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Abstract: Non-transferable utility (NTU) games arise from many economic situations. A classic
example is the exchange economy. By pooling and redistributing their initial endowments, coalitions
can achieve certain distributions of gains (utilities) that make up the coalition’s feasible set. This paper
studies a new class of NTU games called host games. A host game is an agent-parametrized family of
NTU games, and an NTU game is associated with any agent (called the host in that case). We provide
an adequate presumption for the existence of an allocation that is part of the host game’s core.
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1. Introduction

Non-transferable utility (NTU) games originate from various economic situations.
For instance, by gathering and reallocating its original endowments under an exchange
economy, coalitions could achieve certain payoff distributions that form the feasible set for
that coalition. More generally, an NTU game describes some feasible set of payoff vectors
for every coalition. It is given by its set of players and the sets of outcomes that are feasible
for each subset (coalition) of players. That is, an NTU game is an assignment of a set of
feasible utility allocations to each coalition of players.

The players face the problem of choosing a payoff that is feasible for the grand
coalition. This is a bargaining condition, and its solution may be rationally required to
satisfy various criteria. The core is the easiest to understand of all the solution concepts for
cooperative games, and it is the set of all feasible outcomes without players or coalitions
that can improve by acting alone. In other words, no individual or group can reap the
benefits of restructuring once an agreement is reached. In a free market, outcomes should
be paramount and economic activity should benefit all parties. Unfortunately, for many
games, there may be no feasible outcomes that cannot be improved—the pie may not
be big enough. Hence, a condition for a game that has a nonempty core is important.
Scarf [1] proved that each balanced NTU game has a nonempty core, and Shapley [2]
further generalized the concept of balanced games. In Shapley’s [2] work, the balanced
condition is defined for the coalitional vector system π, which specifies the weight of each
participant in each coalition. For the core to be nonempty, the coalitional vectors system π
must exist for the game to be π-balanced. Later, Hwang [3] treats the Cartesian product of
these NTU games as a multiple-NTU game. Furthermore, Hwang [3] extended the concept
of the π-balanced condition for NTU games to multiple-NTU games. Hwang [3] proved
that each π-balanced multiple-NTU game has a nonempty core.

In the framework of the NTU games, we would like to utilize the core to analyze the
coalition structure and host selection called a “host game”. Several game-theoretical results
related to the notion of the host have been applied to several topics, such as computer
science, economics, decision making, and pathology. Related applications could be found
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in Choisy and de Roode [4], Garg and Grosu [5], Ng [6], and so on. Here, we treat these
NTU games as host games, which differ from pre-existing results. Moreover, different
NTU games will be derived from different hosts. The main notions and relative results are
as follows.

• We explore the notion of the π-balanced condition and rely heavily on Shapley’s
method [2] to prove the coincident result in the framework of host games. We assume
a symmetry condition requiring no difference in overall interests regardless of the host
(Equation (1) in Section 4).

• Moreover, participants do not decide who the host is; therefore, all participants will
receive a stable allocation, and no participants form a different coalition. Therefore,
if such a stable allocation exists, the participants do not have to decide who the host
is because they would receive a stable allocation no matter who the host is. In order
to cause the participants to not worry about who the host is, we propose a sufficient
condition for such an allocation by combining the mild condition of “no difference in
overall interests” with the condition of “stable allocation” will.

2. Preliminary
2.1. Definitions and Notations

N = {1, 2, · · ·, n} denotes the set of players. For any set S, P(S) denotes the collection
of all non-empty subsets of S, and |S| denotes the cardinality of S. Let Rn denote the
n-dimensional real vector space and Rn

+ denote the set of all non-negative vectors in Rn.
For x ∈ Rn, we make xS be the restriction of x at S for every S ⊆ N. For E ⊆ Rn, CH(E)
denotes the convex hull of E and InS(E) denotes the interior set of E.

