Asymptotic Properties and Application of GSB Process: A Case Study of the COVID-19 Dynamics in Serbia
Abstract
:1. Introduction
2. Definition and Main Properties of the GSB Process
3. Stochastic Distribution and Asymptotic Properties of the GSB Process
- (i).
- When, time seriesandhave an asymptotically normal distribution, i.e., the following relations, when, are valid:
- (ii).
- When, time seriesandasymptotically vanish, i.e.,
4. Parameter Estimation Procedures
4.1. Estimates of Critical Value (c)
- (1)
- Applying Equation (14), determine as (the initial) estimate of , and according to Equation (15), determine estimate .
- (2)
- Based on Equations (16)–(18) and having obtained an estimate , compute, for each , the values:
- (3)
- Using the standard regression procedure, i.e., the correlation function when , obtain an estimate of in the form:
- (4)
- As in the first step, based on the estimate , the critical value can be estimated as a solution of the equation (concerning ):
4.2. Estimates of Mean
4.3. Estimates of Variance
5. Numerical Simulation and Application of the GSB Process
5.1. Numerical Simulations of GSB Estimators
- In the first estimation step, compute the sample correlation for a series of increments . If the condition is fulfilled, by using Equation (14), the estimator can be obtained.
- Compute statistics , given by Equation (24), as an estimate of the “hybrid” parameter The following variance estimator is then obtained:
- According to Equation (15) and previously obtained estimates and , compute the estimator .
- By using the estimate , for each , generate the (modeled) values of series and , by applying the iterative procedure:
- According to previously obtained series , and by using Equation (21), compute a (more efficient) variance estimator
- By applying the Gauss-Newton procedure, i.e., Equations (16)–(18), the estimate can be obtained.
- According to previously obtained estimates and , compute the estimator .
5.2. Application of the GSB Process: A Case Study of COVID-19 Dynamics
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Engle, R.F.; Smith, A.D. Stochastic Permanent Breaks. Rev. Econ. Stat. 1999, 81, 553–574. [Google Scholar] [CrossRef] [Green Version]
- Diebold, F.X.; Inoue, A. Long Memory and Regime Switching. J. Econom. 2001, 105, 131–159. [Google Scholar] [CrossRef] [Green Version]
- Gonzalo, J.; Martínez, O. Large Shocks vs. Small Shocks. (Or does size matter? May be so.). J. Econom. 2006, 135, 311–347. [Google Scholar] [CrossRef] [Green Version]
- Dendramis, Y.; Kapetanios, G.; Tzavalis, E. Level Shifts in Stock Returns Driven by Large Shocks. J. Empir. Financ. 2014, 29, 41–51. [Google Scholar] [CrossRef]
- Dendramis, Y.; Kapetanios, G.; Tzavalis, E. Shifts in Volatility Driven by Large Stock Market Shocks. J. Econom. Dynam. Control 2015, 55, 130–147. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.-N.; Fok, R.C.W. Stock Market Integration—an Application of the Stochastic Permanent Breaks Model. Appl. Econ. Lett. 2001, 8, 725–729. [Google Scholar] [CrossRef]
- González, A. A Smooth Permanent Surge Process. In SSE/EFI Working Paper Series in Economics and Finance No. 572; Stockholm School of Economics, The Economic Research Institute: Stockholm, UK, 2004. [Google Scholar]
- Kapetanios, G.; Tzavalis, E. Modeling Structural Breaks in Economic Relationships Using Large Shocks. J. Econom. Dynam. Control 2010, 34, 417–436. [Google Scholar] [CrossRef]
- Stojanović, V.; Popović, B.Č.; Popović, P. The Split-BREAK Model. Braz. J. Probab. Stat. 2011, 25, 44–63. [Google Scholar] [CrossRef]
