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Abstract: This paper investigates the problem of constrained finite-time tracking control of Euler–
Lagrange systems subject to system uncertainties and external disturbances. Firstly, we introduce
a nonsingular, fast, constrained terminal sliding manifold (NFCTSM) that contains a time-varying
gain to deal with the output tracking error constraint. Therefore, the desired performance in steady-
state and transience such as ultimate-tracking-error bound, maximum overshoot, and convergence
speed are provided. Then, based on the proposed NFCTSM, a smooth adaptive finite-time control
is designed such that the tracking errors converge to an arbitrary small region around the origin
during a finite period of time. Moreover, the square of the upper bound of the lumped uncertainty is
estimated by the adaptive law in order not to use the discontinuous signum function. The efficacy
and usefulness of the proposed control methodology are demonstrated via simulation results and
comparison with relevant works.
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1. Introduction

The problem of control of dynamical systems described by Euler–Lagrange (EL)
equations has drawn a lot of consideration since they can be utilized to describe numerous
real-world engineering systems, including robot-manipulator systems, spacecraft attitude
systems, underwater-vehicle systems, and helicopter systems, to name but a few [1–9].
From a practical point of view, it is not straightforward to obtain accurate information of
the system, mainly because of the complex structure of the controlled system. Therefore,
unknown nonlinearity is generally inevitable and has a negative effect on the system’s
performance and even stability [10]. The problem becomes more difficult and challenging
as the unknown external disturbance is taken into account. To deal with these disturbing
factors and achieve the total disturbance attenuation objective, the sliding-mode control
(SMC) approach has attracted considerable attention [11]. The existing conventional SMC
laws [12,13] for EL systems utilize a linear sliding manifold and can only result in the
asymptotic stability of the closed-loop system, whereas accomplishing tracking control
with high accuracy within a finite period of time is of critical importance.

The study of finite-time, trajectory-tracking control for EL systems is usually cate-
gorized into two groups: (a) the geometric homogeneity approaches [14–16], and (b) the
finite-time Lyapunov stabilization methods [17,18] . The first method employs the notion
that a homogeneous system is finite-time stable provided that it is asymptotically stable
and possesses a negative degree of homogeneity. Because of the inherent uncertainty in the
system dynamics, the latter technique has received the attention of many scholars. In SMC,
to guarantee that the equilibrium point is finite-time stable, one way is to replace the linear
sliding surface with a nonlinear one. For instance, Ref. [19] presents an accurate trajectory
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tracking-technique with finite-time convergence for robot manipulators that uses nonsin-
gular terminal sliding-mode control (NTSMC), and finite-time Lyapunov stability theory,
which is able to deal with uncertain dynamics and unbounded disturbances. In [20], a new
type of finite-time sliding-mode controller has been presented for mechanical systems in
spite of system uncertainties and external disturbances. To provide the finite-time conver-
gence of trajectories of robot manipulators, an adaptive neural network control has been
proposed in [21] such that there is no need to use the joint acceleration signals. The problem
of the L2 leader–follower consensus of networked uncertain EL systems guaranteeing
finite-time convergence has been investigated in [22]. Using a hyperbolic tangent function,
an adaptive SMC-based control for EL systems subject to actuator saturation and external
disturbance has been proposed in [23]. By transforming the Lyapunov function into a
non-Lipschitz one, a novel adaptive control for robot manipulators has been developed
in [24] that ensures finite-time convergence of the system trajectories. Though the problem
of finite-time control for robot manipulators has been extensively visited, the behavior
of the system trajectory in transient and steady-state responses containing the maximum
permitted overshoot and that of the the maximum ultimate tracking error are not taken
into account simultaneously. Indeed, they cannot guarantee any specific performance in
the transient and steady-state response of the closed-loop system at the same time, which
is unacceptable in practice.

