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Abstract: The hydrogen stored in liquid organic hydrogen carriers (LOHCs) has an advantage of
safe and convenient hydrogen storage system. Dibenzyltoluene (DBT), due to its low flammability,
liquid nature and high hydrogen storage capacity, is an efficient LOHC system. It is imperative to
indicate the optimal reaction conditions to achieve the theoretical hydrogen storage density. Hence,
a Hydrogen Storage Prediction System empowered with Weighted Federated Machine Learning
(HSPS-WFML) is proposed in this study. The dataset were divided into three classes, i.e., low, medium
and high, and the performance of the proposed HSPS-WFML was investigated. The accuracy of the
medium class is higher (99.90%) than other classes. The accuracy of the low and high class is 96.50%
and 96.40%, respectively. Moreover, the overall accuracy and miss rate of the proposed HSPS-WFML
are 96.40% and 3.60%, respectively. Our proposed model is compared with existing studies related to
hydrogen storage prediction, and its accuracy is found in agreement with these studies. Therefore,
the proposed HSPS-WFML is an efficient model for hydrogen storage prediction.

Keywords: dibenzyltoluene; federated learning; hydrogen storage prediction; and HSPS-WFML

MSC: 68T07

1. Introduction

In order to accommodate the fluctuations of renewable energy sources (such as wind
and solar), the sustainable energy system of the future will require large-scale energy
storage methods. It is also essential to facilitate the transportation of energy from places
with high yielding capacity to places with high energy demand. Hydrogen is an ideal
candidate for this purpose [1–3], but its low volumetric energy density along with high
flammability pose major challenges to its technical implementation [4–6]. These challenges
can be overcome by the liquid organic hydrogen carrier (LOHC) system because the
hydrogen storage reaction follows covalent bonding of hydrogen molecules to organic
molecules and releases it as a product during the hydrogen production process on demand.
The LOHC system can use the existing infrastructure, which may ease storage and transport
between these locations [1,4,6].

Among various LOHCs, dibenzyltoluene (H0-DBT) has the potential to be used to
chemically store and release hydrogen. H0-DBT not only has a hydrogen storage capacity
of 6.2%, but the hydrogenated H0-DBT, i.e., perhydrodibenzyltoluene (H18-DBT), also has
a relatively high density of 0.91 kg·L−1. H0-DBT/H18-DBT has a wide range of liquid
temperature (−39 ◦C to 390 ◦C), and low flammability [1,4,7]. A reaction temperature above
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250 ◦C is essential for hydrogen production from H18-DBT due to the strong endothermal
nature of the dehydrogenation reaction to H0-DBT (Equation (1)) [1,4,7].

H18-DBT→ H0-DBT + 9H2 (1)

For hydrogen storage in H18-DBT, acetone is produced as an acceptor molecule
(Equation (2)), instead of evolving hydrogen [8,9], for the reaction temperature levels below
200 ◦C. In addition to being a valuable chemical, isopropanol can be used in direct fuel cell
systems to produce electricity (Equation (3)).

H18-DBT + 9C3H6O→ H0-DBT + 9C3H8O (2)

C3H8O + 0.5O2 → C3H6O + H2O (3)

The hydrogenation of H0-DBT has been extensively studied to indicate the optimal
reactions in order to achieve higher hydrogen storage capacities [10–12]. These studies
revealed that the temperature and pressure play a vital role in attaining the maximum
gravimetric hydrogen density of 6.2 wt %. Moreover, the selection of an appropriate catalyst
also enhances the reaction rate, and the stirrer is important for the homogeneous mixing
of the catalyst and H0-DBT. Researchers conducted a series of experiments to determine
the optimal conditions for maximum hydrogen storage. This process also consumes a lot
of time and energy. However, machine learning algorithms (MLAs) have evolved as an
emerging approach to predict hydrogen storage using existing data. Using this method,
researchers can predict hydrogen storage efficiently in a short period of time. Researchers
solve the fundamental equations explicitly as an alternative to classical simulations and
computational approaches using machine learning algorithms. Hence, machine learning
algorithms are becoming useful for reliable hydrogen storage predictions using past data
or generating reliable data.

