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Abstract: This paper deals with a new modification of the local boundary knots method (LBKM),
which will allow the irregular node distribution and the arbitrary shape of the solution domain.
Unlike previous localizations, it has no requirements on the number of nodes in the support or on the
number of virtual points. Owing to the limited number of virtual points, the condition number of
boundary knots matrix remains relatively low. The article contains the derivation of the relations of
the method for steady and unsteady states and shows its effectiveness in three control examples.

Keywords: boundary knots method; particular solution; finite collocation; advection–diffusion

MSC: 65M80; 65M99

1. Introduction

In recent decades, the significant evolution of meshless methods for solving partial
differential equations is evident. The first sign of this trend can be considered the boundary
element method (BEM) [1,2], which is not yet an utterly network-free method. However,
it has significantly reduced the necessary network of elements. On the other hand, this
method required solving the integrals of the fundamental solution, which was sometimes
very complicated. The removal of integration is the main advantage of the method of
fundamental solution (MFS) [3–5], which uses fundamental solutions as basis functions
to approximate the solution without needing integration. This property has contributed
to the significant expansion of this method and its considerable popularity. However, this
method also has its problems, especially related to using a network of fictitious virtual
points. The singular boundary method (SBM) [6–8] tries to eliminate this disadvantage
using real points at the boundary of an area to be identified with fictitious points. At the
same time, however, this leads to the need to solve the problems of the singularity of the
fundamental solution in case the two points are identical. SBM solves this by introducing
the so-called origin intensity factors (OIF) [6,9], which are calculated in a more or less
complicated way and are essentially the main weakness of this method. Another way
to solve the singularity uses the boundary knot method (BKM) [10–12], which uses the
general solution of the governing differential equation as the basis function instead of the
fundamental solution.

Unfortunately, the condition number of the BKM interpolation matrix is very high,
and its inversion is overburdensome. Recently, a local BKM solution [13,14] can help
keep the interpolation matrix conditional on a reasonable level, thus enabling even more
extensive tasks. Nevertheless, even so, with more local support, problems can arise. These
should be removed by the presented modification of the local BKM. It is based partly on the
LBIEM principle [15,16] and separates the virtual area around each point from its support.
It allows keeping the condition number of the matrix independent of the number of points
in the support.

Our article focuses on the solution of the steady and non-steady advection–diffusion
problem, which is of great practical importance, e.g., in modeling the transport of substances
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in a flowing liquid. The first two sections describe the connection between BKM and FC
and its application to the advection–diffusion problem in the two-dimensional domain.
The following sections present the control examples and compare the results with the
exact solution.

2. Governing Equations

The governing equation of the unsteady hydrodynamic dispersion in the domain
Ω ∈ R2 with boundary Γ is

Rd
∂C(x, t)

∂t
= D∆C(x, t)− v · ∇C(x, t)− λC(x, t) x ∈ Ω, (1)

where C is the concentration of the tracer, D is the coefficient of dispersion, Rd is the
retardation factor, λ is the decay coefficient, x are spatial coordinates, v is the vector of
velocity, and t is the time.

The usual boundary conditions of Equation (1) are as follows:

- The Dirichlet boundary conditions, where the value of the concentration C on the part
of boundary Γ1 is prescribed, i.e., C = C0(x, t) x ∈ Γ1;

- The Neumann boundary conditions, where the flux q0 with concentration C0 perpen-
dicular to the boundary Γ2 is given, i.e.,

D
∂C
∂xi

ni = (C− C0)q0(x, t) x ∈ Γ2, (2)

where ni is the i component of the outer normal vector, perpendicular to the bound-
ary Γ2.

These are in addition to the whole boundary Γ = Γ1 ∪ Γ2. The initial condition is
defined by the prescribed value of the concentration at time t0 = 0.

All boundary conditions can be simply expressed as

B(u) = b0(x, t) x ∈ Γ, (3)

where B(u) is the boundary operator.

3. Numerical Solution

Time-dependent tasks are solved in two main ways when using meshless methods.
We can use a time-dependent fundamental or general solution of a differential equation, or
approximate the time term using a finite difference (FD) scheme. Since the time-dependent
general solution of the advection–diffusion equation is difficult to find, we replaced the
time derivative on the left side of (1) with a finite difference scheme.

The backward (Euler) scheme (4) is the simplest and can be defined as

∂Cn+1

∂t
=

1
∆t

(
Cn+1 − Cn

)
. (4)

When we applied the scheme (4) to the presented method, it performed poorly for long
time series. Therefore, we are looking for a more suitable and accurate scheme.

