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Abstract: This paper proposes a fast meshless scheme for acoustic sensitivity analysis by using the
Burton-Miller-type singular boundary method (BM-SBM) and recursive skeletonization factorization
(RSF). The Burton-Miller formulation was adopted to circumvent the fictitious frequency that occurs
in external acoustic analysis, and then the direct differentiation method was used to obtain the
sensitivity of sound pressure to design variables. More importantly, RSF was employed to solve the
resultant linear system obtained by the BM-SBM. RSF is a fast direct factorization technique based
on multilevel matrix compression, which allows fast factorization and application of the inverse
in solving dense matrices. Firstly, the BM-SBM is a boundary-type collocation method that is a
straightforward and accurate scheme owing to the use of the fundamental solution. Secondly, the
introduction of the fast solver can effectively reduce the requirement of computer memory and
increase the calculation scale compared to the conventional BM-SBM. Three numerical examples
including two- and three-dimensional geometries indicate the precision and efficiency of the proposed
fast numerical technique for acoustic design sensitivity analysis associated with large-scale and
complicated structures.

Keywords: recursive skeletonization factorization; Burton-Miller-type singular boundary method;
fast solver; fundamental solution; acoustic design sensitivity

MSC: 65N35; 76Q05

1. Introduction

In recent years, various methods [1-4] have been proposed to address acoustic prob-
lems, such as transient acoustic wave propagation in unbounded domains [5], acoustic trans-
mission across multilayered construction [6], wave diffusion in unbounded domains [7],
and acoustic sensitivity analysis [8]. For these problems, numerical simulation plays an
irreplaceable role. Common methods for the analysis of acoustic problems include the
finite element method (FEM) [9,10], the boundary element method (BEM) [11,12], and some
alternative meshless/mesh-free methods. Meshless methods can reduce or even eliminate
the tasks of grid generation and numerical integration. Therefore, many scholars and engi-
neers have developed numerous meshless approaches, such as the element-free Galerkin
method [13,14], the exponential basis function method [15,16], the localized semi-analytical
meshless collocation method [17-19], the method of fundamental solutions (MFS) [20,21],
and the singular boundary method (SBM) [22].

Among the above methods, the SBM is a semi-analytical and boundary-type meshless
approach using fundamental solutions, which is mathematically simple, numerically accu-
rate, and easy to program. Unlike the MFS, the SBM avoids the singularity of fundamental

Mathematics 2022, 10, 3817. https:/ /doi.org/10.3390/math10203817

https://www.mdpi.com/journal /mathematics


https://doi.org/10.3390/math10203817
https://doi.org/10.3390/math10203817
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-5975-5174
https://orcid.org/0000-0002-5162-1099
https://doi.org/10.3390/math10203817
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10203817?type=check_update&version=4

Mathematics 2022, 10, 3817

20f13

solutions by introducing the origin intensity factor (OIF), and circumvents the fictitious
boundary issue in the traditional MFS. To overcome the influence of the fictitious eigenfre-
quency issue, the BM-SBM was proposed to deal with sound scattering and radiation [23,24].
Up to now, this scheme has been successfully applied to acoustic simulations [25-27], heat
conduction analysis [28,29], electromagnetic problems [30], and other domains.

Similar to the traditional boundary-type methods [31-33], the resultant matrix of
the BM-SBM is a dense matrix. Assuming that the number of boundary nodes is N, the
storage process needs to occupy the memory of O(N?), and the operations of O(N?) are
required in the direct calculation. Therefore, insufficient memory and time-consuming
computation are often encountered when solving large-scale problems. In order to reduce
the calculation time and increase the calculation scale, some scholars have introduced
various fast algorithms. The fast multipole (FM) and adaptive cross approximation (ACA)
have been used to establish a series of new fast algorithms, such as the fast multipole BEM
(FM-BEM) [34-36], the fast multipole MFS (FMM-MEFS) [37], the ACA-BEM [38], and the
ACA-MEFS [39]. Moreover, the ACA-BEM has also been successfully applied to the solution
of acoustic sensitivity. The SBM, which draws inspiration from the boundary element
technique, has also been combined with fast algorithms to address large-scale problems.
Qu et al. [40,41] proposed the fast multipole accelerated SBM (FMM-SBM) to solve large-
scale Helmholtz problems, increasing the computational scale of boundary nodes to more
than one million. Wei et al. [42] developed an adaptive cross approximation SBM (ACA-
SBM) to simulate 2D steady-state heat transfer problems. Li et al. [43—45] developed a
precorrected-FFT SBM (PFFT-SBM) to address large-scale 3D Laplace problems, Helmholtz
problems, and high-frequency acoustic radiation and scattering problems. Li et al. [46,47]
proposed a fast SBM for solving the 2D steady-state heat conduction problem and large-
scale 3D potential problem.

