 65% participation

MNIST-iid 96.98 96.96 97.06 98.01 98.34 98.40
MNIST-unbalance 97.20 97.20 96.88 97.90 98.33 98.34
MNIST-noniid 96.56 96.56 96.88 97.90 98.30 98.33

EMNIST-iid 92.35 92.46 92.45 93.75 94.86 95.25
EMNIST-unbalance 92.53 92.58 92.25 93.75 94.71 94.98
EMNIST-noniid 91.65 91.71 92.27 93.83 94.65 95.13

CIFAR10-iid 79.86 80.20 83.13 82.62 83.64 84.39
CIFAR10-unbalance 80.21 80.30 82.81 82.90 83.40 84.54
CIFAR10-noniid 78.34 78.41 81.73 81.92 82.42 82.89

CIFAR100-iid 36.69 36.42 47.30 47.10 52.53 54.48
CIFAR100-unbalance 38.12 38.10 48.94 47.22 52.92 54.23
CIFAR100-noniid 37.79 38.02 46.75 47.42 51.42 54.43
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Table A2. Different strategies are used to achieve the specified accuracy. Includes one IID setting,
one unbalanced setting, and the non-IID setting. The non-IID Dirichlet coefficient is set to 0.6. com
R� indicates the communication rounds that reach the target. Speed ⇑ indicates acceleration relative
to baseline.

Model

100 Clients 15% Participation 100 Clients 65% Participation

iid unbalance noniid iid unbalance noniid

com
R�

Speed
⇑

com
R� Speed⇑ com

R�
Speed

⇑
com
R�

Speed
⇑

com
R� Speed⇑ com

R�
Speed

⇑
MNIST, Target accuracy 95%

FedAvg 40 - 34 - 52 - 36 - 32 - 59 -
FedProx 40 1.00× 35 0.97× 52 1.00× 36 1.00× 31 1.03× 49 1.20×
SCAFFOLD 39 1.03× 42 0.81× 43 1.21× 35 1.03× 38 0.84× 39 1.51×
FedDyn 25 1.60× 25 1.36× 31 1.68× 11 3.27× 16 2.00× 16 3.69×
FedDC 22 1.82× 28 1.21× 24 2.17× 25 1.44× 14 2.29× 14 4.21×
FedUmf 11 3.64× 12 2.83× 14 3.71× 10 3.60× 10 3.20× 12 4.92×

EMNIST, Target accuracy 91%

FedAvg 67 - 68 - 87 - 62 - 57 - 83 -
FedProx 69 0.97× 68 1.00× 92 0.95× 62 1.00× 58 0.98× 81 1.02×
SCAFFOLD 64 1.05× 72 0.94× 74 1.18× 62 1.00× 68 0.84× 67 1.24×
FedDyn 39 1.72× 39 1.74× 55 1.58× 29 2.14× 28 2.04× 36 2.31×
FedDC 40 1.68× 34 2.00× 46 1.89× 23 2.70× 23 2.48× 28 2.96×
FedUmf 21 3.19× 24 2.83× 33 2.64× 19 3.26× 19 3.00× 21 3.95×

CIFAR10, Target accuracy 70%

FedAvg 197 - 180 - 225 - 50 - 50 - 74 -
FedProx 201 0.98× 179 1.01× 225 1.00× 50 1.00× 50 1.00× 74 1.00×
SCAFFOLD 213 0.92× 236 0.76× 225 1.0× 37 1.35× 51 0.98× 69 1.07×
FedDyn 70 2.81× 71 2.54× 125 1.8× 42 1.19× 50 1.00× 69 1.07×
FedDC 69 2.86× 72 2.50× 125 1.80× 31 1.61× 50 1.00× 50 1.48×
FedUmf 50 3.94× 51 3.53× 62 3.63× 28 1.79× 40 1.25× 46 1.61×

