A Fast Singular Boundary Method for the Acoustic Design Sensitivity Analysis of Arbitrary Two- and Three-Dimensional Structures
Abstract
:1. Introduction
2. Burton–Miller-Type Singular Boundary Method for Acoustic Sensitivity
2.1. Acoustic Sensitivity Analysis
2.2. Burton–Miller-Type Singular Boundary Method
3. Recursive Skeletonization Factorization
3.1. Interpolative Decomposition
3.2. Skeletonization
3.3. Recursive Skeletonization Factorization (RSF)
4. Numerical Examples
4.1. Example 1
4.2. Example 2
4.3. Example 3
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gohari, H.; Zarastvand, M.; Talebitooti, R.; Loghmani, A.; Omidpanah, M. Radiated sound control from a smart cylinder sub-jected to piezoelectric uncertainties based on sliding mode technique using self-adjusting boundary layer. Aerosp. Sci. Technol. 2020, 106, 106141. [Google Scholar] [CrossRef]
- Xu, M.; Du, J.; Wang, C.; Li, Y. Hybrid uncertainty propagation in structural-acoustic systems based on the polynomial chaos expansion and dimension-wise analysis. Comput. Methods Appl. Mech. Eng. 2017, 320, 198–217. [Google Scholar] [CrossRef]
- Rahmatnezhad, K.; Zarastvand, M.; Talebitooti, R. Mechanism study and power transmission feature of acoustically stimu-lated and thermally loaded composite shell structures with double curvature. Compos. Struct. 2021, 276, 114557. [Google Scholar] [CrossRef]
- Chen, Q.; Fei, Q.; Wu, S.; Li, Y. Uncertainty propagation of the energy flow in vibro-acoustic system with fuzzy parameters. Aerosp. Sci. Technol. 2019, 94, 105367. [Google Scholar] [CrossRef]
- Shojaei, A.; Mossaiby, F.; Zaccariotto, M.; Galvanetto, U. A local collocation method to construct Dirichlet-type absorbing boundary conditions for transient scalar wave propagation problems. Comput. Methods Appl. Mech. Eng. 2019, 356, 629–651. [Google Scholar] [CrossRef]
- Zarastvand, M.R.; Ghassabi, M.; Talebitooti, R. Prediction of acoustic wave transmission features of the multilayered plate constructions: A review. J. Sandw. Struct. Mater. 2022, 24, 218–293. [Google Scholar] [CrossRef]
- Shojaei, A.; Hermann, A.; Seleson, P.; Cyron, C. Dirichlet absorbing boundary conditions for classical and peridynamic diffu-sion-type models. Comput. Mech. 2020, 66, 773–793. [Google Scholar] [CrossRef]
- Scarpa, F. Parametric Sensitivity Analysis of Coupled Acoustic-Structural Systems. J. Vib. Acoust. 2000, 122, 109–115. [Google Scholar] [CrossRef]
- Dong, J.; Choi, K.K.; Wang, A.; Zhang, W.; Vlahopoulos, N. Parametric design sensitivity analysis of high-frequency structur-al-acoustic problems using energy finite element method. Int. J. Numer. Methods Eng. 2005, 62, 83–121. [Google Scholar] [CrossRef]
- Chai, Y.; Li, W.; Liu, Z. Analysis of transient wave propagation dynamics using the enriched finite element method with interpolation cover functions. Appl. Math. Comput. 2022, 412, 126564. [Google Scholar] [CrossRef]
- Koo, B.-U.; Ih, J.-G.; Lee, B.-C. Acoustic shape sensitivity analysis using the boundary integral equation. J. Acoust. Soc. Am. 1998, 104, 2851–2860. [Google Scholar] [CrossRef]
- Kane, J.H.; Mao, S.; Everstine, G.C. A boundary element formulation for acoustic shape sensitivity analysis. J. Acoust. Soc. Am. 1991, 90, 561–573. [Google Scholar] [CrossRef]