MLAs were applied to a variety of materials in recent years, including thermo-
electric [13–16], perovskite solids [17–20], carbon-capture materials [21,22], electrocata-
lysts [23,24], oxides and inorganic materials [25–28], interphase precipitation in micro-
alloyed steels [29] and light-emitting transistors [30]. In H2-selective nanocomposite mem-
branes, MLAs have also been developed to predict C3H8, H2, CH4 and CO2 sorption [31].
Rezakazemi et al. compared the performance of H2-selective mixed matrix membranes
(MMM) under various operational conditions using an adaptive neuro-fuzzy inference sys-
tem (ANFIS) [32]. To predict the gas diffusion in binary filler nanocomposite membranes,
hybrid machine-learning models were applied [33]. For hydrogen storage prediction in
metal hydrides, Rahnama et al. used various regression algorithms such as linear regression,
neural network regression, Bayesian linear regression and boosted decision tree regression.
They reported that the hydrogen storage capacities increased with the increment in reaction
temperature, and boosted decision tree regression was found to be the optimal algorithm
yielding the highest coefficient of determination [34,35]. In a recent work, the extremely
randomized trees (ERT) algorithm was the most accurate for the prediction of gravimetric
and volumetric hydrogen capacities in metal–organic frameworks by Ahmed et al. [36].
However, hydrogen storage in H0-DBT is an efficient process, and it will be useful to predict
hydrogen storage in H0-DBT. Hydrogen storage prediction has not yet been reported, to
the best of our knowledge. Hence, hydrogen storage prediction in H0-DBT is investigated
in the current work, empowered with federated machine learning.

The federated learning framework has gained popularity in recent years because of
its high level of assurance in learning with a small amount of secured data. Instead of
integrating data from multiple databases or relying on outmoded discovery and replication
techniques, it allows for training a global model using a fundamental server while still
preserving information within the organization. A global model is constructed by collabo-
rating between organizations through this technique, known as federated learning (FL).
Using FL, we can develop a master model using training data from several sources rather
than directly transmitting data. Several machine learning algorithms have been developed
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for the prediction of hydrogen storage in various materials. Despite not sharing data,
FL performs well as it is a powerful machine learning (ML) approach. FL uses machine
learning models to enhance data privacy and security [37], particularly to ensure that the
FL process and data are secure.

This ensures that the privacy of the data is safeguarded in several locations. With the
use of FL, a number of businesses or academic institutions collaborate under the direction
of a central server or facility provider to solve an ML problem. The ML model is trained
by dispersing the situation among disparate central data centers, including hospitals or
other healthcare-related institutions, while preserving localized data. Throughout the
whole training process, data are kept private. As opposed to outdated DL, which delivered
secured data to a single server, modern DL maintains a common global architecture that
any institution can use. Then, each organization creates their model using the data. The
model’s gradient of inaccuracy is then used by each center to transmit data to the server.
The central server gathers all participant feedback, and, based on predetermined criteria,
changes the global model. The model evaluates the response’s quality using predetermined
criteria; as a result, it only includes useful information. In other words, centers reporting
poor or unusual results might not receive any attention. Until the global model is learned
in a single federated learning round, this technique is utilized. The complete design of
FL [38] is shown in Figure 1, but with significant changes.
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Edge computing refers to the process of physically bringing computer capacity closer
to the source of data, which is typically an Internet of Things (IoT) device or sensor. Edge
computing refers to the process of sending computational power to the network or device’s
edge, allowing for faster data processing, larger bandwidth and data sovereignty. Edge
computing reduces the need for large volumes of data to travel between servers, the cloud
and devices or edge locations to be processed by processing data at the network’s edge. This
is particularly true in modern applications such as data science and artificial intelligence.
The goal of edge computing [39] is to bring data sources and devices closer together, making
it time-efficient. Hence, in theory, the application and device operate more effectively and
efficiently as a result.