The Houbolt method [8,17] is an implicit and unconditionally stable FD scheme that
can be obtained by the cubic-Lagrange interpolation of the concentration C from time
(n− 2)∆t through to time (n + 1)∆t. This scheme can be written as

∂Cn+1

∂t
=

1
6∆t

(
11Cn+1 − 18Cn + 9Cn−1 − 2Cn−2

)
, (5)
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where ∆t is the time step and the superscripts n − 2, n − 1, n, and n + 1 of u represent the
time level. The differential Equation (1) is now changed to

D∆Cn+1 − v · ∇Cn+1 − λCn+1 =
Rd
6∆t

(
11Cn+1 − 18Cn + 9Cn−1 − 2Cn−2

)
. (6)

The simple Euler formula is used in the first two steps to obtain the needed data Cn

and Cn−1 to start the Houboldt scheme (Cn−2 is a given initial solution).
To solve the unsteady diffusion Equation (1), we represent the solution as a sum of

homogeneous and particular solutions. The solution of (6) can now be defined as the sum

Cn+1 = Cn+1
H + Cn+1

P , (7)

where Cn+1
H is a solution of homogeneous differential equation in time level n + 1 that

satisfies boundary conditions and Cn+1
P is a particular solution of the non-homogeneous

Equation (6). The homogeneous problem has been solved using the modified local bound-
ary knots method (LBKM). The particular solution could be solved using the local method
of approximating particular solutions (LMAPS) [9,18].

3.1. Homogeneous Solution

As is usual with most local methods, we assume that the domain Ω is covered by
individual points. We find a group of the nearest points for each point i ∈ Ω that form
the support. In this modified version, in addition to support, we need to define a circular
virtual area around each point and regularly spaced virtual points at its boundary (Figure 1).
In this area, we now approximate the value of the concentration at a given point i and time
interval n + 1 using the general solution of a homogeneous differential equation in the form

C(xi)
n+1
H =

n

∑
j=1

αjG∗(rij) xi ∈ Ω, (8)

where n is the number of virtual points, rij =
∥∥xi − xj

∥∥ is the distance between point i and
virtual point j, and G∗ is the general solution. For the 2D advection–diffusion differential
Equation (6), the non-singular general solution is given as

G∗(rij) =
1

2π
exp

(v · r
2D

)
I0(µrij), (9)

where rij =
∥∥xi − xj

∥∥, I0 is the modified Bessel function of the first kind and

µ =

√(
‖v|
2D

)2
+

λ

D
. (10)

The coefficients αj are unknown and we determine them by applying (8) to all virtual
points and we obtain

n

∑
j=1

Akjαj = Ck k = 1 . . . n, (11)

where Ck are the values of concentrations in virtual points for homogeneous solution.
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global boundary G

i

virtual local subdomain

virtual point

local support for interpolation

rmax

Figure 1. Virtual and supporting nodes in the domain Ω.

3.2. Particular Solution

The particular solution Cn+1
P is approximated by radial basis (RBF) functions as

Cn+1
P =

p

∑
j=1

βn+1
j Θ(rj), (12)

where Θ(rj) are radial basis functions, βn+1
j are unknown coefficients, and p is the number

of internal virtual points in the virtual subdomain of the point i. These points can be
regularly placed inside the subdomain (see Figure 2). The function Θ is defined as a
solution of the following equation [2,8]

D∆Θ(rj)− v · ∇Θ(rj)− λΘ(rj) = ϕ(rj), (13)

where ϕ(rj) are also the radial basis functions. There are various possibilities for how to
choose these functions [2,19]. Instead of choosing the simple form of the function ϕ(rj) on
the right-hand side of (13), we choose the simple expression for the basis functions Θ(rj).
By substituting into (13), we can obtain the corresponding formula for the function ϕ(rj).
In our paper, we chose Θ(rj) functions as multiquadrics (MQ) and we obtain

Θ(r) =
√

r2 + R2
P

ϕ(r) = D r2+2R2
P

(r2+R2
P)

3/2 − r·v√
r2+R2

P
− λ

√
r2 + R2

P,
(14)

where RP is the shape factor of the particular solution. This factor can be different from the
factor R used in (21). According to (6) and (13), we can write

p

∑
j=1

βn+1
j ϕ(rj) = Rd

11
(

Cn+1
P + Cn+1

H

)
− 18Cn + 9Cn−1 − 2Cn−2

6∆t
. (15)

Matrix A from Equation (11) is now extended to (n + p)× (n + p) dimension and it
has the following structure