Definition 1. A non-transferable utility (NTU) game (see Aumann and Peleg [7], Billera [8],
Scarf [1], and Shapley [2]) is a pair (N, V), where N is a finite set of players and V is a set-valued
function, V : P(N) → P(Rn), that assigns to every coalition S ∈ P(N) a non-empty subset
V(S) of feasible payoff vectors for S satisfying the following five conditions:

1. V(S) is closed;
2. V(S) is comprehensive, i.e., V(S) = V(S)−Rn

+;
3. V(S) is cylindrical, i.e., if x ∈ V(S) and y ∈ Rn such that yS = xS, then y ∈ V(S);
4. V(S) is bounded, i.e., there exists a positive number M > 0 such that if x ∈ V(S) and

xS ≥ 0, then xi ≤ M for every i ∈ S;
5. V({i}) = {x ∈ Rn : xi ≤ 0} for every i ∈ N.

The core of an NTU game (N, V) consists of all payoff vectors that are feasible for the
grand coalition N and that cannot be improved upon by any coalition, including N itself. If
x ∈ V(N), then S can improve upon x if there is a y ∈ V(S) with yi > xi for every i ∈ S.
Hence, the formal definition of the core of the game (N, V) is

C(N, V) = V(N) \
⋃

S∈P(N)

InS (V(S)).

To state the Scarf–Biller–Shapley theorem (Scarf [1]; Billera [8]; Shapley [2]), we intro-
duce additional notation. The unit (n− 1)-simplex in Rn is denoted by In−1. The union
of all its proper faces is denoted by ∂In−1, and it is called the boundary of In−1. Hence,
InS(In−1) = In−1 \ ∂In−1. For every S ∈ P(N), let

BS = CH ({ei : i ∈ S}) and

bS = ∑
i∈S

1
|S| e

i,
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where ei ∈ Rn with ei
i = 1 and ei

j = 0 for all j 6= i; bS is known as the barycenter of BS. If

π : P(N)→ In−1 and β ⊆ P(N), then the set

CH (π(β)) = CH ({π(S) : S ∈ β})

is denoted by B(π; β).
For a given map π : P(N)→ In−1, β ⊆ P(N) is said to be π-balanced if bN ∈ B(π; β).

An NTU game (N, V) is π-balanced for some π if for every π-balanced family β,⋂
S∈β

V(S) ⊆ V(N).

The Scarf [1], Billera [8], and Shapley [2] theorem is as follows:

Theorem 1. (Scarf–Billera–Shapley)
Every π-balanced NTU game has a non-empty core.

2.2. Applications of NTU Games and Host Games

Situations applying the notion of host games appear in public sports events, such as the
Asian Cup, the European Cup, the America’s Cup, the World Cup, and the Olympics. Vari-
ous host townships/cities will bring other interests from the participating townships/cities.
In this paper, we utilize an NTU game to model the problem. Our game considers the
coalition structure and host selection called a “host game.” In addition to the situations
described above, the government choosing to build public buildings is also an interest-
ing social issue. For example, the government pondered over the construction of youth
residences, national residences, libraries, incinerators, and coronavirus disease 2019 anti-
epidemic hotels in Taiwan. If people adopt a chosen location, they will not be averse to it.
Therefore, the governance sustainability is high. In this description, we examine a simple
question. Can people accept a public building no matter where it is built? We can thus
eliminate the political risk of choosing a location. How do we ensure this? As observed in
many of the situations mentioned above, one should be dedicated to fully satisfying every
participating individual or group in the context of joint decision making.

Based on the statement provided by the core in the previous sections and the related
mathematical definitions, we can see that the core is a reasonable allocation given to all
participants under the consideration of efficient allocation of resources that are unsatisfac-
tory but acceptable to all individuals or groups. This provides motivation and rationality
for analyzing the allocation using the core in this paper. However, the resource allocation
using the core is mathematically equivalent to the intersection of all corresponding sets
formed by individuals or groups. Therefore, there is a possibility of forming an empty set,
which in reality means that a consensus allocation cannot be achieved. Therefore, in the
following sections of this paper, we would like to discuss the conditions under which the
allocation derived using the core is not an empty set.