The transfer learning method develops a model for one problem which is used in
some way to solve another problem that is related to it. A deep learning approach called
transfer learning involves training a neural network model on a problem that is comparable
to the one being solved. Then, a new model is trained on the relevant problem using the
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layers of the previously learned model. Transfer learning reduces generalization error
while accelerating the training of neural network models. The training procedure might
start with the usage of weights in previously utilized layers, and when needed, the focus
can shift to the new challenge. Transfer learning is seen as a particular weight initialization
strategy in this setting.

In this study, hydrogen storage prediction is conducted in dibenzyltoluene. The
weighted federated machine learning is considered for this purpose, and the Hydrogen
Storage Prediction System empowered with Weighted Federated Machine Learning (HSPS-
WFML) is proposed. The performance of the proposed model is investigated in terms of
various statistical parameters such as accuracy, miss rate, recall, selectivity and precision.

2. Materials and Methods

Figure 2 depicts the representation of various layers of our proposed HSPS-WFML
model. Hydrogen storage predictions can be found using the wide range of datasets that
data sources produce. A range of data sources, including pressure sensors, temperature
detectors and other devices, are used to collect data. All of these devices are connected
to a data acquisition system to record the data. The recorded data are then forwarded to
the pre-processing layer. Data filtering and redundant data cleansing are two examples
of data pre-processing tasks. The three ANN techniques of Levenberg–Marquardt (LM),
Bayesian Regularization (BR) and Scaled Conjugate Gradient (SCG) are applied separately
in the training phase, and their performance is evaluated in terms of accuracy, precision,
sensitivity and selectivity. If the trained model is not satisfied, the model is retrained for
these three algorithms. However, if the trained model is satisfied, all three models are
combined in the next step to generate a final federated ML model. The trained federated
model performance is evaluated: if the model performs satisfactorily, the model is stored in
the cloud data storage; otherwise, the trained model is retrained.

The purpose of using each technique on the client side is to collect the dataset and
calculate the optimum weights to be used on the server side. As the dataset is divided
into three classes, i.e., low, medium and high, three different techniques were adopted
simultaneously. The weights from the trained model were then sent to the server side
where the FML was applied for the hydrogen storage prediction. The main advantage of
FML is data security, as well as the improved accuracy of the system.

In this study, an adaptive back propagation neural network (ABPNN) with three
layers—input layer, hidden layer and output layer—is utilized to forecast hydrogen storage.
This section describes the proposed HSPS-WFML mathematical model. The input features
are represented as [s1, s2, s3, . . . sn], and t, f and k show the element index in each layer.
The bias added in each layer is shown as c1 and c2. af,t represents the weights between
the input layer and the hidden layer, and the weights between the hidden layer and the
output layer are shown as bf,n. n, k and g are the total number of elements in the input
layer, hidden layer and output layer, respectively, which displays the dimensions of each
layer. The output at each neuron of the hidden layer can be calculated using Equation
(4) [40], in which wcli

f represents the output of the ith client cli of the f th hidden neuron.

wcli
f =

1

1 + e−(c1+∑k
t=1 (acli

t,f∗st))
where 1 ≤ f ≤ k (4)

Similarly, xcli
n represents the output at the output layer at the nth neuron in Equation

(5) [41].

xcli
n =

1

1 + e−(c2+∑k
f=1 (b

cli
f ,n∗wcli

f )
where 1 ≤ n ≤ g (5)

Fcli =
1
2 ∑n

(
βcli

n−xcli
n

)2
(6)

where Fcli represents the ith client error and βcli
n and xcli

n denote the expected and
anticipated outputs in Equation (6) [42], respectively.
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The variation in weight for the output layer is stated in Equation (7) [40,41] as

∆A ∝ − ∂Fcli

∂Acli (7)

∆B ∝ − ∂Fcli

∂Bcli (8)

∆bcli
f ,n ∝ − ∂Fcli

∂bcli
f ,n

(9)

∆acli
f ,t ∝ − ∂Fcli

∂acli
t, f

(10)
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After applying the chain rule method, the above equation can be written as

∆bcli
f ,n= − ζ

∂Fcli

∂xclin
× ∂xcli

n

∂bcli
f ,n

(11)

where ζ represents the constant. The value of weight altered can be derived by swapping
the values in Equation (8), as shown in Equation (9).