This paper aims to present a fast formulation of the BM-SBM for analyzing the acoustic
sensitivity of 2D and 3D complex structures. In our earlier works [48,49], we built a BM-
SBM framework for acoustic design sensitivity analysis. Benchmark numerical examples
confirmed the accuracy and effectiveness of the method. However, the approach still faces
the challenge of addressing a large-scale structure. Recursive skeletonization factorization
(RSF) [50,51] is a fast and direct scheme based on multilevel matrix compression, and has
been successfully applied to various problems. In this paper, RSF is adopted to solve the
resultant system of the BM-SBM, and then a new fast method called the RSF-BM-SBM is
proposed. Compared with the original BM-SBM, the calculation time is greatly reduced,
and the computational scale is significantly increased.

The rest of this paper is organized as follows. In Section 2, we briefly introduce the
acoustic sensitivity formula of the BM-SBM and the empirical formula of the OIFs. In
Section 3, recursive skeletonization factorization is shown to solve the linear system formed
in the sensitivity analysis using the BM-SBM. In Section 4, three examples, including
classical models and a complex car model, are demonstrated to verify the accuracy and
efficiency of the proposed RSF-BM-5BM for acoustic sensitivity analysis. In Section 5, some
conclusions are drawn.

2. Burton-Miller-Type Singular Boundary Method for Acoustic Sensitivity
2.1. Acoustic Sensitivity Analysis

We consider an external sound field problem in two- and three-dimensional spaces,
which can be described by the following Helmholtz equation [48,49]:

V2u(x) + Ku(x) =0,x € Q (1)
with the following Dirichlet and Neumann boundary conditions:

u(x) =u(x),x €Iy, 2)
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du(x)

ony

= ipwdv(x),x € Ty, 3)

where V? represents the Laplace operator; k = w/c is the wave number; w is the angular
frequency; c is the speed of sound in the propagating medium; and 7%(x) and 7(x) are the
sound pressure and the normal vibration velocity on I';, and I'y, respectively.

Considering sound propagation in an infinite field, the sound pressure should satisfy
the Sommerfeld radiation condition at infinity:

e du(x)
rlggrz ( or

—iku(x)) = 0 )

where 4 is the spatial dimension (d = 2, 3) and r is the distance between point x and the
sound field’s center. The fundamental solution employed in the BM-SBM automatically
satisfies the aforementioned requirements; therefore, no additional handling is necessary in
the numerical computation.

For acoustic sensitivity analysis, the most important thing is to obtain the gradient
of the objective function with respect to the design variables. In many applications, the
objective function is sound pressure, and the design variables are size, wave number,
or frequency.

2.2. Burton—-Miller-Type Singular Boundary Method

Assuming the total number of boundary nodes is N, the BM-SBM formulas can be
given by [49]:

N
u(x)) = Y a;(G(xi,sj) + AE(x;,s))) + ajpm, x; € Ty, 5, €T ®)
j=1
i£]
ou(x; N
a;(1 i) _ Y. «j(F(xisj) + AH(xi,s))) + aiqpm, % €Ty, s €T ©)
i#]
G (x;, ;) 9G(xi, ;) PGl 5)
E(xi, S]) — T’ F(xi/ S]) = T/ H(xilsj) - W (7)

where A = ﬁ is a complex number [24]; «; is the unknown coefficient; and x; and s;
denote ith boundary node and jth source point, respectively. upp; and gpps are the OIFs,
which can be computed by the following formulas [52,53]:

aGO(xl/S )
Upm = Ujj — A Z g]zT] (8)
j=1 s
j#i
k2 aZGO(xz/ 5])
] =
%

where u;; and g;; are given in Refs. [24,48], and Gy (x;, s ) is the fundamental solution of

ln|x,

the Laplace equation. Go(x;,s;) = 731‘ for 2D problems; Go(x;,s;) = for

1
47[|x,-—s]-|

3D problems.
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Substituting the boundary conditions into Equations (5) and (6), the following system
of equations can be obtained:
Mx=b (10)

where My is the coefficient matrix, ap«q is the undetermined coefficient vector, and
by« is the known vector. The matrix M is generated from Burton-Miller-type formulation
(a combination of single- and double-layer potentials), and its condition number is related
to the number of nodes. Since the method is implemented by MATLAB programming,
the condition number of the matrix can be viewed by the routine cond(M). By solving
Equation (10), & can be obtained. After that, the following formulas can be employed to
determine the sound pressure and normal derivative at point x:

u(x) =Y aj(G(x,s;) + AE(x,sj)) (11)
=1
N

g(x) = gzxj(l-"(x,sj) + AH(x,s;)) (12)
]:

Based on the formulas mentioned above, the direct differentiation approach can be
used to compute the sensitivities:

o N T ric]-(G(?c,s]-) +/\E.(x,sj)) .
u(x) = ]; I —i—ocj(G(x,s]-) + AE(x,s;) + AE(x, sj)) ] (13)
Y [ &j(F(J.C,S]‘) —I—)LH(x,sj)) .
9(x) = ]; | ey (F(x,s]-) +AH(x,s;) + AH(x, s]-)> ] 14

where the superscript (') denotes the differentiation of a function. For the differentiation
calculation in the right hand sides of the above equations, one can refer to Ref. [48].

3. Recursive Skeletonization Factorization

Recursive skeleton factorization is a fast direct solver which allows fast factorization
and application of the inverse in the process of solving asymmetric dense matrices.

3.1. Interpolative Decomposition

The present paper adopts interpolative decomposition (ID) to compress the low-rank
blocks [46,54]. If the submatrix My, € R™*" of M is a matrix of rank 1 < min(m, n), then
there exist R, € R (=) such that M, = M,,;»R;. It should be pointed out that m and n
denote the dimension of the matrix M, which are set as m = n = N. Here, p and g represent
ordered sets of indices, g’ and g denote the skeleton and redundant indices, and they satisfy
the following relationships: 9 = ¢" U g and |q” |= h. If Ry satisfy M,y = M,,;n Ry, then

[MM' MW”} [_izq 1} - [O Mpq”} (1)

It should be pointed out that ID is commonly applied to cases with an error matrix E,
ie, My = M,,»R; +E, in which |[E||~ 0j,.1(M), and 0j,1(M) stands for the (1 + 1)th-
largest singular value of M. In this regard, ID can be employed to select i adaptively, so
that ||E||< ¢||[M]| for a given tolerance ¢ > 0. In this paper, ID is achieved by a random
sampling scheme [54], which only requires O (mn log(h) -+ h*n) operations.
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3.2. Skeletonization

In this subsection, ID is adopted to compress a matrix with low-rank off-diagonal
blocks. We consider a block matrix M with index sets p and g:

M M
M = { rr P‘i} (16)
Mg, My,

where M, and M, are low-rank submatrices. After applying ID to M with p = p' U p”,
we obtain

Mp/p/ Mp/p// Mp/q
M= MP” ' Mp// " Mp//q (17)
qu/ qu// My,
Let
I
Q,= |-R, I (18)
I
and then
T Np/p/ Np/p//
QPMQP ~ Np// p/ Mp// p// MP” q (19)
My My
where
_ T T
Np/p/ — Mp/p/ - RpMp// ,p/ - Mp/p// Rp + RpMp// p// Rp (20)
_ T _
Np/p// — Mp/p// - RpMp// p// 7 Np// p/ — Mp// p/ - Mp// p// Rp (21)