- Stojanović, V.; Popović, B.Č.; Popović, P. Stochastic Analysis of GSB Process. Publ. Inst. Math. 2014, 95, 149–159. [Google Scholar] [CrossRef]
- Stojanović, V.; Popović, B.Č.; Popović, P. Model of General Split-BREAK Process. REVSTAT Stat. J. 2015, 13, 145–168. [Google Scholar]
- Stojanović, V.; Milovanović, G.V.; Jelić, G. Distributional Properties and Parameters Estimation of GSB Process: An Approach Based on Characteristic Functions. ALEA—Lat. Am. J. Probab. Math. Stat. 2016, 13, 835–861. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, H.; Zhang, H.; Zhao, K.; Gao, H.; Zhu, Q. Non-Stationary Turbulent Wind Field Simulation of Long-Span Bridges Using the Updated Non-Negative Matrix Factorization-Based Spectral Representation Method. Appl. Sci. 2019, 9, 5506. [Google Scholar] [CrossRef] [Green Version]
- Granero-Belinchón, C.; Roux, S.G.; Garnier, N.B. Information Theory for Non-Stationary Processes with Stationary Increments. Entropy 2019, 21, 1223. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Gelman, L.; Chu, F.; Ball, A. Novel Method for Vibration Sensor-Based Instantaneous Defect Frequency Estimation for Rolling Bearings Under Non-Stationary Conditions. Sensors 2020, 20, 5201. [Google Scholar] [CrossRef] [PubMed]
- Qu, C.; Li, J.; Yan, L.; Yan, P.; Cheng, F.; Lu, D. Non-Stationary Flood Frequency Analysis Using Cubic B-Spline-Based GAMLSS Model. Water 2020, 12, 1867. [Google Scholar] [CrossRef]
- Aguejdad, R. The Influence of the Calibration Interval on Simulating Non-Stationary Urban Growth Dynamic Using CA-Markov Model. Remote Sens. 2021, 13, 468. [Google Scholar] [CrossRef]
- Narr, C.F.; Chernyavskiy, P.; Collins, S.M. Partitioning Macroscale and Microscale Ecological Processes Using Covariate-Driven Non-Stationary Spatial Models. Ecol. Appl. 2022, 32, e02485. [Google Scholar] [CrossRef]
- Vaz, S.; Torres, D.F.M. A Discrete-Time Compartmental Epidemiological Model for COVID-19 with a Case Study for Portugal. Axioms 2021, 10, 314. [Google Scholar] [CrossRef]
- Alqahtani, R.T.; Musa, S.S.; Yusuf, A. Unravelling the Dynamics of the COVID-19 Pandemic with the Effect of Vaccination, Vertical Transmission and Hospitalization. Results Phys. 2022, 39, 105715. [Google Scholar] [CrossRef]
- Ghosh, S.; Volpert, V.; Banerjee, M. An Epidemic Model with Time Delay Determined by the Disease Duration. Mathematics 2022, 10, 2561. [Google Scholar] [CrossRef]
- Almeshal, A.M.; Almazrouee, A.I.; Alenizi, M.R.; Alhajeri, S.N. Forecasting the Spread of COVID-19 in Kuwait Using Compartmental and Logistic Regression Models. Appl. Sci. 2020, 10, 3402. [Google Scholar] [CrossRef]
- Rossi, C.; Bonanomi, A.; Oasi, O. Psychological Wellbeing during the COVID-19 Pandemic: The Influence of Personality Traits in the Italian Population. Int. J. Environ. Res. Public Health 2021, 18, 5862. [Google Scholar] [CrossRef]
- Ponkratov, V.; Kuznetsov, N.; Bashkirova, N.; Volkova, M.; Alimova, M.; Ivleva, M.; Vatutina, L.; Elyakova, I. Predictive Scenarios of the Russian Oil Industry; with a Discussion on Macro and Micro Dynamics of Open Innovation in the COVID-19 Pandemic. J. Open Innov. Technol. Mark. Complex. 2020, 6, 85. [Google Scholar] [CrossRef]
- Hassan, S.M.; Riveros Gavilanes, J.M. First to React Is the Last to Forgive: Evidence from the Stock Market Impact of COVID-19. J. Risk Financ. Manag. 2021, 14, 26. [Google Scholar] [CrossRef]