A =

[
K L
M N

]
, (16)
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where
Kkj = G∗(rkj) k, j = 1 . . . n
Lkl = Θ(rkl) l = 1 . . . p

(17)

in the boundary virtual points (see Figure 2) and

Ml j = − 11Rd
6∆t G∗(rl j) l = 1 . . . p, j = 1 . . . n

Nlq = ϕ(rlq)− 11Rd
6∆t Θ(rlq) l, q = 1 . . . p

(18)

in the internal virtual points (see Figure 2). For the first two time intervals, when we use
the Euler scheme, Formula (18) has the form

Ml j = − Rd
∆t G∗(rl j) l = 1 . . . p, j = 1 . . . n

Nlq = ϕ(rlq)− Rd
∆t Θ(rlq) l, q = 1 . . . p

(19)

i

virtual boundary point

virtual internal point

Figure 2. Virtual subdomain around the node i.

Since the virtual points do not correspond to the nodes in the support, we must express
Ck as a function of the concentrations in the support using some interpolation method.
In our article, we have chosen the combination of the weighted radial basis functions
and polynomials.

The unknown values Ck in virtual source points are approximated in a support of the
point i as

Ck =
m

∑
l=1

βk
lR(rkl) +

M

∑
l=1

χk
l pl(xk, yk), k = 1 . . . n, (20)

where βk
l and χk

l are the weights,R(rkl) are the radial basis functions, and pl are polynomi-
als with degree M-1. M is the order ofR, and m is the number of nodes in the support of a
reference point. In our paper, the multiquadrics functions [19] have been used

R(rkl) =
√

R2 + r2
kl , (21)

where R is a so-called shape factor of the multiquadric function. We can determine the
weighting coefficients βk

j and χk
j in Equation (20) by requiring that this equation is fulfilled

at all m support points. Then, by the procedure described, e.g., in [20], we obtain a set of
RBF shape functions Φk

l and we can write

Ck =
m

∑
l=1

Φk
l Cl . (22)
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Now, we can substitute (22) to the right side of (11) and obtain

n

∑
j=1

Akjαj =
m

∑
l=1

Φk
l Cl k = 1 . . . n (23)

in matrix notation
Aα = ΦC (24)

and we can obtain the unknown coefficients αj as

α = A−1ΦC. (25)

For a homogeneous (steady) solution without internal virtual points, matrix A has
dimensions (n × n) and matrix Φ(n × m). The concentration in point i can now be ex-
pressed as

Ci = GT
i α = GT

i A−1ΦC = WT
i C, (26)

where Wi is a weight vector of the point i [21]. The vector W can be used to assemble the
global system of equations to solve homogeneous problems. This system is sparse and can
be defined as

Ci = C0i ∀i ∈ Γ1 (27)

Ci −
m

∑
j=1

Wi
j uj = 0 ∀i ∈ Ω

m

∑
j=1

∂Wi
j

∂n
uj = q0iC0i ∀i ∈ Γ2,

where m is the number of points in the i-th support.
For a non-stationary problem, it is necessary to add a particular solution (see Section 3.2),

and we must extend the matrices A and Φ to the dimensions (n + p) × (n + p) and
(n + p)×m, respectively. Then, (26) remains formally the same but the weight vector W
also consists of two parts

Wi =
{

Wi
1 Wi

2
}

. (28)

The resulting system of sparse linear equations in the time tn+1 can be written as

Cn+1
i = C0i ∀i ∈ Γ1

Cn+1
i −∑m

j=1 Wi
1jC

n+1
j = − Rd

6∆t ∑
p
j=1 Wi

2j

(
18Cn

j − 9Cn−1 + 2Cn−2
)
∀i ∈ Ω

∑m
j=1

∂Wi
1j

∂n Cn+1
j = q0i(Cn

i − C0i) ∀i ∈ Γ2.

(29)

We can solve these N equations to obtain values of concentration at all nodes in n + 1
time step.

In the case of the steady problem, the algorithm of the method can be clearly described
by the following steps:

1. We define the support of each point in the area.
2. We generate virtual points around each point.
3. We prepare RBF shape functions Φ according to (22).
4. We calculate the matrix A according to (11) for each point, except for the points where

the Dirichlet boundary condition is prescribed.
5. At these points, we solve the system of linear Equation (26) and obtain the weight

vector W.
6. We use this weight vector to construct a sparse global matrix of linear equations

according to (27).
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7. We multiply the prescribed values of the Dirichlet boundary condition by the corre-
sponding values of the weight vector W and, thus, create the right side.

8. By solving the equations, we obtain the concentration values at the points of the area.

The following style will modify the algorithm, describing the unsteady state: The first
three steps will be the same as in the steady problem, and we start with step No. 4.