Supposing N,y is a nonsingular matrix, and N ,/,» can be decomposed into L,yD,, U,y
(Dp/ is a diagonal matrix; Lp/ and Up/ are unit triangular matrices), we obtain

Dy

T AT ~ —
SP’QPMQPTPI ~ Np”,p” Mp/’,q = YP(M) (22)
Mq,p” M,

where ¥)(-) is called the skeletonization operator, and

I Lt
s;, = 7NPN p/U;,lD;,l I I (23)
I I
1 _DIL-INL .,
Up’ 1 Dp/ Lp’ NP’P
Ty = I I (24)
I I
Np// p = Mp” P Np// P’N;’;’NP’P” (25)

Considering a collection of disjoint index sets C, in which M, .c and Mc . are low-rank
for any ¢ € C, ¥c(M) can be decomposed into

Ye(M) ~ UMV (26)

where c© denotes the complement of the index setc, U= [] Q.Sy,and V = [] Q,T,.
ceC ceC
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3.3. Recursive Skeletonization Factorization (RSF)

Let C; denote the collection of the skeleton index set at level j. We define the matrix at
each level j by using M;. It should be noted that My = M. Based on the skeletonization
mentioned above, we have

Mj+1 = IPCj (M]) ~ U;FM]V], U] = l—g QCSC/, V] = I—g QCTC/ (27)
cel; cel;

By using RSF, each U; and V; are products of unit triangular matrices, and can be
simply inverted and transposed. Then, according to the same principle, the factorization
can be written as

M; ~ U}[l - UgMVy - -V, (28)

Note that the inversion and transposition of matrices U; and V; can be easily ob-
tained, since they are products of unit triangular matrices. Therefore, M and M~! can be
calculated by

T T
~ [U-1 -1 vl -1
M ~ [UO } [UH} MV -V (29)
M '~V VMU - U (30)

After obtaining M~! from Equation (30), the unknown coefficient vector & in Equa-
tion (10) can be acquired by the following formula:

ax=M"b (31)

4. Numerical Examples

Here, two benchmark examples are firstly investigated to demonstrate the accuracy of
the RSF-BM-SBM, and then the feasibility and effectiveness of the method to solve large-
scale problems are verified by calculating the sensitivity of a vehicle model. Assuming that
the design variable f is divided into m equidistant nodes, the following relative-root-mean-
square error (RRMSE) [24] is adopted to evaluate numerical error:

\/ £ (i) — in(17)’
RRMSE = 1 _ (32)
L ite(t)’
j=1

where 1, and 1, denote the exact and numerical solutions of the acoustic sensitivity,
respectively. In the following numerical calculation, we have fixed the air density and the
sound speed to p = 1.2 kg/m> and ¢ = 341 m/s.

In acoustic sensitivity analysis, the gradient of the objective function with respect to

the design variables needs to be obtained. Taking the sound pressure p as the objective

function, it can be expressed as ag(tx) , where t represents the design variable.

4.1. Example 1

In the first example, we consider an infinite pulsating cylinder [49] with radius
a = 0.1 m, which can be reduced to a 2D problem as shown in Figure 1.
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A 4

(@) (b)
Figure 1. Infinite pulsating cylinder: (a) a pulsating cylinder; (b) simplified model.

Taking the wave number as the design variable, the analytical solution of the acoustic
sensitivity at the test point x; can be given by
Ipe(r) _ _—ipcvg 1 1 a1 1 1
= (51 (k) [rHl (kr)HJ (ka) + 5 H (kr) (HO (ka) — H} (ka))} (33)

where vy = 1 m/s(Neumann boundary condition); Hé and H% are first-kind zero-order
and one-order Hankel functions, respectively; and r is the distance between the test point
and the center of cylinder.

Firstly, we investigate the influence of compression accuracy on calculation results.
Figure 2 displays error curves of sound pressure sensitivity at the test point x; = (3,3)
under various values of ID (e = 1074, ¢ = 1077, and ¢ = 10719). In this calculation, the
range of the design variable is fixed at 5~6, and the traditional BM-SBM solutions are used
for an intuitive comparison. We can see from Figure 2 that the numerical error of the RSF-
BM-SBM increases with a decreasing value of ID. When ¢ = 10719, the calculation accuracy
is basically consistent with the traditional BM-SBM. Therefore, the higher compression
accuracy should be chosen to obtain accurate and reliable results.