- Flora, J.; Khan, W.; Jin, J.; Jin, D.; Hussain, A.; Dajani, K.; Khan, B. Usefulness of Vaccine Adverse Event Reporting System for Machine-Learning Based Vaccine Research: A Case Study for COVID-19 Vaccines. Int. J. Mol. Sci. 2022, 23, 8235. [Google Scholar] [CrossRef] [PubMed]
- Kouamé, K.-M.; Mcheick, H. An Ontological Approach for Early Detection of Suspected COVID-19 among COPD Patients. Appl. Syst. Innov. 2021, 4, 21. [Google Scholar] [CrossRef]
- Sarría-Santamera, A.; Abdukadyrov, N.; Glushkova, N.; Russell Peck, D.; Colet, P.; Yeskendir, A.; Asúnsolo, A.; Ortega, M.A. Towards an Accurate Estimation of COVID-19 Cases in Kazakhstan: Back-Casting and Capture–Recapture Approaches. Medicina 2022, 58, 253. [Google Scholar] [CrossRef] [PubMed]
- Shim, E.; Choi, W.; Song, Y. Clinical Time Delay Distributions of COVID-19 in 2020–2022 in the Republic of Korea: Inferences from a Nationwide Database Analysis. J. Clin. Med. 2022, 11, 3269. [Google Scholar] [CrossRef]
- Jankhonkhan, J.; Sawangtong, W. Model Predictive Control of COVID-19 Pandemic with Social Isolation and Vaccination Policies in Thailand. Axioms 2021, 10, 274. [Google Scholar] [CrossRef]
- Queirós-Reis, L.; Gomes da Silva, P.; Gonçalves, J.; Brancale, A.; Bassetto, M.; Mesquita, J.R. SARS-CoV-2 Virus−Host Interaction: Currently Available Structures and Implications of Variant Emergence on Infectivity and Immune Response. Int. J. Mol. Sci. 2021, 22, 10836. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Xie, L.; Zhang, D.; Xu, X. Elucidation of Binding Features and Dissociation Pathways of Inhibitors and Modulators in SARS-CoV-2 Main Protease by Multiple Molecular Dynamics Simulations. Molecules 2022, 27, 6823. [Google Scholar] [CrossRef]
- Williams, D. Probability with Martingales; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Stojanović, V.; Popović, B.Č.; Milovanović, G.V. The Split-SV model. Comput. Statist. Data Anal. 2016, 100, 560–581. [Google Scholar] [CrossRef]
- Stojanović, V.; Kevkić, T.; Jelić, G. Application of the Homotopy Analysis Method in Approximation of Convolutions Stochastic Distributions. Univ. Politeh. Buchar. Sci. Bull. 2017, 79, 103–112. [Google Scholar]
- Fuller, W.A. Introduction to Statistical Time Series; John Wiley & Sons: New York, NY, USA, 1996. [Google Scholar]
- Popović, B.Č. The First Order Random Coefficient (RC) Autoregressive Time Series. Sci. Rev. 1992, 21–22, 131–136. [Google Scholar]
- Lawrence, A.J.; Lewis, P.A.W. Reversed Residuals in Autoregressive Time Series Analysis. J. Time Series Anal. 1992, 13, 253–266. [Google Scholar] [CrossRef]
- Serfling, R.J. Approximation Theorems of Mathematical Statistics, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2002. [Google Scholar]
- Hoeffding, W.; Robbins, H. The central limit theorem for dependent random variables. Duke Math. J. 1948, 15, 773–780. [Google Scholar] [CrossRef]
- Gross, L. Tests for normality. R Package Version 1.0-2. 2013. Available online: http://CRAN.R-project.org/package=nortest (accessed on 21 September 2022).
- Ruckdeschel, P.; Kohl, M.; Stabla, T.; Camphausen, F. S4 Classes for Distributions. R News 2006, 6, 2–6. Available online: https://CRAN.R-project.org/doc/Rnews (accessed on 21 September 2022).
- Sivakumar, B.; Deepthi, B. Complexity of COVID-19 Dynamics. Entropy 2022, 24, 50. [Google Scholar] [CrossRef]
- Beškovnik, B.; Zanne, M.; Golnar, M. Dynamic Changes in Port Logistics Caused by the COVID-19 Pandemic. J. Mar. Sci. Eng. 2022, 10, 1473. [Google Scholar] [CrossRef]