∆bcli
f ,n= ζ

(
βcli

n−xcli
n

)
×xcli

n

(
1− xcli

n

)
×wcli

f (12)

∆bcli
f ,n= ζλcli

nwcli
f (13)

where
λcli

n =
(

βcli
n−xcli

n

)
×xcli

n

(
1− xcli

n

)
(14)

For updating the weights between the input and hidden layers, we use the chain rule.

∆acli
t, f ∝ −

[
∑
n

∂Fcli

∂xclin
× ∂xcli

n

∂wcli
f

]
×

∂wcli
f

∂acli
t, f

∆acli
t, f= −ζ

[
∑
n

∂Fcli

∂xclin
× ∂xcli

n

∂wcli
f

]
×

∂wcli
f

∂acli
t, f

(15)

∆acli
t, f= ζ ∑

n

(
βcli

n−xcli
n

)
×xcli

n(1− x cli
n)×

(
bcli

f ,n

)
×wcli

f (1− w cli
f )× st (16)

∆acli
t, f= ζ

[
∑
n
λcli

n∗ bcli
f ,n

]
×wcli

f (1− w cli
f )× st (17)

After simplifying the equation, it may be expressed as follows:

∆acli
t, f= ζαcli

f ×st (18)

where

αcli
f =

[
∑
n
λcli

n∗ bcli
f ,n

]
×wcli

f (1− w cli
f

)
(19)

bcli
f ,n(d + 1) = bcli

f ,n(d) + γ ∆bcli
f ,n (20)

The weights between the output and hidden layers are adjusted using Equation (20) [41,42].
The weights between the input and hidden layers are updated using Equation (21) [40,42].

acli
t, f (d + 1) = acli

t, f (d) + γ ∆acli
t, f (21)

2.1. Proposed ith Client Machine Learning Algorithm

Table 1 shows the pseudo code of the proposed machine learning algorithm which
executes at the ith client.
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Table 1. Proposed ith client machine learning pseudo code.

Client Training Algorithm (d, Acli
IH , Bcli

HO)
1. Start
2. Local data splitting to small groups of size Cs
3. Initialize both layers i.e., input layer and hidden layer weights ((Acli

IH , Bcli
HO)), Fcli = 0 and

number of epochs d = 0
4. For every small group (Cs)

i. Apply the feedforward phase to
a. Calculate wcli

f using Equation (4)
b. Calculate estimated output (xcli

n)using Equation (5)
ii. Calculate the Error values (F cli

)
using Equation (6)

iii. weights updating phase
a. Calculate ∆bcli

f ,n using Equation (13)
b. Calculate ∆acli

f ,t using Equation (18)
c. Update the weights between hidden and output layers bcli

f ,n(d + 1) using
Equation (20)
d. Update the weights between input and hidden layers acli

f ,t(d + 1) using
Equation (21)

if stopping Criteria do not meet, then
go to step 4
else, go to step 5

5. Return optimum weights (Acli
IH , Bcli

HO) to Federated Server
Stop

2.2. Transfer of Weights

These weights are then transferred to the cloud or federated server. To secure this
system, these weights can be encrypted and then transmitted. In this study, encrypting
the weights is not used; rather, it is left as an additional entity that can be added as per
application requirements.

2.3. Federated Server

Each client is transmitting its optimum weight (Acli
IH , Bcli

HO) to the federated server. In
our case, each client is trained through one of the following ANN techniques: (1) Levenberg–
Marquardt (LM), (2) Bayesian Regularization (BR) or (3) Scaled Conjugate Gradient (SCG).
The optimized weights of the LM algorithm, BR algorithm and SCG algorithm are given in
Equations (22)–(24), respectively.

Acl1
IH(LM ) =

 a1
11 . . . a1

1cn
...

. . .
...

a1
rm1 · · · a1

rmcn


d1∗d2

(22)

Acl2
IH(BR) =

 a2
11 . . . a2

1cn
...