4. We generate internal virtual points.
5. We calculate the matrix A according to (19) for each point, except for the points where

the Dirichlet boundary condition is prescribed.
6. At these points, we solve the system of linear Equation (26) and obtain the weight

vector W.
7. We use this weight vector to construct a sparse global matrix of linear equations

according to (29).
8. We use the initial conditions and create the right side of the global system (29).
9. We multiply the prescribed values of the Dirichlet boundary condition by the corre-

sponding values of the weight vector W and add the results to the right side.
10. By solving the global equations, we obtain the concentration values at the points of

the area in the next time step.
11. We can use the results and change the right side of the global system.
12. We repeat steps No. 9 to 11 in the first two time steps.
13. We calculate the new matrix A according to (18) and reassemble the global system

of equations.
14. We prepare the system’s right side using all previous values of concentrations.
15. By solving the global equations, we obtain the concentration values at the points of

the area in the next time step.
16. We repeat steps No. 14 to 15 in all remaining time steps.

4. Results

To test the possibilities of the proposed method, we present the results of several test
examples in this chapter. In all these cases, the exact analytical solution is known; therefore,
it is possible to compare the error of the numerical method. The root mean squared error
(RMSE) and R∞ are employed to evaluate accuracy. These errors are defined as

RMSE =

√
∑N

i=1(C̄i − Ci)2

N
R∞ = max

i=1...N
(|C̄i − Ci|), (30)

where C̄i is the exact value of concentration in point i.
When solving advection–diffusion problems, the Peclet number Pe is often used to

assess the effect of advection

Pe =
‖v‖L

D
. (31)

All examples have been computed on a PC computer with an Intel(R) Core(M) i7-
8550U processor (1.8 GHz CPU), a 64-bit Windows 11 operating system, and a 16 GB
internal memory. The programming language has been Visual C++ and Eigen library for
sparse matrix operations.

4.1. Example No. 1, Steady Case

In the first example, we consider the steady advection–diffusion problem with the
Dirichlet boundary conditions [22]. The domain is a unit square with prescribed concentrations

C(x, 0) =
1− e(x−1)vx/D

1− e−vx/D (32)

C(0, y) =
1− e(y−1)vy/D

1− e−vy/D . (33)
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The dispersion coefficient is D = 1 and the velocity vector is v = (vx, vy) and vx = vy.
The exact solution to this problem is [22]

C(x, y) =

(
1− e(x−1)vx/D

)(
1− e(y−1)vy/D

)
(
1− e−vx/D

)(
1− e−vy/D

) . (34)

For the numerical solution of this example, three meshes were used. Two meshes were
regular with 21 × 21 and 51 × 51 points. The third mesh was irregular with 5426 points.
This example was solved with three different Peclet numbers, namely, Pe = 10, 30, and 50.
Table 1 shows the solution RMSEs for all previously mentioned meshes and three different
Peclet numbers.

Table 1. Example No. 1—comparison of RMSE and R∞ for different meshes and Pe values.

Pe Mesh 21 × 21 Mesh 51 × 51 Irregular Mesh
RMSE R∞ RMSE R∞ RMSE R∞

10 9.1395 × 10−4 2.7817 × 10−3 1.4861 × 10−4 4.4874 × 10−4 9.5202 × 10−5 4.0198 × 10−4

30 6.0220 × 10−3 3.5671 × 10−2 9.3171 × 10−4 4.6437 × 10−3 7.3789 × 10−4 5.1634 × 10−3

50 1.3147 × 10−2 9.4959 × 10−2 2.1142 × 10−3 1.3600 × 10−2 1.8039 × 10−3 2.0027 × 10−2

The course of the absolute error in the profile x = y is also interesting (Figure 3). It is
clear that for higher Peclet numbers, the most significant error is concentrated in the largest
concentration gradient at the upper right corner of the area. In Figure 4, we can see the
contours of the absolute error of the solution for a regular network of 51 × 51 points and a
Peclet number of 10 and 30.

In this example, we also tested the effect of the number of virtual points n and support
points m on the method’s accuracy. It has been shown that increasing the number of virtual
points does not lead linearly to reducing errors (Table 2).

