Adaptive Fuzzy Control of a Cable-Driven Parallel Robot
Abstract
:1. Introduction
2. Dynamic Analysis of Cable Parallel Robot
3. Proposed Adaptive Fuzzy Controller
4. Lyapunov Stability Analysis
5. Structure of Proposed Adaptive Fuzzy Control System
6. Simulation Results
6.1. Case A
6.2. Case B
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jafari, M.; Mobayen, S.; Bayat, F.; Roth, H. A Nonsingular Terminal Sliding Algorithm for Swing and Stance Control of a Prosthetic Leg Robot. Appl. Math. Model. 2022, 113, 13–29. [Google Scholar] [CrossRef]
- Vu, M.T.; Alattas, K.A.; Bouteraa, Y.; Rahmani, R.; Fekih, A.; Mobayen, S.; Assawinchaichote, W. Optimized Fuzzy Enhanced Robust Control Design for a Stewart Parallel Robot. Mathematics 2022, 10, 1917. [Google Scholar] [CrossRef]
- Mobayen, S.; Alattas, K.A.; Assawinchaichote, W. Adaptive continuous barrier function terminal sliding mode control technique for disturbed robotic manipulator. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 4403–4412. [Google Scholar] [CrossRef]
- Rojsiraphisal, T.; Mobayen, S.; Asad, J.H.; Vu, M.T.; Chang, A.; Puangmalai, J. Fast terminal sliding control of underactuated robotic systems based on disturbance observer with experimental validation. Mathematics 2021, 9, 1935. [Google Scholar] [CrossRef]
- Li, D.; Fu, L.; Wang, L.; Fan, W.; Li, Y. Cable-Driven Parallel Robot in the Hardware-in-the-Loop Simulation for GNC System. In Advances in Guidance, Navigation and Control; Springer: Berlin/Heidelberg, Germany, 2022; pp. 3393–3403. [Google Scholar]
- Xiong, H.; Diao, X. A review of cable-driven rehabilitation devices. Disabil. Rehabil. Assist. Technol. 2020, 15, 885–897. [Google Scholar] [CrossRef]
- Ennaiem, F.; Chaker, A.; Sandoval, J.; Bennour, S.; Mlika, A.; Romdhane, L.; Zeghloul, S.; Laribi, M.A. Cable-Driven Parallel Robot Workspace Identification and Optimal Design Based on the Upper Limb Functional Rehabilitation. J. Bionic Eng. 2022, 19, 1–13. [Google Scholar] [CrossRef]
- Schneier, M.; Schneier, M.; Bostelman, R. Literature Review of Mobile Robots for Manufacturing; US Department of Commerce, National Institute of Standards and Technology: Gaithersburg, MD, USA, 2015. [Google Scholar]
- Gosselin, C. Parallel computational algorithms for the kinematics and dynamics of planar and spatial parallel manipulators. J. Dyn. Syst. Meas. Control Mar. 1996, 118, 22–28. [Google Scholar] [CrossRef]
- Martin, S.; Hillier, N. Characterisation of the Novint Falcon haptic device for application as a robot manipulator. In Proceedings of the Australasian Conference on Robotics and Automation (ACRA), Adelaide, Australia, 9–11 December 2019; pp. 291–292. [Google Scholar]
- Shen, W.; Norrie, D.H. Agent-based systems for intelligent manufacturing: A state-of-the-art survey. Knowl. Inf. Syst. 1999, 1, 129–156. [Google Scholar] [CrossRef]
- Merlet, J.-P. Wire-driven parallel robot: Open issues. In Romansy 19–Robot Design, Dynamics and Control; Springer: Berlin/Heidelberg, Germany, 2013; pp. 3–10. [Google Scholar]
- Du, J.; Bao, H.; Cui, C.; Yang, D. Dynamic analysis of cable-driven parallel manipulators with time-varying cable lengths. Finite Elem. Anal. Des. 2012, 48, 1392–1399. [Google Scholar] [CrossRef]
- Seriani, S.; Gallina, P. A storable tubular extendible member (STEM) parallel robot: Modelization and evaluation. Mech. Mach. Theory 2015, 90, 95–107. [Google Scholar] [CrossRef]
- Trevisani, A.; Gallina, P.; Williams, R.L. Cable-direct-driven robot (CDDR) with passive SCARA support: Theory and simulation. J. Intell. Robot. Syst. 2006, 46, 73–94. [Google Scholar] [CrossRef]
- Williams, R.L.; Gallina, P. Planar cable-direct-driven robots: Design for wrench exertion. J. Intell. Robot. Syst. 2002, 35, 203–219. [Google Scholar] [CrossRef]
- Williams Ii, R.L.; Gallina, P. Translational planar cable-direct-driven robots. J. Intell. Robot. Syst. 2003, 37, 69–96. [Google Scholar] [CrossRef]