- Belytschko, T.; Lu, Y.; Gu, L. Element-free Galerkin methods. Int. J. Numer. Methods Eng. 1994, 37, 229–256. [Google Scholar] [CrossRef]
- Lu, Y.; Belytschko, T.; Gu, L. A new implementation of the element free Galerkin method. Comput. Methods Appl. Mech. Eng. 1994, 113, 397–414. [Google Scholar] [CrossRef]
- Shojaei, A.; Boroomand, B.; Soleimanifar, E. A meshless method for unbounded acoustic problems. J. Acoust. Soc. Am. 2016, 139, 2613–2623. [Google Scholar] [CrossRef] [PubMed]
- Mossaiby, F.; Shojaei, A.; Boroomand, B.; Zaccariotto, M.; Galvanetto, U. Local Dirichlet-type absorbing boundary conditions for transient elastic wave propagation problems. Comput. Methods Appl. Mech. Eng. 2020, 362, 112856. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, F. Localized Method of Fundamental Solutions for Acoustic Analysis Inside a Car Cavity with Sound-Absorbing Material. Adv. Appl. Math. Mech. 2022. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, F.; Cheng, S.; Wu, G. Localized MFS for three-dimensional acoustic inverse problems on complicated do-mains. Int. J. Mech. Syst. Dyn. 2022, 2, 143–152. [Google Scholar] [CrossRef]
- Wang, F.; Gu, Y.; Qu, W.; Zhang, C. Localized boundary knot method and its application to large-scale acoustic problems. Comput. Methods Appl. Mech. Eng. 2020, 361, 112729. [Google Scholar] [CrossRef]
- Fairweather, G.; Karageorghis, A. The method of fundamental solutions for elliptic boundary value problems. Adv. Comput. Math. 1998, 9, 69–95. [Google Scholar] [CrossRef]
- Poullikkas, A.; Karageorghis, A.; Georgiou, G. The method of fundamental solutions for three-dimensional elastostatics problems. Comput. Struct. 2002, 80, 365–370. [Google Scholar] [CrossRef]
- Chen, W. Singular boundary method: A novel, simple, meshfree, boundary collocation numerical method. Chin. J. Solid Mech. 2009, 30, 592–599. [Google Scholar]
- Burton, A.J.; Miller, G.F. The application of integral equation methods to the numerical solution of some exterior boundary-value problems. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 1971, 323, 201–210. [Google Scholar] [CrossRef]
- Fu, Z.-J.; Chen, W.; Gu, Y. Burton–Miller-type singular boundary method for acoustic radiation and scattering. J. Sound Vib. 2014, 333, 3776–3793. [Google Scholar] [CrossRef]
- Li, J.; Chen, W. A modified singular boundary method for three-dimensional high frequency acoustic wave problems. Appl. Math. Model. 2018, 54, 189–201. [Google Scholar] [CrossRef]
- Qu, W.; Zheng, C.; Zhang, Y.; Gu, Y.; Wang, F. A wideband fast multipole accelerated singular boundary method for three-dimensional acoustic problems. Comput. Struct. 2018, 206, 82–89. [Google Scholar] [CrossRef]
- Wei, X.; Luo, W. 2.5D singular boundary method for acoustic wave propagation. Appl. Math. Lett. 2021, 112, 106760. [Google Scholar] [CrossRef]
- Gu, Y.; Chen, W.; He, X. Singular boundary method for steady-state heat conduction in three dimensional general anisotropic media. Int. J. Heat Mass Transf. 2012, 55, 4837–4848. [Google Scholar] [CrossRef]
- Wei, X.; Sun, L.; Yin, S.; Chen, B. A boundary-only treatment by singular boundary method for two-dimensional inhomogeneous problems. Appl. Math. Model. 2018, 62, 338–351. [Google Scholar] [CrossRef]