In practical applications, because of the safety and physical constraints, the system
output or states should be constrained. For instance, to prevent the end effectors of robot
manipulators from colliding with obstacles in the environment, they have to work within
a specific space. During the recent years, several approaches such as Barrier Lyapunov
Function (BLF) [25] and prescribed performance control (PPC) [26] have been employed
to achieve certain safety measures and performance requirements in the transient and
steady-state responses of EL systems. To provide output constraints of a robot manipulator,
a combination of adaptive neural network control and the BLF approach is utilized in [27].
According to the notion of the BLF and NTSMC, the authors of [28] presented a constrained
control framework guaranteeing finite-time convergence for the problem of trajectory
tracking of robot manipulators. In [29], a novel integral BLF control has been proposed to
avoid the violation of output constraints and to enhance the system stability.

Another effective method for satisfying constraints imposed on the system output
is the PPC [30]. This control approach has been extensively utilized in various applica-
tions, including active suspension systems [31], spacecraft attitude systems [32,33], marine
surface vessels [34], and power systems [35], to name but a few. The challenging issue of
fault-tolerant control with prescribed performance for uncertain EL systems in the presence
of output constraints has been studied in [36]. For EL systems with uncertain dynamics,
a combination of finite-time SMC and PPC has been utilized in [37] to develop a constrained
control that guarantees the prescribed performance of the tracking error as well as the
practically finite-time stability of the full states. The authors in [38] have employed a
performance function and a mapping to transform the constrained robot manipulator to the
unconstrained one. Then, an adaptive neural control with prespecified performance in both
transient and steady-state phases is developed. By virtue of a simple error transformation,
an SMC-based constrained attitude control with finite-time convergence for spacecraft has
been presented in [39] such that the input saturation and output constraint are satisfied si-
multaneously. Using the SMC strategy, a control scheme based on the disturbance observer
for robot manipulators has been developed in [40], such that the favorable performance of
the trajectory tracking error in the transient and steady-state phases are ensured. In [41],
to meet the constraints and limitations of the system output as well as the control input
of an uncertain robot manipulator, an effective combination of PPC and BLF has been
used to achieve tracking control with high accuracy. Despite its satisfactory performance,
the design procedure of the above approaches is not straightforward. The main reason is
that they are composed of partial derivative terms and complicated functions that result
from stabilizing the transformed tracking error.
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Motivated by enhancing the existing results and streamlining practical implementa-
tions, this work studies the challenging issue of finite-time constrained trajectory tracking
control for EL systems subject to the system uncertainty and external disturbance. The prin-
cipal contributions of this work can be briefly expressed as follows.

• A new constrained sliding surface with finite-time convergence is proposed that
possesses two important properties. (1) Compared to the existing nonsingular finite-
time SMC controls for the EL systems [42,43], the proposed control strategy has no
need for a piecewise continuous function, and a non-singular property is directly
achieved that streamlines the stability analysis. (2) Unlike the existing constrained
controls for the EL systems using the PPC concept [31–41], the constraint on the system
output is considered into the sliding surface as a time-varying gain.

• To deal with the undesired chattering phenomenon as a result of discontinuous sign
function, the upper bound of the square of the lumped uncertainty is estimated by the
adaptive scheme. Therefore, the discontinuous sign function is effectively removed
and a smooth control is achieved.

2. Problem Formulation and Preliminaries
2.1. Dynamics

Consider an n-degree-of-freedom (n-DOF) EL system as

M(q)q̈ + C(q, q̇)q̇ + G(q) = u + D, (1)

in the presence of position tracking error constraint expressed as

− ρi(t) < x1i(t) < ρi(t), (2)

where q, q̇, q̈ ∈ Rn represent the vectors of position, velocity, and acceleration, respectively;
x1 = q− qd denotes the position tracking error with qd as the desired trajectory; ρi(t) shows
the time-varying constraint, which will be defined later; M(q) ∈ Rn×n is the symmetric
positive-definite inertia matrix; C(q, q̇) ∈ Rn×n denotes the Coriolis matrix; G(q) ∈ Rn

is the vector of gravitational forces; D(t) ∈ Rn is the bounded lumped uncertainty as a
result of the system uncertainty and external disturbance; and u(t) ∈ Rn is the joint control
torque vector. Please note that arguments of functions may be dropped hereafter provided
that no confusion happens.