- Gallina, P.; Rossi, A.; Williams, R.L. Planar Cable-Direct-Driven Robots: Part II—Dynamics and Control. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Virtual, 18–21 August 2021; pp. 1241–1247. [Google Scholar]
- Zhang, B.; Shang, W.; Cong, S.; Li, Z. Dual-Loop Dynamic Control of Cable-Driven Parallel Robots without Online Tension Distribution. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 6555–6568. [Google Scholar] [CrossRef]
- Jiesinuer, A.; Shangfeng, P.; Yang, C. Research on a 3-DOF Planar Cable-Driven Parallel Robot Based on Fuzzy Adaptive PD Computed Torque Control. J. Phys. Conf. Ser. 2021, 1986, 012124. [Google Scholar] [CrossRef]
- Barhaghtalab, M.H.; Bayani, H.; Nabaei, A.; Zarrabi, H.; Amiri, A. On the design of the robust neuro-adaptive controller for cable-driven parallel robots. Automatika 2016, 57, 724–735. [Google Scholar] [CrossRef] [Green Version]
- Jafarlou, F.; Peimani, M.; Lotfivand, N. Fractional order adaptive sliding-mode finite time control for cable-suspended parallel robots with unknown dynamics. Int. J. Dyn. Control 2022, 10, 1–11. [Google Scholar] [CrossRef]
- Cheng, H.H.; Lau, D. Ray-based cable and obstacle interference-free workspace for cable-driven parallel robots. Mech. Mach. Theory 2022, 172, 104782. [Google Scholar] [CrossRef]
- Jiang, X.; Barnett, E.; Gosselin, C. Periodic trajectory planning beyond the static workspace for 6-DOF cable-suspended parallel robots. IEEE Trans. Robot. 2018, 34, 1128–1140. [Google Scholar] [CrossRef]
- Gagliardini, L.; Gouttefarde, M.; Caro, S. Determination of a dynamic feasible workspace for cable-driven parallel robots. In Advances in Robot Kinematics 2016; Springer: Berlin/Heidelberg, Germany, 2018; pp. 361–370. [Google Scholar]
- Choi, H.; Piao, J.; Kim, E.-S.; Jung, J.; Choi, E.; Park, J.-O.; Kim, C.-S. Intuitive bilateral teleoperation of a cable-driven parallel robot controlled by a cable-driven parallel robot. Int. J. Control Autom. Syst. 2020, 18, 1792–1805. [Google Scholar] [CrossRef]
- Aref, M.M.; Taghirad, H.D. Geometrical workspace analysis of a cable-driven redundant parallel manipulator: KNTU CDRPM. In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 1958–1963. [Google Scholar]
- Gosselin, C.M. Parallel computational algorithms for the kinematics and dynamics of parallel manipulators. In Proceedings of the [1993] IEEE International Conference on Robotics and Automation, Atlanta, GA, USA, 2–6 May 1993; pp. 883–888. [Google Scholar]
- Nguyen, C.C.; Pooran, F.J. Dynamic analysis of a 6 DOF CKCM robot end-effector for dual-arm telerobot systems. Robot. Auton. Syst. 1989, 5, 377–394. [Google Scholar] [CrossRef]
- Wang, J.; Gosselin, C.M. A new approach for the dynamic analysis of parallel manipulators. Multibody Syst. Dyn. 1998, 2, 317–334. [Google Scholar] [CrossRef]
- Karbasizadeh, N.; Zarei, M.; Aflakian, A.; Masouleh, M.T.; Kalhor, A. Experimental dynamic identification and model feed-forward control of Novint Falcon haptic device. Mechatronics 2018, 51, 19–30. [Google Scholar] [CrossRef]
- Cohen, A.; Or, Y. Modeling the dynamics and control of rehabilitative exoskeleton with robotic crutches. Int. J. Adv. Robot. Syst. 2018, 15, 1729881418761137. [Google Scholar] [CrossRef] [Green Version]
- Khosravi, M.A.; Taghirad, H.D. Dynamic modeling and control of parallel robots with elastic cables: Singular perturbation approach. IEEE Trans. Robot. 2014, 30, 694–704. [Google Scholar] [CrossRef]
- González, J.A.; Barreiro, A.; Dormido, S. A practical approach to adaptive sliding mode control. Int. J. Control Autom. Syst. 2019, 17, 2452–2461. [Google Scholar] [CrossRef]
- Yan, S.; Gu, Z.; Park, J.H.; Xie, X. Synchronization of Delayed Fuzzy Neural Networks with Probabilistic Communication Delay and Its Application to Image Encryption. IEEE Trans. Fuzzy Syst. 2022. [Google Scholar] [CrossRef]
- Xie, X.; Yang, F.; Wan, L.; Xia, J.; Shi, K. Enhanced Local Stabilization of Constrained N-TS Fuzzy Systems With Lighter Computational Burden. IEEE Trans. Fuzzy Syst. 2022. [Google Scholar] [CrossRef]