- Li, W.; Chen, W. Band gap calculations of photonic crystals by singular boundary method. J. Comput. Appl. Math. 2017, 315, 273–286. [Google Scholar] [CrossRef]
- Cheng, A.H.; Hong, Y. An overview of the method of fundamental solutions—Solvability, uniqueness, convergence, and stability. Eng. Anal. Bound. Elem. 2020, 120, 118–152. [Google Scholar] [CrossRef]
- Karageorghis, A.; Johansson, B.; Lesnic, D. The method of fundamental solutions for the identification of a sound-soft obstacle in inverse acoustic scattering. Appl. Numer. Math. 2012, 62, 1767–1780. [Google Scholar] [CrossRef]
- Jin, B.; Zheng, Y. Boundary knot method for some inverse problems associated with the Helmholtz equation. Int. J. Numer. Methods Eng. 2005, 62, 1636–1651. [Google Scholar] [CrossRef]
- Zheng, C.; Matsumoto, T.; Takahashi, T.; Chen, H. A wideband fast multipole boundary element method for three dimensional acoustic shape sensitivity analysis based on direct differentiation method. Eng. Anal. Bound. Elem. 2012, 36, 361–371. [Google Scholar] [CrossRef]
- Chen, L.; Liu, L.; Zhao, W.; Chen, H. 2D Acoustic Design Sensitivity Analysis Based on Adjoint Variable Method Using Different Types of Boundary Elements. Acoust. Aust. 2016, 44, 343–357. [Google Scholar] [CrossRef]
- Xu, Y.; Zhao, W.; Chen, L.; Chen, H. Distribution Optimization for Acoustic Design of Porous Layer by the Boundary Element Method. Acoust. Aust. 2020, 48, 107–119. [Google Scholar] [CrossRef]
- Liu, Y.; Nishimura, N.; Yao, Z. A fast multipole accelerated method of fundamental solutions for potential problems. Eng. Anal. Bound. Elem. 2005, 29, 1016–1024. [Google Scholar] [CrossRef]
- Zheng, C.; Zhao, W.; Gao, H.; Du, L.; Zhang, Y.; Bi, C. Sensitivity analysis of acoustic eigenfrequencies by using a boundary element method. J. Acoust. Soc. Am. 2021, 149, 2027–2039. [Google Scholar] [CrossRef]
- Godinho, L.; Soares, D.; Santos, P. Efficient analysis of sound propagation in sonic crystals using an ACA–MFS approach. Eng. Anal. Bound. Elem. 2016, 69, 72–85. [Google Scholar] [CrossRef]
- Qu, W.; Chen, W.; Gu, Y. Fast multipole accelerated singular boundary method for the 3D Helmholtz equation in low frequency regime. Comput. Math. Appl. 2015, 70, 679–690. [Google Scholar] [CrossRef]
- Qu, W.; Chen, W.; Zheng, C. Diagonal form fast multipole singular boundary method applied to the solution of high-frequency acoustic radiation and scattering. Int. J. Numer. Methods Eng. 2017, 111, 803–815. [Google Scholar] [CrossRef]
- Wei, X.; Chen, B.; Chen, S.; Yin, S. An ACA-SBM for some 2D steady-state heat conduction problems. Eng. Anal. Bound. Elem. 2016, 71, 101–111. [Google Scholar] [CrossRef]
- Li, W.; Chen, W.; Fu, Z. Precorrected-FFT Accelerated Singular Boundary Method for Large-Scale Three-Dimensional Potential Problems. Commun. Comput. Phys. 2017, 22, 460–472. [Google Scholar] [CrossRef]
- Li, W. A fast singular boundary method for 3D Helmholtz equation. Comput. Math. Appl. 2019, 77, 525–535. [Google Scholar] [CrossRef]
- Li, W.; Wang, F. Precorrected-FFT Accelerated Singular Boundary Method for High-Frequency Acoustic Radiation and Scattering. Mathematics 2022, 10, 238. [Google Scholar] [CrossRef]