IO[} E
10° . . ——BM-SBM
: —+—RSF-BM-SBM:1x10*
——BM-SBM o 4
N - 8 ~RSF-BM-SBM:110
~—#—RSF-BM-SBM:1x10 T 10
. w RSF-BM-SBM:1x10
ul - 8 “RSF-BM-SBM:1x107 I
S RSF-BM-SBM:1x107'" = 107¢ ]
710 ° 5 _--h
= a---b e a
] B ]
1074 107 K

1000 2000 3000 4000 5000 6000 7000 8000 9000
N

(a)

0 1000 2000 3000 4000 3000 6000 7000 8000 9000

N

(b)

Figure 2. The RRMSEs of the RSF-BM-SBM and conventional BM-SBM: (a) real part; (b) imagi-

nary part.
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In addition, Figure 3 compares the computation times of the RSF-BM-SBM and the
BM-SBM under different numbers of nodes. When the number of nodes is small, both the
BM-SBM and the RSE-BM-SBM consume less time. However, with an increasing number of
nodes, the RSF-BM-SBM requires significantly less time than the BM-SBM.

10

3

107 F

——BM-SBM
~—#—RSF-BM-SBM:1x10"*
- 8 ~RSF-BM-SBM:1x10 " ||

RSE-BM-SBM:1x10'*

CPU time(s)

0L

10

1000 2000 3000 4000 5000 6000 7000 8000 9000
N

Figure 3. Comparison of CPU computation times under different numbers of nodes.

4.2. Example 2
In this example, we consider a 3D sound radiation problem on a pulsating sphere [48]

with radius 4 = 0.1 m, as shown in Figure 4. This acoustic sensitivity analysis takes the
wave number k as the design variable. The analytical solution of the acoustic sensitivity is
dpe(r)  ipcvga?ekr=a)

- P [(1 — ika)? + ikr(1 — ika) +ika] (34)

Figure 4. Acoustic radiation from a pulsating sphere.

Table 1 lists the condition numbers and the GPU memories of the conventional BM-
SBM and the RSF-BM-SBM with various numbers of nodes. When the number of nodes
increases, the memory required by the traditional BM-SBM increases rapidly. Therefore,
when the number of nodes increases to a certain number, there will be a problem of
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insufficient memory. The RSF-BM-SBM requires less memory than the BM-SBM. The
traditional BM-SBM will fail when the number of boundary nodes exceeds 10,000, due
to the limitation of computer memory. In addition, it should be noted that the condition
number is better when using fewer nodes. As the number of nodes increases, the condition
number also increases.

Table 1. Memory and condition number of the RSF-BM-SBM and the BM-SBM with various numbers

of nodes.

Memory (MB)
Boundary Nodes N Condition Number Conventional RSF-BM-SBM
BM-SBM (ID: 1 x 107)
100 22.94 0.16 0.32
2000 104.37 64.00 107.82
4000 1.50 x 107 256.00 239.01
7500 3.33 x 107 900.00 530.60
9000 2.79 x 108 1296.00 589.31
58,204 S S 6772.86
112,722 S S 14,541.76
150,082 S S 27,069.25

4.3. Example 3

The last example considers a scaled-down vehicle model, as shown in Figure 5. This
is an acoustic scattering problem, and but there is no analytical solution for sound pres-
sure and sensitivity. Due to the complexity of the model, a large number of boundary
points need to be configured, and the traditional BM-SBM cannot be calculated, so the
acoustic sensitivity of the model is established by applying the RSF-BM-SBM involving
104,896 source points. In this model, a unit amplitude plane wave of wavenumber k = 4
propagates in the positive x-axis direction.

(b)

Figure 5. An irregular rigid vehicle model boundary point configuration (N = 104, 896): (a) vehicle
model; (b) boundary points.