Table 2. Example No. 1—comparison of RMSE and R∞ for different number of virtual points.

n Regular Mesh 51 × 51 Irregular Mesh
RMSE R∞ RMSE R∞

6 1.4862 × 10−4 4.4850 × 10−4 9.6585 × 10−5 4.0193 × 10−4

8 1.4861 × 10−4 4.4789 × 10−4 9.6592 × 10−5 4.0197 × 10−4

12 1.4783 × 10−4 4.4629 × 10−4 9.6779 × 10−5 4.0168 × 10−4

16 1.4884 × 10−4 4.4984 × 10−4 9.6639 × 10−5 4.0198 × 10−4

As for supporting points, point i itself has been also included in the support. The shape
of the support for a regular network has been a square with sides formed by an odd
number of points. For an irregular network, the algorithm described in [23] has been used.
The principle is to divide the vicinity of point i into identical segments, and the point in the
segment closest to point i is taken into support.

As seen from Table 3, there is a certain optimal number of points in the support,
and further increasing the number of points will not cause an increase in the accuracy of
the method.

We also tested the effect of the virtual area’s radius on the solution’s accuracy. The re-
sults are shown in Table 4. We express the radius size as the ratio of the distance from the
nearest network point r/dmin.
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Table 3. Example No. 1—comparison of RMSE and R∞ for different numbers of supporting points.

m Regular Mesh 51 × 51 m Irregular Mesh
RMSE R∞ RMSE R∞

9 1.4860 × 10−4 4.4792 × 10−4 5 1.5962 × 10−2 5.4667 × 10−2

25 8.1076 × 10−5 2.5550 × 10−4 7 9.5201 × 10−5 4.0198 × 10−4

49 1.0941 × 10−4 3.7766 × 10−4 13 2.0092 × 10−5 5.3685 × 10−5

81 3.4093 × 10−4 1.5674 × 10−3 19 1.6715 × 10−5 2.0910 × 10−4

Table 4. Example No. 1—comparison of RMSE and R∞ for different radius of the virtual area.

r/dmin
Regular Mesh 51 × 51 Irregular Mesh

RMSE R∞ RMSE R∞

0.6 4.3285 × 10−4 1.3045 × 10−3 1.6194 × 10−4 4.9429 × 10−4

0.8 3.0831 × 10−4 9.2960 × 10−4 1.3312 × 10−4 4.4993 × 10−4

1.0 1.4861 × 10−4 4.4789 × 10−4 9.6592 × 10−5 4.0197 × 10−4

1.2 4.6538 × 10−5 1.4011 × 10−4 5.6234 × 10−5 3.4336 × 10−4

1.4 2.7695 × 10−4 8.3469 × 10−4 4.0517 × 10−5 2.7423 × 10−4

1.6 5.4251 × 10−4 1.6342 × 10−3 8.7447 × 10−5 3.1388 × 10−4

With this dependence, it is interesting that there is an optimal radius of the virtual
area, which is slightly larger than the minimum distance (r ≈ 1.4dmin).

0 0.2 0.4 0.6 0.8 1 1.2 1.4

x coordinate

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2
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-1

A
b

s
o

lu
te

 e
rr

o
r

Pe=10

Pe=30

Pe=50

Figure 3. Example No. 1—irregular mesh, absolute errors in the profile x = y.
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10 - 15

15 - 20

20 - 25

25 - 30
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35 - 40

40 - 45

> 45

x10
-5

a) b)

Figure 4. Example No. 1—contours of absolute errors, (a) Pe = 10, (b) Pe = 30.

Since the accuracy of interpolation using multiquadric functions depends on the shape
factor R, we also performed tests for the optimal value of this factor. The result is presented
in Figure 5, where the minimum error at the value of R ≈ 0.47 is obvious.

0 0.5 1 1.5

Shape factor R

10-5

10-4

10-3

10-2

A
b
s
o
lu

te
 e

rr
o
rs

Mesh 51x51, RMSE

Mesh 51x51, R∞
Irregular mesh, RMSE

Irregular mesh, R∞

Figure 5. Example No. 1—RMSE and R∞ as functions of the shape factor R.

4.2. Example No. 2, Steady Case with Decay

The second example tests steady advection along with tracer decay. For the test,
we used an irregular area with two different networks of points—the sparser one has
3216 nodes and the denser one has 6530 points (Figure 6). The coordinates of the boundary
points have been computed according to the following formula [8,24]

r(θ) = (37− 12 cos(5θ))/25, 0 ≤ θ ≤ 2π (35)

{x, y} = {r cos(θ), r sin(θ)}.

The internal points in both networks have been generated using the Poisson disc
algorithm [25,26].
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a) b)

Figure 6. Example No. 2—irregular meshes: (a) 3216 points, (b) 6530 points.