- Li, W.; Xu, S.; Shao, M. Simulation of two-dimensional steady-state heat conduction problems by a fast singular boundary method. Eng. Anal. Bound. Elem. 2019, 108, 149–157. [Google Scholar] [CrossRef]
- Li, W.; Wu, B. A fast direct singular boundary method for three-dimensional potential problems. Eng. Anal. Bound. Elem. 2022, 139, 132–136. [Google Scholar] [CrossRef]
- Cheng, S.; Wang, F.; Wu, G.; Zhang, C. A semi-analytical and boundary-type meshless method with adjoint variable formulation for acoustic design sensitivity analysis. Appl. Math. Lett. 2022, 131, 108068. [Google Scholar] [CrossRef]
- Cheng, S.; Wang, F.; Li, P.-W.; Qu, W. Singular boundary method for 2D and 3D acoustic design sensitivity analysis. Comput. Math. Appl. 2022, 119, 371–386. [Google Scholar] [CrossRef]
- Ho, K.L.; Greengard, L. A Fast Direct Solver for Structured Linear Systems by Recursive Skeletonization. SIAM J. Sci. Comput. 2012, 34, A2507–A2532. [Google Scholar] [CrossRef]
- Ho, K.L.; Ying, L. Hierarchical Interpolative Factorization for Elliptic Operators: Differential Equations. Commun. Pure Appl. Math. 2016, 69, 1415–1451. [Google Scholar] [CrossRef] [Green Version]
- Xing, W.; Wen, C.; Sun, L.; Chen, B. A simple accurate formula evaluating origin intensity factor in singular boundary method for two-dimensional potential problems with Dirichlet boundary. Eng. Anal. Bound. Elem. 2015, 58, 151–165. [Google Scholar]
- Li, J.; Chen, W.; Fu, Z.; Sun, L. Explicit empirical formula evaluating original intensity factors of singular boundary method for potential and Helmholtz problems. Eng. Anal. Bound. Elem. 2016, 73, 161–169. [Google Scholar] [CrossRef]
- Cheng, H.; Gimbutas, Z.; Martinsson, P.G.; Rokhlin, V. On the Compression of Low Rank Matrices. SIAM J. Sci. Comput. 2005, 26, 1389–1404. [Google Scholar] [CrossRef] [Green Version]
Boundary Nodes N | Condition Number | Memory (MB) | |
---|---|---|---|
Conventional BM-SBM | RSF-BM-SBM (ID: 1 × 107) | ||
100 | 22.94 | 0.16 | 0.32 |
2000 | 104.37 | 64.00 | 107.82 |
4000 | 1.50 × 107 | 256.00 | 239.01 |
7500 | 3.33 × 107 | 900.00 | 530.60 |
9000 | 2.79 × 108 | 1296.00 | 589.31 |
58,204 | —— | —— | 6772.86 |
112,722 | —— | —— | 14,541.76 |
150,082 | —— | —— | 27,069.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, L.; Cheng, S.; Sun, X.; Li, W.; Yang, C.; Wang, F. A Fast Singular Boundary Method for the Acoustic Design Sensitivity Analysis of Arbitrary Two- and Three-Dimensional Structures. Mathematics 2022, 10, 3817. https://doi.org/10.3390/math10203817
Lan L, Cheng S, Sun X, Li W, Yang C, Wang F. A Fast Singular Boundary Method for the Acoustic Design Sensitivity Analysis of Arbitrary Two- and Three-Dimensional Structures. Mathematics. 2022; 10(20):3817. https://doi.org/10.3390/math10203817
Chicago/Turabian StyleLan, Liyuan, Suifu Cheng, Xiatao Sun, Weiwei Li, Chao Yang, and Fajie Wang. 2022. "A Fast Singular Boundary Method for the Acoustic Design Sensitivity Analysis of Arbitrary Two- and Three-Dimensional Structures" Mathematics 10, no. 20: 3817. https://doi.org/10.3390/math10203817
APA StyleLan, L., Cheng, S., Sun, X., Li, W., Yang, C., & Wang, F. (2022). A Fast Singular Boundary Method for the Acoustic Design Sensitivity Analysis of Arbitrary Two- and Three-Dimensional Structures. Mathematics, 10(20), 3817. https://doi.org/10.3390/math10203817