Firstly, we chose a spherical surface with radius r = 1 m in order to test the accuracy
of the proposed method in solving the acoustic scattering of this complex structure. The
RSF-BM-SBM and COMSOL Multiphysics FEM solver were used to calculate the scattered
sound pressure levels on the surface. The FEM needs to set a perfectly matched layer when
solving this kind of problem. Numerical results in Figure 6 indicate the capability and
reliability of the proposed method for the 3D complex structure.



Mathematics 2022, 10, 3817

10 0f 13

x

/L\ View A

7.1E-03

6.7E-03

: 6.4E-03
6.1E-03

g 5.86-03
5.4E-03

5 5.1E-03
4.86-03

. 4.4€-03
4.1E-03

.. 3.8E-03
3.4E-03

3.1E-03

2.86-03

gy 2.4E-03
. 2.1E-03

! 1.8-03
: 1.56-03
1.1€-03

I 8.0E-04
4.7e-04

- 1.4€-04

(a) (b)

Figure 6. Distributions of the scattered sound pressure level on the investigated surface obtained by
using the FEM and RSF-BM-SBM: (a) FEM; (b) RSF-BM-SBM.

We intercepted a limited domain around the car body as shown in Figure 7, and the
distributions of sensitivity values with respect to the design variable k were computed
by the RSF-BM-SBM. Figure 8 shows the amplitudes of sound pressure sensitivity under
different wave numbers. Obvious differences can be observed, which provides a reference
for the analysis of acoustic sensitivity of complex structures.

Figure 7. Distributions of boundary source points and test points.

7.16-03 7.1E-03

6.76-03 6.7E-03

- 6.4E-03 g 6.4E-03
6.1E-03 6.1E-03

- 5.86-03 . 5.8E-03
5.4E-03 5.4E-03
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4.1E-03 4.1E-03

. 3.8E-03 ). 3.8E-03
3.4E-03 3.4E-03

3.1E-03 3.1E-03

2.86-03 2.8E-03

y 24603 2.4E-03
- 2.1E-03 : 2.1E-03
1.86-03 1.8E-03

0. 15603 O 1.56-03
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-05 -04 03 -0.2 -0.1 0 01 02 03 04 05 -05 -0.4 -0.3 -0.2 01 0 0.1 02 03 04 05 -0.5 -04 -03 -0.2 -0.1 0 0.1 02 03 04 05

a

C

Figure 8. Acoustic pressure sensitivities (|op/dk|)on {(x,y,z,)|—-05 <y < 0.5, =04 <z < 0.6,x =0}
cross section under different values of k: (a) k=3; (b) k=6; (c) k =9.

5. Conclusions

In this paper, a fast RSE-BM-SBM has been developed for the acoustic sensitivity
analysis of 2D and 3D domains. The present scheme is an accurate and semi-analytical
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method with the merits of being truly meshless, integration free, mathematically simple,
and easy to program. As a boundary-type method based on the fundamental solution, the
RSF-BM-SBM is straightforward for addressing exterior acoustic problems encountered
in acoustic design sensitivity analysis. In addition, the fictitious frequency issue has been
successfully overcome by using the Burton—-Miller formulation. Compared with previous
approaches [48,49], the proposed fast RSF-BM-SBM greatly reduces the computation time
and improves the computation scale by introducing the RSF technique, which makes
it possible for the method to analyze the acoustic sensitivity of high-dimensional and
large-scale structures.

Through investigating the acoustic scattering problem of an infinite pulsating cylinder,
the RSF-SM-SBM shows obvious advantages in solving large-scale problems. Under high
compression accuracy (ID: ¢ = 1071), the CPU computation time of the RSF-SM-SBM
is much shorter than that of the BM-SBM, while the calculation accuracy is basically the
same. Numerical results for sound radiation from a pulsating sphere demonstrate that
the traditional BM-SBM has a huge demand for memory, which limits its application in
large-scale problems. Conversely, the RSF-BM-SBM has significant advantages in reducing
computation time and computation cost. For the acoustic sensitivity analysis of a car-like
structure, the proposed scheme is also applicable, which indicates the ability and potential
of the fast method for 3D complex geometries.
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