3. Generalizations of KKM

Shapley [2] used KKMS lemma, which is a generalization of Knaster, Kuratowski,
and Mazurkewicz’s [9] (KKM) lemma, to prove that every balanced non-transferable
utility game has a non-empty core. Gale [10] used the KKMG lemma, which is another
generalization of the KKM lemma, to prove the existence of a price equilibrium in a
market with indivisible commodities. Shih and Lee [11] combined KKMS with KKMG to
obtain a common generalization of KKM lemma. Our proof is based upon this common
generalization of the KKM lemma.

This common generalization of the KKM lemma of Shih and Lee [11] is as follows:
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Lemma 1 (Theorem 5.1, Shih and Lee [11]). Let M = {1, 2, · · ·, m} and m ≥ n. For every
i ∈ M, let F i = {Fi

S : S ∈ P(N)} be a family of closed subsets of the unit (n− 1)-simplex In−1

such that
BS ⊆

⋃
T∈P(S)

Fi
T for every S ∈ P(N).

Then, for every π : P(N)→ In−1 with π(S) ∈ BS for every S ∈ P(N), there exist a π-balanced
set {S1, S2, · · ·, Sn} and n distinct elements m1, m2, · · ·, mn of M such that

n⋂
i=1

Fmi
Si
6= ∅.

Remark 1. In Lemma 1,

1. if the conditions are restricted to (i) m = n, (ii) F i = F j for every i, j ∈ N, and (iii) Fi
S = ∅

for every i ∈ N and for every S ∈ P(N) with |S| ≥ 2, then Lemma 1 is the KKM lemma.
2. if the conditions are restricted to (i) m = n and (ii) F i = F j for every i, j ∈ N, then Lemma 1

is the KKMS lemma.
3. if the conditions are restricted to (i) m = n and (ii) Fi

S = ∅ for every i ∈ M and for every
S ∈ P(N) with |S| ≥ 2, then Lemma 1 is the KKMG lemma.

4. Main Result
4.1. Host Games and the Core

This note studies a new class of NTU games (host games). A host NTU game is a
family of NTU games parametrized by a set of agents, and one associates an NTU game
with any agent (called the host). We provide a sufficient condition for an allocation that
belongs to the supposed core of the host game.

Definition 2. A host game is a pair
(

N, (Vk)k∈N
)

which satisfies for all i, j ∈ N,

Vi(N)
⋂ ( ⋃

S∈P(N)

Vi(S)
)
= V j(N)

⋂ ( ⋃
S∈P(N)

V j(S)
)
, (1)

where (N, Vk) is an NTU game and k could be treated as a host for every k.

Equation (1) says that no matter who the host is, there is no difference in overall
interests. That is, it matters nothing to the participants who the host is.

Definition 3. The core of a host game
(

N, (Vk)k∈N

)
, Ch

(
N, (Vk)k∈N

)
, is defined to be the set

of feasible outcomes that cannot be improved upon by any coalition (no matter who the host is), i.e.,

x ∈ Ch

(
N, (Vk)k∈N

)
if and only if

1. x ∈ Vk(N) for each k ∈ N,
2. there is no S ⊆ N and yk ∈ Vk(S) for some k, such that yk

j > xj, for all j ∈ S.

Remark 2. Let
(

N, (Vk)k∈N

)
be a host game. It is not difficult to see the relation between

Ch

(
N, (Vk)k∈N

)
and C(N, Vk) as follows:

Ch

(
N, (Vk)k∈N

)
6= ∅ ⇐⇒ ⋂

k∈N
C(N, Vk) 6= ∅

=⇒ C(N, Vk) 6= ∅ ∀k ∈ N.

However, “C(N, Vk) 6= ∅ ∀k ∈ N” does not imply “Ch

(
N, (Vk)k∈N

)
6= ∅.”
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Two examples are offered to interpret Remark 2 as follows.