The dispersion and decay coefficients are D = 5 and λ = 4, respectively. The vector of
velocity is constant, v =

(
vx, vy

)
= (1, 1). Dirichlet boundary conditions are prescribed at

the boundary Γ as
C0(x) = ex + ey x ∈ Γ. (36)

The exact solution is
C(x) = ex + ey x ∈ Ω. (37)

Similar to the first example, we present a comparison of the accuracy of our modified
method for different numbers of virtual points n. We can see from Table 5 that this influence
of the number of virtual points on accuracy is negligible.

Table 6 shows the dependence of the accuracy of the method on the number of points
in the support. The situation is now different; the number of supporting points m affects
the accuracy significantly. The results for both networks used are different.

Table 5. Example No. 2—comparison of RMSE and R∞ for a different number of virtual points.

n 3216 Points 6530 Points
RMSE R∞ RMSE R∞

6 1.0489 × 10−4 1.8703 × 10−3 3.3324 × 10−5 6.8178 × 10−5

8 8.0688 × 10−5 3.6588 × 10−4 3.6236 × 10−5 7.3594 × 10−5

10 8.5035 × 10−5 8.2199 × 10−4 3.4279 × 10−5 7.0187 × 10−5

16 8.2809 × 10−5 7.0545 × 10−4 3.5056 × 10−5 7.1266 × 10−5

The error decreases with the increasing number of supporting points in the first sparser
network. In the second denser one, the initial decrease is followed by an increase in the
error; thus, we can find the optimal number of points in the support (see also Figure 7 and
Table 6). The slight deterioration in accuracy when increasing the number of supporting
points is probably since the criterion according to [23] at higher numbers leads to an
unsatisfactory selection. In these cases, it would probably be better to return to a simple
choice based on the distance from point i.
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Table 6. Example No. 2—comparison of RMSE and R∞ for different numbers of supporting points.

m 3216 Points 6530 Points
RMSE R∞ RMSE R∞

7 3.57 × 10−4 2.56 × 10−3 1.87 × 10−4 3.79 × 10−4

9 6.13 × 10−4 2.68 × 10−3 2.55 × 10−4 1.54 × 10−3

13 8.07 × 10−5 3.66 × 10−4 3.62 × 10−5 7.36 × 10−5

19 1.01 × 10−5 3.47 × 10−5 3.85 × 10−6 7.96 × 10−6

25 3.25 × 10−6 2.29 × 10−5 8.01 × 10−6 6.65 × 10−5

31 7.63 × 10−7 1.61 × 10−5 3.23 × 10−6 6.09 × 10−5

The distribution of absolute errors in the area for both solved networks is presented in
Figure 8.
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Figure 7. Example No. 2—course of RMSE and R∞ for different numbers of supporting points.
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Figure 8. Example No. 2—contours of absolute errors, (a) 3216 points, (b) 6530 points.
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As in the previous example, we can also see in Table 7 that it is possible to increase the
accuracy of the solution by approximately one order of magnitude by slightly increasing
the radius of the virtual area to r ≈ 1.4dmin.

Table 7. Example No. 2—comparison of RMSE and R∞ for different radii of virtual area.

r/dmin
3216 Points 6530 Points

RMSE R∞ RMSE R∞

0.6 1.8708 × 10−5 3.7636 × 10−5 5.4936 × 10−6 1.1633 × 10−5

0.8 1.5363 × 10−5 5.6583 × 10−5 4.9468 × 10−6 1.0110 × 10−5

1.0 1.0094 × 10−5 3.4681 × 10−5 3.8808 × 10−6 8.0037 × 10−6

1.2 4.1740 × 10−6 3.5152 × 10−5 2.6612 × 10−6 5.7076 × 10−6

1.4 2.7209 × 10−6 5.8848 × 10−5 1.2998 × 10−6 4.9287 × 10−6

1.6 5.8256 × 10−6 8.4728 × 10−5 2.0681 × 10−6 2.1252 × 10−5

Further, in this example, we tested the shape factor’s influence on the method’s
accuracy. It turns out that the accuracy increases slightly with the increasing value of R
(Figure 9).
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Figure 9. Example No. 2—RMSE and R∞ as functions of the shape factor R.