CIFAR100, Target accuracy 35%

FedAvg 198 - 165 - 203 - 213 - 149 - 175 -
FedProx 198 1.00× 165 1.00× 203 1.00× 213 1.0× 148 1.01× 176 0.99×
SCAFFOLD 207 0.96× 220 0.75× 205 0.99× 69 3.09× 70 2.13× 73 2.40×
FedDyn 75 2.64× 76 2.17× 109 1.86× 100 2.13× 99 1.51× 103 1.70×
FedDC 74 2.68× 72 2.29× 105 1.93× 77 2.77× 73 2.04× 78 2.24×
FedUmf 63 3.14× 65 2.54× 70 2.90× 40 5.33× 49 3.04× 50 3.50×
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Figure A1. Convergence and loss plots of FedUMF for different setting with 100 clients adopting 15%
and 65% client participating settings on MNIST. (a) Test Acc. IID 15%. (b) Test Acc. unbalance 15%.
(c) Test Acc. Drichlet 0.6 15%. (d) Train Loss. IID 15%. (e) Train Loss. Drichlet 0.3 15%. (f) Train Loss.
Drichlet 0.6 15%. (g) Test Acc. IID 65%. (h) Test Acc. unbalance 65%. (i) Test Acc. Drichlet 0.6 65%.
(j) Train Loss. IID 65%. (k) Train Loss. unbalance 65%. (l) Train Loss. Drichlet 0.6 65%.
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Figure A2. Convergence and loss plots of FedUMF for different setting with 100 clients adopting 15%
and 65% client participating settings on EMNIST. (a) Test Acc. IID 15%. (b) Test Acc. unbalance 15%.
(c) Test Acc. Drichlet 0.6 15%. (d) Train Loss. IID 15%. (e) Train Loss. unbalance 15%. (f) Train Loss.
Drichlet 0.6 15%. (g) Test Acc. IID 65%. (h) Test Acc. unbalance 65%. (i) Test Acc. Drichlet 0.6 65%.
(j) Train Loss. IID 65%. (k) Train Loss. unbalance 65%. (l) Train Loss. Drichlet 0.6 65%.
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Figure A3. Convergence and loss plots of FedUMF for different setting with 100 clients adopting 15%
and 65% client participating settings on CIFAR. (a) Test Acc. IID 15%. (b) Test Acc. unbalance 15%.
(c) Test Acc. Drichlet 0.6 15%. (d) Train Loss. IID 15%. (e) Train Loss. unbalance 15%. (f) Train Loss.
Drichlet 0.6 15%. (g) Test Acc. IID 65%. (h) Test Acc. unbalance 65%. (i) Test Acc. Drichlet 0.6 65%.
(j) Train Loss. IID 65%. (k) Train Loss. unbalance 65%. (l) Train Loss. Drichlet 0.6 65%.



Mathematics 2022, 10, 3751 28 of 31

0 50 100 150 200 250 300
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

FedAvg
FedProx
SCAFFOLD
FedDyn
FedDC
FedUMF

(a)

0 50 100 150 200 250 300
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

FedAvg
FedProx
SCAFFOLD
FedDyn
FedDC
FedUMF

(b)

0 50 100 150 200 250 300
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

FedAvg
FedProx
SCAFFOLD
FedDyn
FedDC
FedUMF

(c)

0 50 100 150 200 250 300
Communication Rounds

1

2

3

4

Tr
ai

n 
Lo

ss

FedAvg
FedProx
SCAFFOLD
FedDyn
FedDC
FedUMF

(d)

0 50 100 150 200 250 300
Communication Rounds

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Tr
ai

n 
Lo

ss

FedAvg
FedProx
SCAFFOLD
FedDyn
FedDC
FedUMF

(e)

0 50 100 150 200 250 300
Communication Rounds

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Tr
ai

n 
Lo

ss

FedAvg
FedProx
SCAFFOLD
FedDyn
FedDC
FedUMF

(f)

0 50 100 150 200 250 300
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

FedAvg
FedProx
SCAFFOLD
FedDyn
FedDC
FedUMF

(g)

0 50 100 150 200 250 300
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

FedAvg
FedProx
SCAFFOLD
FedDyn
FedDC
FedUMF

(h)

0 50 100 150 200 250 300
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

FedAvg
FedProx
SCAFFOLD
FedDyn
FedDC
FedUMF

(i)

0 50 100 150 200 250 300
Communication Rounds

1

2

3

4

Tr
ai

n 
Lo

ss

FedAvg
FedProx
SCAFFOLD
FedDyn
FedDC
FedUMF

(j)

0 50 100 150 200 250 300
Communication Rounds

1

2

3

4

Tr
ai

n 
Lo

ss

FedAvg
FedProx
SCAFFOLD
FedDyn
FedDC
FedUMF

(k)

0 50 100 150 200 250 300
Communication Rounds

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Tr
ai

n 
Lo

ss

FedAvg
FedProx
SCAFFOLD
FedDyn
FedDC
FedUMF

(l)

Figure A4. Convergence and loss plots of FedUMF for different setting with 100 clients adopting 15%
and 65% client participating settings on CIFAR100. (a) Test Acc. IID 15%. (b) Test Acc. unbalance
15%. (c) Test Acc. Drichlet 0.6 15%. (d) Train Loss. IID 15%. (e) Train Loss. unbalance 15%. (f) Train
Loss. Drichlet 0.6 15%. (g) Test Acc. IID 65%. (h) Test Acc. unbalance 65%. (i) Test Acc. Drichlet 0.6
65%. (j) Train Loss. IID 65%. (k) Train Loss. unbalance 65%. (l) Train Loss. Drichlet 0.6 65%.
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Figure A5. Convergence and loss plots on the synthetic dataset. There are three types of settings: the
homogeneous setting with (0, 0), and two heterogeneous settings with (1, 0) and (0, 1), respectively.
(a) Synthetic (0, 0) 15% Test Acc. (b) Synthetic (0, 1) 15% Test Acc. (c) Synthetic (1, 0) 15% Test Acc.
(d) Synthetic (0, 0) 15% Train Loss. (e) Synthetic (0, 1) 15% Train Loss. (f) Synthetic (1, 0) 15% Train
Loss. (g) Synthetic (0, 0) 65% Test Acc. (h) Synthetic (0, 1) 65% Test Acc. (i) Synthetic (1, 0) 65% Test
Acc. (j) Synthetic (0, 0) 65% Train Loss. (k) Synthetic (0, 1) 65% Train Loss. (l) Synthetic (1, 0) 65%
Train Loss.
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