Example 1. Define a host game
(

N, (Vk)k∈N

)
to be N = {1, 2, 3} and

V1({1, 2, 3}) = V2({1, 2, 3}) = V3({1, 2, 3}) = {(x1, x2, x3) ∈ RN |x1 + x2 + x3 ≤ 1},
V1({1, 2}) = {(x1, x2, x3) ∈ RN |x1 + x2 ≤ 1},
V1({2, 3}) = {(x1, x2, x3) ∈ RN |x2 + x3 ≤ 0},
V1({1, 3}) = {(x1, x2, x3) ∈ RN |x1 + x3 ≤ 0},
V1({i}) = {(x1, x2, x3) ∈ RN |xi ≤ 0} for all i ∈ N,
V2({1, 2}) = {(x1, x2, x3) ∈ RN |x1 + x2 ≤ 0},
V2({2, 3}) = {(x1, x2, x3) ∈ RN |x2 + x3 ≤ 0},
V2({1, 3}) = {(x1, x2, x3) ∈ RN |x1 + x3 ≤ 1},
V2({i}) = {(x1, x2, x3) ∈ RN |xi ≤ 0} for all i ∈ N.
V3({1, 2}) = {(x1, x2, x3) ∈ RN |x1 + x2 ≤ 0},
V3({2, 3}) = {(x1, x2, x3) ∈ RN |x2 + x3 ≤ 1},
V3({1, 3}) = {(x1, x2, x3) ∈ RN |x1 + x3 ≤ 0},
V3({i}) = {(x1, x2, x3) ∈ RN |xi ≤ 0} for all i ∈ N.

It is easy to have that ( 1
2 , 1

2 , 0) ∈ C(N, V1), ( 1
2 , 0, 1

2 ) ∈ C(N, V2), (0, 1
2 , 1

2 ) ∈ C(N, V3),

but Ch

(
N, (Vk)k∈N

)
= ∅.

Example 2. Define a host game
(

N, (Vk)k∈N

)
to be N = {1, 2, 3} and

V1({1, 2, 3}) = V2({1, 2, 3}) = V3({1, 2, 3}) = {(x1, x2, x3) ∈ RN |x1 + x2 + x3 ≤ 2},
V1({1, 2}) = {(x1, x2, x3) ∈ RN |x1 + x2 ≤ 1},
V1({2, 3}) = {(x1, x2, x3) ∈ RN |x2 + x3 ≤ 0},
V1({1, 3}) = {(x1, x2, x3) ∈ RN |x1 + x3 ≤ 0},
V1({i}) = {(x1, x2, x3) ∈ RN |xi ≤ 0} for all i ∈ N,
V2({1, 2}) = {(x1, x2, x3) ∈ RN |x1 + x2 ≤ 0},
V2({2, 3}) = {(x1, x2, x3) ∈ RN |x2 + x3 ≤ 0},
V2({1, 3}) = {(x1, x2, x3) ∈ RN |x1 + x3 ≤ 1},
V2({i}) = {(x1, x2, x3) ∈ RN |xi ≤ 0} for all i ∈ N.
V3({1, 2}) = {(x1, x2, x3) ∈ RN |x1 + x2 ≤ 0},
V3({2, 3}) = {(x1, x2, x3) ∈ RN |x2 + x3 ≤ 1},
V3({1, 3}) = {(x1, x2, x3) ∈ RN |x1 + x3 ≤ 0},
V3({i}) = {(x1, x2, x3) ∈ RN |xi ≤ 0} for all i ∈ N.

It is easy to have that ( 2
3 , 2

3 , 2
3 ) ∈ C(N, V1), ( 2

3 , 2
3 , 2

3 ) ∈ C(N, V2), ( 2
3 , 2

3 , 2
3 ) ∈ C(N, V3),

and ( 2
3 , 2

3 , 2
3 ) ∈ Ch

(
N, (Vk)k∈N

)
.

From Remark 2, we can observe that even though each NTU game (N, Vk) is π-
balanced for each k, it cannot guarantee that a host game

(
N, (Vk)k∈N

)
has a non-empty

core. Thus, we extend the idea of the π-balanced criterion for NTU games to host games in
the following manner.