4.3. Example No. 3, Unsteady Case

The third example is the usual case used for testing of the unsteady problem [27–29].
The rectangular domain [0, 20]× [0, 2] has the initial concentration C0 = 0 and the Dirichlet
boundary conditions C(0, y) = 1 and C(20, y) = 0. The Neumann boundary conditions are
prescribed as q(0, x) = q(2, x) = 0. The exact solution is (see e.g., [30])

C(x, t) =
C0

2

[
er f c(z1) + exp

(vxx
D

)
er f c(z2)

]
, (38)

where
z1 =

x− vxt√
4Dt

z2 =
x + vxt√

4Dt
. (39)

The horizontal velocity vx = 1 and three diffusion coefficients D = 0.1, D = 0.05,
and D = 0.02 have been used. Then, the Peclet numbers (31) are Pe = 200, Pe = 400, and
Pe = 1000, respectively. The RBFs with shape functions ϕ(r) according to (14) are used in
this example. Two regular meshes of 101× 11 and 161× 17 points have been used. The total
simulation time is t = 10.
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Figure 10 presents the concentration for both networks in the profile y = 1. Figure 11
then represents the course of the absolute error in this profile. All these results are plotted
for times t = 2, 4, 6, 8, and 10.
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Figure 10. Example No. 3—concentration profiles for Pe = 1000: (a) Grid 101× 11, (b) Grid 161 × 17.
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Figure 11. Example No. 3—absolute errors for Pe = 1000, (a) Grid 101 × 11, (b) Grid 161 × 17.

Table 8 clearly shows that the values of RMSE and R∞ decrease when increasing the
density of the grid.
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Table 8. Example No. 3—RMSE and R∞ for different Peclet numbers.

Pe Mesh 101 × 11 Mesh 161 × 17
RMSE R∞ RMSE R∞

200 4.6244 × 10−3 1.4834 × 10−2 8.3319 × 10−4 3.3870 × 10−3

400 1.0440 × 10−2 3.9621 × 10−2 1.2844 × 10−3 5.6586 × 10−3

1000 2.2662 × 10−2 1.0775 × 10−1 4.1826 × 10−3 2.1395 × 10−2

In this example, because it is an unsteady problem, we focused primarily on testing
the influence of the time step size and the values of the two shape factors R and RP on the
accuracy of the solution.

Figure 12 shows a comparison of the RMSE and R∞ errors using the various sizes of
time steps and Pe = 200. It is clear from Figure 12 that there is an optimal time step for
every mesh. Its further refinement only reduces the accuracy of the solution and increases
the CPU time.
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Figure 12. Example No. 3—RMSE and R∞ as functions of the time step ∆t.

Similar to the previous examples, we monitored the dependence of the accuracy of the
solution on the shape factor R of the RBF interpolation for the third example. We also tested
the influence of the RP factor, which is used for the particular solution approximation.
These dependencies are plotted in Figures 13 and 14. It can be seen that initially, the error
of the method decreases to an insignificant minimum and then the values of RMSE and R∞
stabilize.
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Figure 13. Example No. 3—RMSE and R∞ as functions of the shape factor R.
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Figure 14. Example No. 3—RMSE and R∞ as functions of the shape factor RP.

The same rectangular domain with the same two different point meshes as well as
boundary conditions is used to test the effect of tracer decay; the decay coefficient values
λ = 0.1 and λ = 0.3 are entered. The exact solution is then given as [30]

C(x, t) =
C0

2
exp(

vxx
2D

)[exp(−xβ)er f c(z1) + exp(xβ)er f c(z2)], (40)

where

β =

√
v2

x
4D2 +

λ

D
(41)
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and z1 and z2 are now

z1 =
x− t

√
v2

x + 4λD√
4Dt

z2 =
x + t

√
v2

x + 4λD√
4Dt

. (42)

The course of exact concentration and LBKM results in the profile y = 2 at time t = 2,
4, 6, 8, and 10 can be seen in Figure 15 for the two different values of the decay coefficient.
Figure 16 then shows the course of the absolute errors at the same time intervals.

Table 9 shows the RMSE values for λ = 0.1 and 0.3 for both used point networks.
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Figure 15. Example No. 3—concentration profiles for Pe = 1000, mesh 161 × 33: (a) λ = 0.1,
(b) λ = 0.1.
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Figure 16. Example No. 3—absolute errors for Pe = 1000, mesh 161 × 33: (a) λ = 0.1, (b) λ = 0.5.
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Table 9. Example No. 3—comparison of RMSE for Pe = 1000, λ = 0.1, λ = 0.3, and different meshes.