Defining x1 = q − qd and x2 = q̇ − q̇d, the original dynamical system (1) can be
rewritten as

ẋ1 = x2, (3)

ẋ2 = f (x1, x2)− q̈d + τd + τ, (4)

where f (x1, x2) = −M−1(x1 + qd)
(
C(x1 + qd, x2 + q̇d)(x2 + q̇d) + G(x1 + qd)

)
, τ = M−1u,

τd = M−1D, and ‖τd‖2 ≤ θ, with θ being a positive constant.

2.2. Preliminaries

Lemma 1. For any given scalars α1 > 0, α2 > 0, 0 < β < 1, a Lyapunov condition for finite-
time stability is provided as V̇(t) ≤ −α1V(t)− α2Vβ(t), for which the convergence time can be

calculated as Ts = t0 +
1

α1(1−β)
ln α1V1−β(t0)+α2

α2
[1].

Lemma 2. Consider the nonlinear system ẋ = f (x) [44]. If there exists a continuous positive-
definite function V(t), real numbers α1 > 0, α2 > 0, 0 < β < 1, and 0 < η < ∞, such that
V̇(x) ≤ −α1V(x) − α2Vβ(x) + η, then the trajectories of the nonlinear system ẋ = f (x) is
practical finite-time stable and the convergence region can be described as{

lim
t→Tr
|V(x) ≤ min

{ η

(1− θ0)α1,
,
( η

(1− θ0)α2

) 1
β
}}
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where θ0 satisfies 0 < θ0 < 1. The convergence time is given by

Tr ≤ max
{

t0 +
1

θ0α1(1− β)
ln

θ0α1V1−β(t0) + α2

α2
, t0 +

1
α1(1− β)

ln
α1V1−β(t0) + θ0α2

θ0α2

}
.

Definition 1. The function ρ(t) is called the finite-time presribed performance function (FTPPF)
provided that [45] (1) ρ(t) > 0, (2) ρ̇(t) ≤ 0, (3) limt→Tf ρ(t) = ρT > 0, and (4) ρ(t) = ρT for
any t ≥ Tf , where ρT and Tf are positive scalar and convergence time, respectively, which can be
selected as arbitrarily small.

Based on this performance function, any desired performance characteristics of the
tracking error, including convergence rate, maximum allowable overshoot, and maxi-
mum steady-state error bound can be achieved a priori. The function below having the
aforementioned properties in Definition 1 could be defined as a potential FTPPF [32]

ρ(t) =

{(
ρκ

0 − κλt
) 1

κ + ρT , 0 ≤ t < Tf ,
ρT , t ≥ Tf .

(5)

in which Tf and ρT denote the settling time and maximum steady-state error value, respec-
tively. The real numbers ρ0, κ, and λ are suitably selected based on Tf , ρT , and the initial

value of the performance function. Moreover, ρ0 = ρ(0)− ρT , λ =
ρκ

0
κTf

, and κ = a1
a2
∈ (0, 1),

where a1 and a2 denote positive odd and even integers, respectively.

2.3. Control Objective

The main control objective of the present work is to develop a constrained finite-time
control framework for the nonlinear EL system described by Equations (3) and (4) such that
the time-varying reference trajectory is tracked by the output. More specifically, the control
objectives could be described as follows:

1. The system output follows the reference trajectory within a finite time.
2. The prescribed performance of the system output is obtained via a performance

function in which neither complicated terms nor tedious control parameters regulation
are required.