Definition 4. A host game
(

N, (Vk)k∈N
)

is π-balanced for some π if for each π-balanced family
β = {S1, S2, · · ·, Sn},

n⋂
k=1

Vk(Sk) ⊆
n⋂

k=1

Vk(N).

We already knew that in Shapley’s [2] proof, each π-balanced NTU game has a non-
empty core based on the KKMS lemma (see Remark 1). Here, based on Lemma 1, we will
demonstrate that each π-balanced host game has a non-empty core. Shapley’s [2] approach
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is prominently applied in this proof. Moreover, we present the evidence to be thorough.
Our main theorem is as follows:

Theorem 2. Every π-balanced host game has a non-empty core.

Proof. Let
(

N, (Vk)k∈N

)
be a π-balanced host game. By boundednes condition 4, there

exists a positive number M > 0 such that if x ∈ Vk(S) with xS ≥ 0, then xi ≤ M for every
i ∈ S, for every S ∈ P(N), and for every k = 1, 2, · · ·, n. For every i = 1, 2, · · ·, n, take
ti = −nMei for i = 1, 2, · · ·, n, i.e.,

ti
j = 0, if j 6= i, and ti

i = −nM.

For every S ∈ P(N), let BS = CH ({ti : i ∈ S}). For every k = 1, 2, · · ·, n, define a
real-value function rk : Rn → R by

rk(a) = sup
{

λ : a + λeN ∈ Vk(N)
⋂ ( ⋃

S∈P(N)

Vk(S)
)}

,

where eN is the vector of all 1 s. Since Equation (1), for all i, j ∈ N,

Vi(N)
⋂ ( ⋃

S∈P(N)

Vi(S)
)
= V j(N)

⋂ ( ⋃
S∈P(N)

V j(S)
)
,

we can assume that r = rk for all k = 1, 2, · · ·, n.
Since every Vk(S) satisfies all five conditions in Definition 1, the supremum in the

definition of r is actually a maximum, and defines a continuous function. Let f : BN →
Rn by

f (a) = a + r(a)eN .

For every k = 1, 2, · · ·, n, define

Fk
S = ( f )−1(Vk(S)) = {a ∈ BN : f (a) ∈ Vk(S)}.

Since r is continuous, this implies that f is continuous. Thus, for every k and for every
S, Fk

S is closed. For every k, let F k = {Fk
S : S ∈ P(N)}. Next, we will show that for every k,

F k satisfies the conditions of KKMS. In other words, for every k and for every S ∈ P(N),

BS ⊆
⋃

T∈P(S)
Fk

T .

First, we show that if a ∈ Fk
T ∩ BS, then T ⊆ S. If S = N, then we are done. Suppose

S 6= N. As a ∈ BS, we have ∑i∈S ai = −nM. This implies that for at least one, j ∈ S,
such that we have aj ≤ −nM|S| < −M. Considering just T = {j} in the definition of
r, we obtain r(a) > M. Hence, [a + r(a)eN ] ∈ Vk(T) and [a + r(a)eN ] /∈ InS(Vk(P)) for
every P ∈ P(N). In particular, [a + r(a)eN ] /∈ InS (Vk({i})) for every i ∈ T. Hence, by
boundedness, for every i ∈ T,

ai + r(a) ≤ M.

Since r(a) > M, this implies that ai < 0 for all i ∈ T. However, a ∈ BS implies ai = 0
for all i /∈ S. It forces that T ⊆ S. Combining above this with the fact that every a ∈ BN

belongs to at least one set Fk
T , we have that BS ⊆ ⋃T∈P(S) Fk

T for each S ∈ P(N).
Let m = n in Lemma 1. Lemma 1 asserts for any π the existence of a point a ∈ BN

and a π-balanced family β = {S1, S2, · · ·, Sn} such that a ∈ Fk
Sk for all k = 1, 2, · · ·, n. Let

x̂ = a+ r(a)eN . This implies that for all k = 1, 2, · · ·, n, x̂ ∈ Vk(Sk). That is, x̂ ∈ ⋂n
k=1 Vk(Sk).
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Since
(

N, (Vk)k∈N

)
is π-balanced, this implies that x̂ ∈ ⋂n

k=1 Vk(N). Next, we will show

that x̂ ∈ Ch

(
N, (Vk)k∈N

)
.