- Shen, M.; Ma, Y.; Park, J.H.; Wang, Q.-G. Fuzzy tracking control for Markov jump systems with mismatched faults by iterative proportional-integral observers. IEEE Trans. Fuzzy Syst. 2020, 30, 542–554. [Google Scholar] [CrossRef]
- Aly, A.A.; The Vu, M.; El-Sousy, F.F.; Alotaibi, A.; Mousa, G.; Le, D.-N.; Mobayen, S. Fuzzy-Based Fixed-Time Nonsingular Tracker of Exoskeleton Robots for Disabilities Using Sliding Mode State Observer. Mathematics 2022, 10, 3147. [Google Scholar] [CrossRef]
- Cetin, O. Present Applications of Humanoid Robots and Fuzzy Control. In Toward Humanoid Robots: The Role of Fuzzy Sets; Springer: Berlin/Heidelberg, Germany, 2021; pp. 237–251. [Google Scholar]
- Stonier, A.A.; Murugesan, S.; Samikannu, R.; Krishnamoorthy, V.; Subburaj, S.K.; Chinnaraj, G.; Mani, G. Fuzzy logic control for solar PV fed modular multilevel inverter towards marine water pumping applications. IEEE Access 2021, 9, 88524–88534. [Google Scholar] [CrossRef]
- Zand, S.J.; Mobayen, S.; Gul, H.Z.; Molashahi, H.; Nasiri, M.; Fekih, A. Optimized Fuzzy Controller Based on Cuckoo Optimization Algorithm for Maximum Power-Point Tracking of Photovoltaic Systems. IEEE Access 2022, 10, 71699–71716. [Google Scholar] [CrossRef]
- Ta, M.C.; Nguyen, B.-M.; Vo-Duy, T. Fuzzy Logic Control for Motor Drive Performance Improvement in EV Applications. In Intelligent Control and Smart Energy Management; Springer: Berlin/Heidelberg, Germany, 2022; pp. 395–427. [Google Scholar]
- Sepestanaki, M.A.; Bahmani, H.; Ali, M.A.; Jalilvand, A.; Mobayen, S.; Fekih, A. Fuzzy Estimator Indirect Terminal Sliding Mode Control of Nonlinear Systems Based on Adaptive Continuous Barrier Function. IEEE Access 2022, 10, 34296–34305. [Google Scholar] [CrossRef]
- Li, J.-F.; Jahanshahi, H.; Kacar, S.; Chu, Y.-M.; Gómez-Aguilar, J.; Alotaibi, N.D.; Alharbi, K.H. On the variable-order fractional memristor oscillator: Data security applications and synchronization using a type-2 fuzzy disturbance observer-based robust control. Chaos Solitons Fractals 2021, 145, 110681. [Google Scholar] [CrossRef]
e′(t) | ||||||||
---|---|---|---|---|---|---|---|---|
e(t) | NB | NM | NS | Z | PS | PM | PB | |
NB | L | L | L | L | L | L | L | |
NM | H | L | L | L | L | L | H | |
NS | H | H | L | L | L | H | H | |
Z | H | H | H | L | H | H | H | |
PS | H | H | L | L | L | H | H | |
PM | H | L | L | L | L | L | H | |
PB | L | L | L | L | L | L | L |
Mass of Robot | m | 2.5 kg |
Moment of inertia of the robot | Iz | 0.03 kgm2 |
Moment of inertia of the robot | Im | (0.6 ± 0.1) kgm2 |
Radius of the actuator drum | r | 0.035 m |
Horizontal distance of Ai | xA | 2 ± 0.2 m |
Vertical distance of Ai | yA | 2 ± 0.2 m |
Radial distance of Bi | RB | 0.15 m |
Gain of the control term | Kv | 600 I4×4 |
Constant matrix | Λ | 10 I3×3 |
Constant matrix of the adaptation law | Γ | diag (25, 25, 5) × 10−2 |
Threshold width | є | diag (5, 5, 10) × 10−2 |
Convergence Time (s) | ||
Case B | Case A | |
6 | 6 | Adaptive fuzzy Control |
11 | 9 | Adaptive robust control |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vu, M.-T.; Hsia, K.-H.; El-Sousy, F.F.M.; Rojsiraphisal, T.; Rahmani, R.; Mobayen, S. Adaptive Fuzzy Control of a Cable-Driven Parallel Robot. Mathematics 2022, 10, 3826. https://doi.org/10.3390/math10203826
Vu M-T, Hsia K-H, El-Sousy FFM, Rojsiraphisal T, Rahmani R, Mobayen S. Adaptive Fuzzy Control of a Cable-Driven Parallel Robot. Mathematics. 2022; 10(20):3826. https://doi.org/10.3390/math10203826
Chicago/Turabian StyleVu, Mai-The, Kuo-Hsien Hsia, Fayez F. M. El-Sousy, Thaned Rojsiraphisal, Reza Rahmani, and Saleh Mobayen. 2022. "Adaptive Fuzzy Control of a Cable-Driven Parallel Robot" Mathematics 10, no. 20: 3826. https://doi.org/10.3390/math10203826
APA StyleVu, M. -T., Hsia, K. -H., El-Sousy, F. F. M., Rojsiraphisal, T., Rahmani, R., & Mobayen, S. (2022). Adaptive Fuzzy Control of a Cable-Driven Parallel Robot. Mathematics, 10(20), 3826. https://doi.org/10.3390/math10203826