3. Main Results

To achieve the aforementioned control objectives, an adaptive smooth singularity-free
control scheme with finite-time convergence is developed. To this end, a nonsingular fast
constrained terminal sliding manifold (NFCTSM) is introduced. A special property of the
proposed NFCTSM is that it contains a time-varying gain to deal with the output tracking
error constraint. Based on the proposed NFCTSM, a smooth singularity-free adaptive finite-
time control is designed such that the tracking errors converge to an arbitrary small region
around zero in finite time. Moreover, the square of the upper bound of the total uncertainty
is estimated by the adaptive law in order not to use the discontinuous signum function.

3.1. Nonsingular Fast Constrained Terminal Sliding Manifold (NFCTSM)

Let us define a NFCTSM as S(t) = [S1(t), . . . , Sn(t)]T ∈ Rn with

Si(t) = x1i(t) +
(

1
k2i

) 1
γ1 bx2i(t) + (k1i + ξi(t))x1i(t)e

1
γ1 , (6)

where K1 = diag(k11, . . . , k1n), K2 = diag(k21, . . . , k2n) are positive-definite matrices,

0 < γ1 < 1, ξ = diag(ξ1, . . . , ξn) with ξi(t) =
∫ t

0

(
φi(v)

1−φi(v)|x1i(v)|

)2
dv, and φi(t) = 1

ρi(t)
.

Moreover, bx1iev = [|x11|γ1 sgn(x11), . . . , |x1n|γ1 sgn(x1n)]
T in which sgn(·) is the sign
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function. When Si(t) = 0 is achieved, it can be easily proved that (please refer to
Appendix A)

ẋ1i(t) = −(k1i + ξi(t))x1i − k2ibx1i(t)eγ1 . (7)

Theorem 1. When Si(t) = 0 is reached, the output tracking errors converge to the origin in a
finite time and the prescribed performance on x1 is achieved.

Proof. Construct a Lyapunov function candidate as

V1(t) =
1
2

n

∑
i=1

x2
1i.

Differentiating V1(t) with respect to time provides

V̇1(t) =
n

∑
i=1

x1i ẋ1i = −
n

∑
i=1

(k1i + ξi)|x1i|2 −
n

∑
i=1

k2i|x1i|1+γ1

≤ −k̄1V1 − k̄2Vγ̄1
1 . (8)

where k̄1 = 2 min{k1i}, k̄2 = 2
1+γ1

2 min{k2i}, and γ̄1 = 1+γ1
2 . If |x1i(0)| < |ρ(0)|, then the

time-varying gain ξi(t) is positive. Moreover, based on Lemma 1, it is inferred that x1i and
x2i converge to the origin within a finite time calculated as

Ts,1 =
1

k̄1(1− γ̄1)
ln

k̄2 + k̄1V1−γ̄1(0)
k̄2

. (9)

The proof is finished here.

3.2. Finite-Time Tracking Control

Taking time-derivative of the NFCTSM (6)

Ṡ = x2 +
1

γ1
(K2)

1
γ1 diag

(
|x2i + (k1i + ξi)x1i|

1
γ1
−1
)(

ẋ2 + (K1 + ξ)x2 + ξ̇x1
)

= x2 +
1

γ1
(K2)

1
γ1 diag

(
|x2i + (k1i + ξi)x1i|

1
γ1
−1
)(

f − q̈d + τd + τ + (K1 + ξ)x2 + ξ̇x1
)

(10)

With a simple manipulation, Equation (10) can be simplified as

Ṡ = Λ(Υ + τ + τd)− K1S, (11)

where Λ = diag(Λ1, Λ2, Λ3) with Λi = 1
γ1
(k2i)

1
γ1 |x2i + (k1i + ξi)x1i|

1
γ1
−1, i = 1, 2, 3,

and Υ = diag(Υ1, Υ2, Υ3) with Υi = γ1k
− 1

γ1
2i bx2i + (k1i + ξi)x1ie

2− 1
γ1 + k1iγ1(x2i + (k1i +

ξi)x1i) + f − q̈d + (K1 + ξ)x2 + ξ̇x1.
Based on Equation (11), the following control law is proposed:

τ = −Υ− K3S− K4bSeγ2 − θ̂

2ε2 ΛS, (12)

where K3 = diag(k31, . . . , k3n), K4 = diag(k41, . . . , k4n) are positive-definite matrices,
0 < γ2 < 1, and ε is a small positive constant. Moreover, the parameter θ̂ is updated by

˙̂θ = p1

(
1

2ε2 Λ2‖S‖2 − p2θ̂

)
, (13)
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where p1 and p2 are two positive constants.