Assume there exist k, S, and yk ∈ Vk(S) such that yk
i > x̂i for all i ∈ S. This is in

contradiction with the definition of r(a). Hence, the core is non-empty.

Remark 3. In Example 1, it is easy to see that Ch

(
N, (Vk)k∈N

)
= ∅ implies that

(
N, (Vk)k∈N

)
is not π-balanced. In Example 2, it is clear to see that Ch

(
N, (Vk)k∈N

)
6= ∅ if

(
N, (Vk)k∈N

)
is

π-balanced.

4.2. Differences among Host Games and Multiple-NTU Games

Hwang [3] created a multiple-NTU game from the Cartesian product of these NTU
games. Thus, we treat these NTU games differently from multiple-NTU games by treating
them as hosts. Through the non-emptiness of the cores in various NTU games, we will
compare the variations between the non-emptiness of the core in a multiple-NTU game and
the non-emptiness of the core in a host game. A multiple-NTU game is defined as follows:

Definition 5. A multiple-NTU game is a pair (N, v) with v(S) =
n
∏
i=1

Vk(S) for each S ⊆ N,

where (N, Vk) is an NTU game for each k.

Note that v : P(N)→
n
∏

k=1
P(Rn). For convenience, we will use the lower case letter

v and the capital letter V to denote the characteristic functions of multiple-NTU games and
NTU games, respectively.

The core of a multiple-NTU game (N, v) is defined as follows:

Definition 6. The core of a multiple-NTU game (N, v) with v(S) =
n
∏

k=1
Vk(S), Cp(N, v), is

defined to be the set of feasible outcomes that cannot be improved upon by any coalition, i.e.,
x ∈ Cp(N, v) if and only if

1. x =
n
∏

k=1
xk ∈ v(N) =

n
∏

k=1
Vk(N),

2. there is no S ⊆ N, S 6= ∅, and yk ∈ Vk(S) for some k, such that yk
j > xk

j , for all j ∈ S.

Remark 4. Let (N, v) with v(S) =
n
∏

k=1
Vk(S) be a multiple-NTU game. It is not difficult to see

the relation between Cp(N, v) and C(N, Vk), as follows:

Cp
(

N, v) =
n

∏
k=1

C(N, Vk), and

Cp
(

N, v) 6= ∅⇐⇒ C(N, Vk) 6= ∅ ∀k ∈ N.

Two examples are offered to interpret Remark 4.

Example 3. Define a multiple-NTU game (N, v) to be N = {1, 2, 3} with v(S) =
3

∏
i=1

Vk(S) for

each S ⊆ N and
V1({1, 2, 3}) = V2({1, 2, 3}) = V3({1, 2, 3}) = {(x1, x2, x3) ∈ RN |x1 + x2 + x3 ≤ 1},
V1({1, 2}) = {(x1, x2, x3) ∈ RN |x1 + x2 ≤ 1},
V1({2, 3}) = {(x1, x2, x3) ∈ RN |x2 + x3 ≤ 1},
V1({1, 3}) = {(x1, x2, x3) ∈ RN |x1 + x3 ≤ 1},
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V1({i}) = {(x1, x2, x3) ∈ RN |xi ≤ 0} for all i ∈ N,
V2({1, 2}) = {(x1, x2, x3) ∈ RN |x1 + x2 ≤ 0},
V2({2, 3}) = {(x1, x2, x3) ∈ RN |x2 + x3 ≤ 0},
V2({1, 3}) = {(x1, x2, x3) ∈ RN |x1 + x3 ≤ 1},
V2({i}) = {(x1, x2, x3) ∈ RN |xi ≤ 0} for all i ∈ N.
V3({1, 2}) = {(x1, x2, x3) ∈ RN |x1 + x2 ≤ 0},
V3({2, 3}) = {(x1, x2, x3) ∈ RN |x2 + x3 ≤ 1},
V3({1, 3}) = {(x1, x2, x3) ∈ RN |x1 + x3 ≤ 0},
V3({i}) = {(x1, x2, x3) ∈ RN |xi ≤ 0} for all i ∈ N.