. . .
...

a1
rm1 · · · a2

rmcn


d3∗d4

(23)

Acl3
IH(SCG ) =

 a3
11 . . . a3

1cn
...

. . .
...

a3
rm1 · · · a3

rmcn


d5∗d6

(24)

The combined optimal weights for the federated server for the input layer to the
hidden layer can be stated using Equation (25), in which An

IH(FS) represents the aggregated
weights of all locally trained clients.

An
IH(FS) = Acl1

IH(LM) + Acl2
IH(BR) + Acl3(SCG) (25)
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This aggregation faces an issue of the addition property of the matrix, for the addition
of the matrix of the dimensions should be consistent. It is clear from Equation (25) that all
locally trained matrices cannot be added since they do not have the same dimensions. To
cope with this issue, the dimensions of all the concerned matrices should be the same. For
this, we concatenate a zero matrix with each matrix, where required.

For this, using Equation (26), we find the maximum length of rows from all locally
trained clients.
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BHO
cl1 (LM) = ቌ

b11
1 … b1cn

1

⋮ ⋱ ⋮
brm1

1 ⋯ brmcn
1

ቍ

d7*d8

  (35)

BHO
cl2 (BR )= ቌ

b11
2 … b1cn

2

⋮ ⋱ ⋮
brm1

2 ⋯ brmcn
2

ቍ

d9*d10

  (36)

Similarly, we find the maximum length of columns from all locally trained clients
using Equation (27).
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put layer and hidden layer. The locally trained clients are given different scaling factors 
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2.4. Optimal Weights of Hidden Output Layer 
Like the input layer to the hidden layer, the optimal weights of the hidden layer to 

the output layer for LM, BR and SCG algorithms can be stated using Equations (35)–(37).  

BHO
cl1 (LM) = ቌ

b11
1 … b1cn

1

⋮ ⋱ ⋮
brm1

1 ⋯ brmcn
1

ቍ

d7*d8

  (35)

BHO
cl2 (BR )= ቌ

b11
2 … b1cn

2

⋮ ⋱ ⋮
brm1

2 ⋯ brmcn
2

ቍ

d9*d10

  (36)

To embed the zero matrix with each optimum weight matrix, the following procedure
will be used. In Equations (28)–(30), ZMLM, ZMBR and ZMSCG represent the zero matrix
for LM, BR and SCG algorithms, respectively; this will generate a matrix of zeros. These
zero matrices will be horizontally concatenated with each locally trained model weight.

ZMIH−LM= zeros(Maxr−IH , Maxc−IH−d2) (28)

ZMIH−BR= zeros(Maxr−IH , Maxc−IH−d4) (29)

ZMIH−SCG= zeros(Maxr−IH , Maxc−IH−d6) (30)

The horizontal concatenation is given in Equations (31)–(33).

AIH−LM= horcat(ZM LM, aIH(LM)) (31)

AIH−BR= horcat(ZM BR, aIH(BR)) (32)

AIH−SCG= horcat(ZM SCG, aIH(SCG)) (33)

In Equations (31)–(33), AIH−LM, AIH−BR and AIH−SCG have the same dimensions;
thus, now these matrix can be aggregated to each other. To obtain the federated server or
global model, we use Equation (34).

AIH−FS= 2AIH−LM+AIH−BR+0.5AIH−SCG (34)

In Equation (34), AIH−FS represents the optimum federated weights between the input
layer and hidden layer. The locally trained clients are given different scaling factors based
on their performance.

2.4. Optimal Weights of Hidden Output Layer

Like the input layer to the hidden layer, the optimal weights of the hidden layer to the
output layer for LM, BR and SCG algorithms can be stated using Equations (35)–(37).

Bcl1
HO(LM) =

 b1
11 . . . b1

1cn
...

. . .
...

b1
rm1 · · · b1

rmcn


d7∗d8

(35)

Bcl2
HO(BR ) =

 b2
11 . . . b2

1cn
...

. . .
...

b2
rm1 · · · b2

rmcn


d9∗d10

(36)
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Bcl3
HO(SCG ) =

 b3
11 . . . b3

1cn
...