Theorem 2. Consider the EL system described by (1) with the NFCTSM (6), the finite-time
tracking control scheme (12), and the adaptive update law (13). Then, the output tracking errors
x1 and x2 will converge to an arbitrary small region around zero during a finite time. Moreover,
the prescribed performance for x1 is guaranteed.

Proof. Let a Lyapunov function be constructed as

V2 =
1
2

STS +
1

2p1
θ̃2, (14)

in which θ̃ = θ − θ̂ denotes the estimation error. Taking the time-derivative of V2 and
substituting the control input (12) and the adaptive law (13) provides

V̇2 =STS− 1
p1

θ̃ ˙̂θ = STΛ
(
− K3S− K4bSeγ2 − θ̂

2ε
ΛS + τd

)
− K1STS

− θ̃
( 1

2ε2 Λ2‖S‖2 − p2θ̂
)

≤− STΛK3S− STΛK4bSeγ2 − STΛ2S
θ̂

2ε2 + STΛTd −Λ2‖S‖2 θ̃

2ε2 + p2θ̃θ̂

≤− STΛK3S− STΛK4bSeγ2 +
ε2

2
+ p2θ̃θ̂

≤− k3 min

n

∑
i=1

ΛiS2
i − k4 min

( n

∑
i=1

Λ2
i |Si|

) 1+γ2
2 − v

2p1
θ̃2 −

( v

2p1
θ̃2
) 1+γ2

2
+ η1 (15)

where η1 = ε2

2 + p2
2 θ2 − v

2p1
θ̃2 +

(
v

2p1
θ̃2) 1+γ2

2 , and v = p1 p2
2 . Moreover, in the inequality

(15), the following inequalities have been utilized:

STΛTd ≤
1

2ε2 Λ2‖S‖2θ +
ε2

2

and
θ̃θ̂ = θ̃2 − θ̃θ ≤ 1

2
θ2 − 1

2
θ̃2.

Using the fact that
(

v
2p1

θ̃2) 1+γ2
2 − v

2p1
θ̃2 ≤ 1, then we have

V̇2 ≤ −χ1V2 − χ2Vγ̄2
2 + η2 (16)

where χ1 = min{2k3 minΛ2
i , v}, χ2 = min{2

1+γ2
2 k4 minΛi, v

1+γ2
2 }, γ̄2 = 1+γ2

2 , and η2 = ε2

2 +
v
p1

θ2 + 1. Based on Lemma 2, the system is practically finite-time stable with convergence
set given by

∆ =
{

lim
t→Ts,2

S|V2 ≤ min
{( η2

(1− θ0)χ1
,
( η2

(1− θ0)χ2

) 1
γ̄2 }
}

(17)

where

Ts,2 ≤ max
{ 1

θ0χ1(1− γ̄2)
ln

θ0χ1V1−γ̄2
2 (0) + χ2

χ2
,

1
χ1(1− γ̄2)

ln
χ1V1−γ̄2

2 (0) + θ0χ2

θ0χ2

}
. (18)
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Once the NFCTSM (6) converges to the set |Si| ≤ ∆, then one obtains

Si(t) = x1i(t) +
(

1
k2i

) 1
γ1 bx2i(t) + (k1i + ξi(t))x1i(t)e

1
γ1 = ψi, |ψi| ≤ ∆ (19)

which can be equivalently expressed as

ẋ1i(t) +
(

k1i + ξi(t)−
ψi
x1i

)
x1i + k2ibx1i(t)eγ1 = 0 (20)

or

ẋ1i(t) + (k1i + ξi(t))x1i +
(

k2i −
ψi

bx1i(t)eγ1

)
bx1i(t)eγ1 = 0 (21)