- Zakharov, V.; Balykina, Y.; Ilin, I.; Tick, A. Forecasting a New Type of Virus Spread: A Case Study of COVID-19 with Stochastic Parameters. Mathematics 2022, 10, 3725. [Google Scholar] [CrossRef]
Parameters Estimators | Statistics | Values | AD (p-Value) | W (p-Value) |
---|---|---|---|---|
Mean () | Min. | −24.9395 | 0.2886 (0.6161) | 0.0415 (0.6545) |
Mean | −0.0192 | |||
(MSEE) | (7.2791) | |||
Max. | 26.8691 | |||
Mean () | Min. | −20.0310 | 0.3363 (0.5056) | 0.0453 (0.5845) |
Mean | −0.00806 | |||
(MSEE) | (4.6055) | |||
Max. | 19.7987 | |||
Critical value () | Min. | 0.3849 | 1.0160 * (0.0112) | 0.1449 * (0.0278) |
Mean | 1.0904 | |||
(MSEE) | (0.5069) | |||
Max. | 1.6481 | |||
Critical value () | Min. | 0.5105 | 0.5647 (0.1435) | 0.1074 (0.0889) |
Mean | 0.9844 | |||
(MSEE) | (0.1587) | |||
Max. | 1.5033 | |||
Variance () | Min. | 0.8271 | 0.3144 (0.5446) | 0.0494 (0.5182) |
Mean | 0.9991 | |||
(MSEE) | (0.0630) | |||
Max. | 1.2182 | |||
Variance () | Min. | 0.8248 | 0.3247 (0.5231) | 0.0546 (0.4459) |
Mean | 1.0002 | |||
(MSEE) | (0.0631) | |||
Max. | 1.2118 | |||
Variance () | Min. | 0.7796 | 0.4018 (0.3584) | 0.0588 (0.3921) |
Mean | 1.0034 | |||
(MSEE) | (0.0842) | |||
Max. | 1.3340 | |||
Variance () | Min. | 0.1104 | 90.626 ** (<2.2 × 10−16) | 16.522 ** (7.37 × 10−10) |
Mean | 1.0937 | |||
(MSEE) | (1.4183) | |||
Max. | 1.6313 |
Statistics | Infected (A) | Vaccinated (B) |
---|---|---|
Mean | 3650.84 | 6336 |
Median | 2000 | 2960 |
Mode | 1366 | 45 |
Stand. deviation | 3650.84 | 1026.38 |
Minimum | 60 | 4 |
Maximum | 19,901 | 68,678 |
Kurtosis | 8.1189 | 8.2609 |
Skewness | 2.1418 | 2.7009 |
Statistics | Series A | Series B | ||||||
---|---|---|---|---|---|---|---|---|
Mean | 7.4041 | −0.0033 | 7.4111 | −0.0054 | 7.3544 | −0.0068 | 8.9349 | −0.1769 |
Median | 7.5976 | −0.0336 | 7.6061 | −0.0332 | 7.9940 | −0.0566 | 9.4269 | −0.1106 |
Stand. deviation | 1.3247 | 0.1948 | 1.3244 | 0.1912 | 2.0546 | 1.0036 | 1.7589 | 1.0238 |
Minimum | 4.0943 | −0.5990 | 4.0943 | −0.5990 | 1.3863 | −5.0554 | 1.0986 | −6.6837 |
Maximum | 9.8985 | 0.9125 | 9.8985 | 0.7390 | 11.1372 | 5.5147 | 11.3099 | 4.5209 |
Kurtosis | 2.3419 | 4.3332 | 2.3305 | 3.7214 | 2.4071 | 10.1761 | 3.6732 | 10.2208 |
Skewness | −0.5493 | 0.6114 | −0.5605 | 0.4518 | −0.4958 | 0.4290 | −1.0703 | −0.1625 |
Parameters | Series A | Series B |
---|---|---|
7.4041 | 7.3544 | |
7.4454 | 8.1409 | |
−0.0126 | −0.2577 | |
0.0127 | 0.3472 | |
0.0003 | 0.2118 | |
0.0953 | 0.4436 | |
0.0006 | 0.3477 | |
0.0413 | 1.0462 | |
0.0403 | 1.0634 | |
0.0375 | 1.0053 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jovanović, M.; Stojanović, V.; Kuk, K.; Popović, B.; Čisar, P. Asymptotic Properties and Application of GSB Process: A Case Study of the COVID-19 Dynamics in Serbia. Mathematics 2022, 10, 3849. https://doi.org/10.3390/math10203849
Jovanović M, Stojanović V, Kuk K, Popović B, Čisar P. Asymptotic Properties and Application of GSB Process: A Case Study of the COVID-19 Dynamics in Serbia. Mathematics. 2022; 10(20):3849. https://doi.org/10.3390/math10203849
Chicago/Turabian StyleJovanović, Mihailo, Vladica Stojanović, Kristijan Kuk, Brankica Popović, and Petar Čisar. 2022. "Asymptotic Properties and Application of GSB Process: A Case Study of the COVID-19 Dynamics in Serbia" Mathematics 10, no. 20: 3849. https://doi.org/10.3390/math10203849
APA StyleJovanović, M., Stojanović, V., Kuk, K., Popović, B., & Čisar, P. (2022). Asymptotic Properties and Application of GSB Process: A Case Study of the COVID-19 Dynamics in Serbia. Mathematics, 10(20), 3849. https://doi.org/10.3390/math10203849