Time λ = 0.1 λ = 0.3
Mesh 101 × 11 Mesh 161 × 17 Mesh 101 × 11 Mesh 161 × 17

2 8.0725 × 10−3 4.0627 × 10−3 5.9374 × 10−3 2.7769 × 10−3

4 8.0044 × 10−3 2.3824 × 10−3 4.5891 × 10−3 1.2482 × 10−3

6 8.8779 × 10−3 1.8665 × 10−3 4.0667 × 10−3 9.8041 × 10−4

8 9.2876 × 10−3 1.7438 × 10−3 3.6041 × 10−3 9.4922 × 10−4

10 9.2755 × 10−3 1.7132 × 10−3 3.2915 × 10−3 9.4261 × 10−4

5. Discussion and Conclusions

In the article, we presented a modification of the local knots method applied to the
solution of the advection–diffusion equation. Unlike the previous localizations of the node
method, this method uses a regular circular virtual region with evenly spaced virtual points.
The boundary knots method is applied to this area. In the next step, this area is connected
to the support of the resolved node. Although this procedure is a bit more complicated
than the previous methods, it has some significant advantages.

5.1. Condition Numbers

Probably the most significant advantage concerns the reduction of the order of the
boundary knots matrix and, thus, also the decrease of the condition number of this matrix.
It is possible owing to the fact that the virtual points number is small. It also remains
constant for all nodes. Therefore, it was possible to work with this matrix in the presented
method using only simple algorithms for solving linear equations or matrix inversion.
In addition, it is possible (especially for regular networks of nodes) to design this virtual
region equal for all nodes and, thus, to calculate the inverse matrix of the method only once.

In our method, we can distinguish three different condition numbers (CN): local,
global, and RBF. The local CN is the condition number of the local matrix A (16). The global
CN is the condition number of the global system of equations and is significantly lower than
the local one. The RBF condition number refers to the interpolation matrix of radial basic
functions (see Table 10). Table 11 contains condition numbers of unsteady case (Example
No. 3).

The local CN depends substantially on the number of virtual boundary points (see
Figure 17). As the number of these points does not influence the precision of our method,
we recommend using a maximum of 8 points.

Table 10. Example No. 1—values of condition numbers, eight virtual boundary points.

Pe Local Global RBF

10 4.9691 × 107 5.0797 × 102 7.5114 × 105

30 2.6072 × 105 3.0437 × 102 7.5114 × 105

50 4.6362 × 105 2.4988 × 102 7.5114 × 105

Table 11. Example No. 3—values of condition numbers, eight virtual boundary and six inter-
nal points.

Mesh Local Global RBF

101 × 11 6.9144 × 105 1.4806 × 103 1.8830 × 107

167 × 16 7.9764 × 106 3.8825 × 103 2.8587 × 107
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Figure 17. Example No. 1—connection of the local condition number and number of virtual points.

5.2. Convergence Rate

For all three examples, we performed tests of the speed of convergence of the method.
For the purposes of these tests, we have additionally added one more sparse network for
each example. For the first example, the grid had 16 × 16 points; in the second example,
it was an irregular grid with 4305 points; and in the third example, we used a grid of
81 × 9 points. Figure 18 shows the dependency of RMSE on the number of points. To
demonstrate the convergence rate (CR) of the present method, the following formula is
introduced

CR = − log(RMSE1)− log(RMSE2)

log(N1)− log(N2)
. (43)
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Figure 18. Connection of the RMSE and number of points: (a) steady solution, (b) unsteady solution.

Table 12 contains values of RMSE and convergence rates for examples of the steady
case and Table 13 for those of the unsteady transport.



Mathematics 2022, 10, 3855 22 of 23

Table 12. Example Nos. 1 and 2—values of RMSE and the convergence rates (CR).

No. of Points RMSE, Example No. 1 No. of Points RMSE, Example No. 2
Pe = 10 Pe = 30 Pe = 50

256 1.619 × 10−3 1.060 × 10−2 2.162 × 10−2 3216 1.023 × 10−5

441 9.140 × 10−4 6.022 × 10−3 1.315 × 10−2 4305 8.390 × 10−6

2601 1.486 × 10−4 9.317 × 10−4 2.114 × 10−3 6530 3.881 × 10−6

CR 1.024 1.052 1.030 CR 1.368

Table 13. Example No. 3—values of RMSE and the convergence rates (CR).

No. of Points Pe = 20 Pe = 400 Pe = 1000

729 1.150 × 10−2 2.425 × 10−2 2.630 × 10−1

1111 4.624 × 10−3 1.044 × 10−2 2.266 × 10−2

2737 8.332 × 10−4 1.284 × 10−3 4.183 × 10−3

CR 1.984 2.221 3.130

From the values in Table 12, we can conclude that with a regular network of points,
the order of the method is slightly above the value of one, and with an irregular network,
it is about 30% higher, which may be caused by the different geometric configuration of
the irregular networks. In the unsteady state, we see that Houbolt’s method confirms its
effectiveness in this case as well, and the values of the rate of convergence are above two.

In the further development of the method, a logical step will be to extend it to 3D tasks
or non-linear problems.
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