As long as k1i and k2i are selected to satisfy k1i + ξi(t)−
ψi
x1i

> 0 and k2i −
ψi

bx1i(t)eγ1 > 0,
Equations (19) and (20) will be equivalent to Equation (7). Hence, the error trajectory
converges to the following region within a finite period of time

|x1i| ≤
|ψi|
k1i
≤ ∆

k1i
(22)

or

|x1i| ≤
( |ψi|

k2i

) 1
γ1 ≤

( ∆
k2i

) 1
γ1 (23)

According to (22) and (23), the convergence region can be calculated as

|x1i| ≤ min
{ ∆

k1i
,
( ∆

k2i

) 1
γ1
}

, (24)

The proof is finished here.

Remark 1. The main reason for expressing (10) as (11) is that (11) does not contain Λ−1, which
results in singularity. In some works (see for instance [46]), in order to deal with singularity as a
result of fractional power used in the sliding surface, a piecewise continuous function is used.

Remark 2. The constrained control law (12) contains the term ξ̇x1 in Υ. Based on the definition of
ξ(t), it is obvious that when the error trajectory x1(t) approaches the boundary of the performance
function ρ(t), the gain ξ(t) increases, and, consequently, the control input increases to prevent the
error trajectory from approaching the boundary and violating the constraint. Thus, the methodology
used in this paper can effectively provide the constraint on the system output without having to
employ the complicated conventional constrained controls such as PPC.

Remark 3. Since the upper bound of the square of the total uncertainty is estimated, the controller
(12) is smooth and there is no discontinuous signum function. Thus, the undesirable chattering
phenomenon is effectively removed.

Remark 4. For the purpose of implementation of the proposed control framework, the control gains
are required to be suitably selected and adjusted to obtain higher tracking accuracy and acceptable
control effort. The following points are taken into account for choosing the control gains.

• Larger Ki(i = 1, . . . , 4) makes the system states converge to the origin with a faster conver-
gence rate; however, it can result in a large overshoot and more control energy consumption.
Therefore, we need to make a compromise between the control effort and convergence rate.
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• According to the concept of finite-time stability, the smaller value of γj(j = 1, 2) leads to
a faster and more accurate convergence. Nevertheless, the required control energy will be
increased and the trade-off should be considered.

• To achieve high pointing accuracy, the value of parameter ε in the control law (12) should be
selected small enough. However, it can be seen that this parameter appears in the denominator
of the control law; then, the small value of ε corresponds to a more control effort. Similar to the
other parameters, a comparison between control effort and control accuracy needs to be made.

4. Simulation Results

To evaluate the efficacy of the suggested constrained control framework, the simulation
results are provided in three parts.

Part 1: Firstly, a robotic manipulator illustrated in Figure 1 is taken into account [47].
This is a 2-DOF planar rigid robotic manipulator with revolute joints whose equations of
motions are described by

M(y)ÿ + C(y, ẏ)ẏ + G(y) = u, (25)

where the inertia matrix M, the centrifugal and Coriolis force matrix C, and the gravity
vector G are, respectively, given by

M =

[
m1l2

1 + m2(l2
1 + l2

2 + 2l1l2 cos(y2)) m2(l2
2 + l1l2 cos(y2))

m2(l2
2 + l1l2 cos(y2))m2l2

2 0

]
,

C =

[
−2m2l1l2 sin(y2)v1 −m2l1l2 sin(y2)v2
−m2l1l2 sin(y2)v1 0

]
,

G = g
[

m1l1 cos(y1) + m2(l1 cos(y1) + l2 cos(y1 + y2))
m2l2 cos(y1 + y2)