. . .
...

b3
rm1 · · · b3

rmcn


d11∗d12

(37)

Bcli
HO(FS) = Bcl1

HO(LM) + Bcl2
HO(BR) + Bcl3

HO(SCG) (38)

The federated weights can be obtained using Equation (38), but this fusion also faces
the same issue of dimension inconsistency. The same procedure will be applied to all client
weight matrices to make their dimensions consistent.

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 15 
 

 

BHO
cl3 (SCG ) = ቌ

b11
3 … b1cn

3

⋮ ⋱ ⋮
brm1

3 ⋯ brmcn
3

ቍ

d11*d12

 (37)

BHO
cli (FS) =BHO

cl1 (LM)+BHO
cl2 (BR)+BHO

cl3 (SCG)  (38)

The federated weights can be obtained using Equation (38), but this fusion also faces 
the same issue of dimension inconsistency. The same procedure will be applied to all cli-
ent weight matrices to make their dimensions consistent.  

Maxr-HO =max(d7,d9,d11)  (39)

Maxc-HO =max(d8,d10,d12)  (40)

ZMHO-LM =zeros(Maxr-HO, Maxc-HO-d2) (41)

ZMHO-BR =zeros(Maxr-HO, Maxc-HO-d4)  (42)

ZMHo-SCG =zeros(Maxr-HO, Maxc-HO-d6) (43)

BHO-LM =horcat(ZMHO-LM,bHO(LM)) (44)

BHO-BR =horcat(ZMHO-BR,bHO(BR)) (45)

BHO-SCG =horcat൫ZMHO-SCG,bHO(SCG)൯ (46)

BHO-FS =2BHO-LM+BHO-BR+0.5BHO-SCG (47)

In Equation (47), ܤுைିிௌ represents the optimum federated weights of the hidden 
layer to the output layer. The locally trained clients are given different scaling factors 
based on their performance. 

2.5. Proposed Weighted Federated Machine Learning Algorithm Pseudo Code 
Table 2 shows the pseudo code of the proposed weighted federated machine learning 

algorithm which executes on the server side. 

Table 2. Proposed weighted federated machine learning algorithm pseudo code. 

1. Start 
2. Initialize weights (AIH-FS, BHO-FS)  
3. For each cycle Do 

for each client Do 
[AIH

cli ,BHO
cli ] = Client (d, AIH

cli , BHO
cli ) 

End 
End 

4. Calculate BHO-FS using Equation (47)  
5. Calculate AIH-FS using Equation (34) 
6. Prediction of unknown data samples  

a. for I = No. of Samples 
i. Calculate wf

FS= 1

1+e-(c1+ ∑ ቀaclif,t*stቁ)k
t=1

         where 1≤f ≤k 

ii. Calculate xn
FS= 1

1+e
-(c2+ ∑ ቀbcli

f,n*wclifቁ
k
f=1

      where 1≤n ≤g 

iii. Calculate error FFS = 1
2

∑ ൫βn
FS  −  xn

FS൯
2g

n=1  
7. Stop  
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BHO−SCG= horcat(ZMHO−SCG, bHO(SCG)) (46)

BHO−FS = 2BHO−LM+BHO−BR+0.5BHO−SCG (47)

In Equation (47), BHO−FS represents the optimum federated weights of the hidden
layer to the output layer. The locally trained clients are given different scaling factors based
on their performance.

2.5. Proposed Weighted Federated Machine Learning Algorithm Pseudo Code

Table 2 shows the pseudo code of the proposed weighted federated machine learning
algorithm which executes on the server side.

Table 2. Proposed weighted federated machine learning algorithm pseudo code.