]
where m1 and m2 denote the mass and l1 and l2 represent the length of the links,
g = 9.81 m/s2 is the acceleration gravity, and y1 and y2 are the joint angles. The system
parameters, the initial conditions and the reference trajectories are, respectively, taken as
m1 = m2 = 1 kg, l1 = l2 = 1 m, y(0) = ẏ(0) = 0, yre f ,1(t) = sin(t), and yre f ,2(t) = sin(2t).
The parameters of the controller (12) along with the FTPPF (5) are chosen as K1 = diag{2, 2},
K2 = diag{1, 1}, K3 = diag{1, 1}, K4 = diag{5, 5}, γ1 = 0.9, γ2 = 0.6, p1 = p2 = 0.1,
ε = 0.002, ρ0 = 1, ρT = 0.01, and κ = 0.5. In this part, the simulation is repeated for
different values of Tf to investigate how this parameter affects the convergence property of
the tracking errors. The simulation results are provided in Figures 2–6. The time response
of the tracking errors is illustrated in Figures 2 and 3. Based on these two figures, it is clear
that the proposed constrained control (12) is capable of satisfying the desired transient and
steady state performances such as convergence rate and ultimate tracking error. Moreover,
the proposed control is still able to meet the constraint on the tracking error even if the
convergence time of the FTPPF is selected quite small. However, when the parameter Tf is
very small, then the controller is required to provide more control effort in order to maintain
the error trajectory within its allowable region; otherwise, the error trajectory intercepts
the boundary of the region and the constraint is violated. Therefore, from Figures 4 and
5, the smaller convergence time is selected, the larger control effort is required. Moreover,
parameter ξ1 has been illustrated in Figure 6. Based on the definition of ξ1, it is a positive
and increasing function since it is the integral of a positive function. It should be pointed
out although the value of ξ1 becomes larger as time goes, it is multiplied by x2, which very
quickly converges to zero and has a small value.
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Figure 1. Planar rigid revolute joint robotic manipulator.
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Figure 2. The tracking error of the first joint under different Tf .

Part 2: In this part, the objective is to compare the proposed constrained control (12) with
the constrained controls (5) and (20) in Berger [47]. In fact, ref. [47] is a constrained control
for nonlinear systems and is a suitable candidate to investigate the efficacy of the proposed
constrained control framework. The simulation results of the three controllers applied to
the robotic manipulator (25) are illustrated in Figures 7–11. In fact, the main focus of the
constrained controls (5) and (20) in Berger [47] is to satisfy constraints on the tracking error,
and they are not able to make the tracking errors converge to zero. Based on this example,
the proposed control accomplishes superior performance over the two controls in Berger [47].
More specifically, the error trajectory under the proposed control shows oscillation neither in
the transient nor the steady state. Moreover, the proposed approach results in a faster and
more accurate convergence. Despite the better performance of the proposed approach, it
requires less control energy, which is of crucial importance practically. This fact can be clearly
observed in Figures 9 and 10. Similar to the previous part, the parameter ξ1 is depicted in
Figure 11, which confirms the theoretical results provided in this paper.
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Figure 3. The tracking error of the second joint under different Tf .
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Figure 4. The first component of the control input.



Mathematics 2022, 10, 3850 11 of 18

0 1 2 3 4

-20

0

20

40

0 1 2 3 4

0

10

20

30

40

0 1 2 3 4

0

10

20

30

40

0 1 2 3 4

-20

0

20

40

Figure 5. The second component of the control input.
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Figure 6. The parameter ξ1 under different Tf .
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Figure 7. The tracking error of the first joint in Part 2.
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Figure 8. The tracking error of the second joint in Part 2.