1. Start
2. Initialize weights (AIH−FS , BHO−FS)
3. For each cycle Do

for each client Do[
Acli

IH , Bcli
HO] = Client

(
d, Acli

IH , Bcli
HO)

End
End

4. Calculate BHO−FS using Equation (47)
5. Calculate AIH−FS using Equation (34)
6. Prediction of unknown data samples

a. for I = No. of Samples
i. Calculate wFS

f = 1

1+e−(c1+∑k
t=1 (acli

f ,t∗st ))
where 1 ≤ f ≤ k

ii. Calculate xFS
n = 1

1+e
−(c2+∑k

f=1 (bcli
f ,n∗wcli

f )
where 1 ≤ n ≤ g

iii. Calculate error FFS = 1
2

g
∑

n=1

(
βFS

n − xFS
n
)2

7. Stop

2.6. Edge Device

These global model weights are conveyed to a local network or edge devices. Then,
these edge devices can use this global model to detect storage activity.

Finally, the proposed HSPS-WFML imports the stored data to the cloud to predict the
hydrogen storage in the validation phase. The proposed HSPS-WFML model classifies
hydrogen storage as low class (up to 1 wt %), medium class (up to 2 wt %) and high class
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(above 2 wt %) depending on the hydrogen storage capacity. The residential sector utilizes
the low-class hydrogen storage. However, medium- and high-class hydrogen storage are
useful in industrial sectors and automobiles, respectively. The proposed HSPS-WFML
model helps to indicate the optimal reaction conditions for researchers.

3. Simulations and Results

The proposed federated learning-based model was simulated using MATLAB. The
total number of dataset instances was 151,388, adapted from a previous study [11]. The
dataset was randomly divided into training (70% of the samples, 105,971) and validation
(30% of the samples, 45,417). Various statistical parameters such as accuracy, misclassi-
fication rate (MCR), selectivity, recall, precision, false positive rate, false omission rate
(FOR), false discovery rate (FDR), F0.5 score and F1 score are considered for investigating
the performance of the proposed HSPS-WFML model [43–45].

Accuracy =

OSi
ISi

+ OSk
ISk

OSi
ISi

+
∑n

j=1(O Sj, j 6= i
ISj

+ OSk
ISk

+
∑n

l=1(O Sl, l 6= k
ISk

, where i/j/k/l = 1, 2, 3, . . . , n (48)

Miss rate =

∑n
l=1(O Sl, l 6= k

ISk

∑n
l=1(O Sl, l 6= k

ISk
+ OSi

ISi

, where i/k/l = 1, 2, 3, . . . , n (49)

True Positive Rate/Recall =
OSi
ISi

OSi
ISi

+
∑n

l=1(O Sl, l 6= k
ISk

, where i/k/l = 1, 2, 3, . . . , n (50)

True Negative Rate/Selectivity =

OSk
ISk

OSk
ISk

+
∑n

j=1(O Sj, j 6= i
ISj

, where j/k = 1, 2, 3, . . . , n (51)

Precision =

OSi
ISi

OSi
ISi

+
∑n

j=1(O Sj, j 6= i
ISj

, where i/j = 1, 2, 3, . . . , n (52)

False Omission Rate =

∑n
l=1(O Sl, l 6= k

ISk

∑n
l=1(O Sl, l 6= k

ISk
+ OSk

ISk

, where k/l = 1, 2, 3, . . . , n (53)

False Discovery Rate =

∑n
j=1(O Sj, j 6= i

ISj

OSi
ISi

+
∑n

j=1(O Sj, j 6= i
ISj

, where i/j = 1, 2, 3, . . . , n (54)

F0.5 Score = 1.25×Precision× Recall
0.25 × Precision + Recall

(55)

F1 Score = 2× Precision× Recall
Precision + Recall

(56)

4. Discussion
Performance Analysis of The Weighted Federated Learning

The performance of proposed HSPS-WFML model was investigated using various
statistical parameters, and the results are presented in Table 3. The performance of the
proposed HSPS-WFML model was evaluated for all three classes i.e., low, medium and
high. The proposed model yielded an accuracy of 99.90% for the medium class, whereas it
was 96.50% and 96.40% for the low and high classes. Moreover, MCR was slightly higher
(3.60%) for the high class in comparison to 3.50% for the low class. However, the MCR
was quite lower (0.10%) for the medium class when compared to the other two classes.
Furthermore, the sensitivity was 99.70% and 96.00% for the medium and high classes,
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whereas it was slightly lower (92.55%) for the low class. The selectivity was 98.20%, 99.99%
and 96.60% for low, medium and high classes, respectively, which is close for all the three
classes. The proposed model was found to be more precise for the medium class and
obtained a precision value of 99.99%. However, the proposed model was less precise for the
high class, showing a precision value of 92.90%. The FOR was calculated to be 3.15%, 0.16%
and 1.90% for low, medium and high classes, respectively. The FDR was 7.10% for the high
class, slightly higher than 4.40% for the low class, and the medium class was comparatively
low (0.001%). The proposed model obtained F0.5 Scores of 95.00%, 99.95% and 93.50% for
the low, medium and high classes, respectively. The F1 Scores for the proposed model
were 94.10%, 99.85% and 94.40% for the low, medium and high classes, respectively. These
results elucidate that the proposed HSPS-WFML model performance was higher for the
medium class in comparison to the other two classes.

Table 3. Comparison of statistical parameters for the three classes.

Low Class Medium Class High Class

Accuracy 96.50% 99.90% 96.40%
Misclassification Rate 3.50% 0.10% 3.60%

Recall/Sensitivity 92.55% 99.70% 96.00%
Selectivity 98.20% 99.99% 96.60%
Precision 95.60% 99.99% 92.90%

False Omission Rate 3.15% 0.16% 1.90%
False Discovery Rate 4.40% 0.001% 7.10%

F0.5 Score 95.00% 99.95% 93.50%
F1 Score 94.10% 99.85% 94.40%

Figure 3 depicts the class level accuracy, miss rate, sensitivity, selectivity and precision
of the proposed model.
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Moreover, the overall accuracy of the proposed model was 96.40% and the MCR was
3.60%, as depicted in Figure 4. In future work, the overall accuracy can be improved
further by increasing the accuracies of low and high classes. Different machine learning
algorithms such as support vector machine (SVM), Deep extreme machine learning and
particle swam optimization can be applied on the server side, which may help further
improve the accuracy of the low and high classes.



Mathematics 2022, 10, 3846 12 of 14

Mathematics 2022, 10, x FOR PEER REVIEW 12 of 15 
 

 

 
Figure 3. Statistical parameters for low, medium and high classes. 

 
Figure 4. The overall accuracy and MCR for hydrogen storage prediction using the proposed HSPS-
WFML model. 

Table 4 presents the comparison of the current work with the existing studies. It is 
observed from Table 4 that the accuracy of our proposed HSPS-WFML model is in agree-
ment with the previous studies. 
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Table 4 presents the comparison of the current work with the existing studies. It
is observed from Table 4 that the accuracy of our proposed HSPS-WFML model is in
agreement with the previous studies.

Table 4. Comparison of the current study with previous studies.

Studies Year Storage System Model Accuracy

Thornton et al. [46] 2017 Nanoporous materials Neural network 88.00%
Rahnama et al. [34] 2019 Metal hydrides Boosted decision tree regression 83.00%
Rahnama et al. [35] 2019 Metal hydrides Multi-class neural network 80.00%

Bucior et al. [47] 2019 Metal organic
frameworks

Multi-linear regression
with LASSO [48] 96.00%

Ahsan et al. Current work LOHC HSPS-WFML 96.40%

5. Conclusions

A hydrogen storage system using DBT as an LOHC is a promising technique. The
investigation of optimal reaction conditions consumes significant effort and time. However,
hydrogen storage prediction coupled with federated learning can play a vital role in
indicating the optimal reaction conditions. We proposed the HSPS-WFML model to predict
the hydrogen storage capacity in dibenzyltoluene. The accuracy of the proposed model
for low, medium and high classes is 96.50%, 99.90% and 96.40%, respectively. The overall
accuracy of the hydrogen storage prediction is 96.40%, and the misclassification rate is
3.60%. The results elucidate that the proposed HSPS-WFML model predicted the hydrogen
storage efficiently. Hence, the proposed HSPS-WFML model can be regarded as an accurate
model for hydrogen storage prediction.
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