Part 3: Now, the suggested control, along with the constrained control (5) in Berger [47],
is applied to a mass-spring system mounted on a car [47] illustrated in Figure 12. This
system is described as follows. The mass m2 is moving on a ramp that is inclined by the
angle α and mounted on a car with mass m1 for which the force F acts as the control input.
The equation of motion for the aforementioned system can be expressed as[

m1 + m2 m2 cos(α)
m2 cos(α) m2

][
ẍ(t)
s̈(t)

]
+

[
0

ks(t) + dṡ(t)

]
=

[
u(t)

0

]
, (26)

in which the horizontal car position and the relative position of the mass on the ramp are
denoted by x and s, respectively. The parameters k and d represent the coefficients of the
spring and damper, respectively. The system output is defined as y(t) = x(t) + s(t) cos(α).
It is supposed that a reference trajectory given by yre f (t) = cos(t) is going to be tracked by
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the system output. The initial condition is taken as x(0) = s(0) = 0 and ẋ(0) = ṡ(0) = 0.
The parameters of the system (26) and the controller (12) are, respectively, m1 = 4 kg,
m2 = 1 kg, k = 2 N/m, d = 1 Ns/m, α = π/4 rad, K1 = K2 = 0.8, K3 = 0.1, K4 = 0.5,
γ1 = 0.9, and γ2 = 0.8,
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Figure 9. The first component of the control input in Part 2.
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Figure 10. The second component of the control input in Part 2.
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Figure 11. The parameter ξ1 in Part 2.

Figure 12. Mass on car system.

From Figure 13, it is observed that both controllers are able to keep the error trajectory
within the permitted region constructed by the performance function. However, the con-
troller (5) in Berger could not provide convergence of the error trajectory to zero. As it
is seen in this figure, the focus of this controller is to maintain the trajectory within the
region and prevent any contact with the boundary. Nevertheless, the proposed control not
only tries to satisfy the constraint, but it also drives the error trajectory to zero to provide
perfect tracking. Based on Figure 14, although the proposed control results in a superior
performance in a transient as well as a steady state, it requires less control energy. In this
case, since the error trajectory does not approach the boundary, there is no sudden increase
in the control input. Figure 15 illustrates the parameter ξ of the proposed constrained
control. It is worth mentioning that this figure confirms the importance of guaranteeing
the convergence of the system state. In other words, if the system state is not decaying,
the amplitude of the control input will be increasing since the parameter ξ grows by time
and it proportionally appears in the control input.



Mathematics 2022, 10, 3850 15 of 18

Figure 13. The tracking error in Part 3.
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Figure 15. The parameter ξ1 in Part 3.
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5. Conclusions

This study is concerned with the difficult issue of smooth, nonsingular, finite-time
tracking control for EL systems with prescribed performance in spite of the system uncer-
tainty and disturbance. It is rigorously proved that the closed-loop EL system is finite-time
stable and that the singularity resulting from the use of fractional power can be successfully
removed without having to construct a piecewise continuous function .In contrast to the
existing constrained controls with complicated structures, the proposed control scheme
accomplishes the desirable performance via introducing a time-varying gain in the sliding
surface. The simulation results confirmed the effectiveness and usefulness of the new
control framework.
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Appendix A

When Si = 0, it can be obtained from (7) that

ẋ1i(t) + (k1i + ξi(t))x1i = −k2ibx1i(t)eγ1 . (A1)

Taking the absolute value of both sides of (A1), one has

|ẋ1i(t) + (k1i + ξi(t))x1i| = k2i|x1i(t)|γ1 , (A2)

which can be written as( 1
k2i

) 1
γ1 |ẋ1i(t) + (k1i + ξi(t))x1i|

1
γ1 = |x1i(t)|. (A3)

Based on (A1), one obtains

sgn
(

ẋ1i(t) + (k1i + ξi(t))x1i
)
= sgn

(
− k2ibx1i(t)eγ1

)
= −sgn(x1i). (A4)

Multiplying both sides of (A3) and (A4) yields

( 1
k2i

) 1
γ1 bẋ1i(t) + (k1i + ξi(t))x1ie

1
γ1 = −x1i(t). (A5)

Then, the NFCTS (6) is constructed.
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