It is easy to have that C(N, V1) = ∅, ( 1
2 , 0, 1

2 ) ∈ C(N, V2), (0, 1
2 , 1

2 ) ∈ C(N, V3), and
Cp(N, v) = ∅.

Example 4. Define a multiple-NTU game (N, v) to be N = {1, 2, 3} with v(S) =
3

∏
i=1

Vk(S) for

each S ⊆ N and
V1({1, 2, 3}) = V2({1, 2, 3}) = V3({1, 2, 3}) = {(x1, x2, x3) ∈ RN |x1 + x2 + x3 ≤ 2},
V1({1, 2}) = {(x1, x2, x3) ∈ RN |x1 + x2 ≤ 1},
V1({2, 3}) = {(x1, x2, x3) ∈ RN |x2 + x3 ≤ 0},
V1({1, 3}) = {(x1, x2, x3) ∈ RN |x1 + x3 ≤ 0},
V1({i}) = {(x1, x2, x3) ∈ RN |xi ≤ 0} for all i ∈ N,
V2({1, 2}) = {(x1, x2, x3) ∈ RN |x1 + x2 ≤ 0},
V2({2, 3}) = {(x1, x2, x3) ∈ RN |x2 + x3 ≤ 0},
V2({1, 3}) = {(x1, x2, x3) ∈ RN |x1 + x3 ≤ 1},
V2({i}) = {(x1, x2, x3) ∈ RN |xi ≤ 0} for all i ∈ N.
V3({1, 2}) = {(x1, x2, x3) ∈ RN |x1 + x2 ≤ 0},
V3({2, 3}) = {(x1, x2, x3) ∈ RN |x2 + x3 ≤ 1},
V3({1, 3}) = {(x1, x2, x3) ∈ RN |x1 + x3 ≤ 0},
V3({i}) = {(x1, x2, x3) ∈ RN |xi ≤ 0} for all i ∈ N.

It is easy to have that ( 2
3 , 2

3 , 2
3 ) ∈ C(N, V1), ( 2

3 , 2
3 , 2

3 ) ∈ C(N, V2), ( 2
3 , 2

3 , 2
3 ) ∈ C(N, V3),

and ( 2
3 , 2

3 , 2
3 , 2

3 , 2
3 , 2

3 , 2
3 , 2

3 , 2
3 ) ∈ Cp(N, v).

5. Conclusions

1. Some notions and relative techniques proposed by Shapley [2] and Hwang [3] have
been applied throughout this paper. In order to present the significance of this paper,
one should compare our results with the results due to Shapley [2] and Hwang [3].

• Shapley [2] presented the idea of the π-balanced condition for NTU games in the
literature. Shapley [2] then established that each π-balanced NTU game has a
non-empty core by using the KKMS lemma.

• Hwang [3] treated the Cartesian product of these NTU games as a multiple-NTU
game. The π-balanced criteria for NTU games was also expanded by Hwang [3]
to include multiple-NTU games. Hwang [3] then demonstrated via Lemma 1
that every π-balanced multiple-NTU game has a non-empty core.

• Differently from Shapley [2] and Hwang [3], these NTU games were treated as
hosts in this note, as opposed to numerous NTU games. From Remark 2, we
observe that even though each NTU game (N, Vk) is π-balanced for each k, it
cannot guarantee that a host game

(
N, (Vk)k∈N

)
has a non-empty core. Therefore,

it is crucial to get a sufficient result that the host game has a non-empty core.
This note was meant to do this.

• We expanded the idea of the π-balanced requirement for NTU games to host
games in Section 4. Subsequently, using Lemma 1, we demonstrated that each
hosted game with π-balance has a non-empty core. Shapley’s [2] approach is
substantially utilized in Hwang’s [3] proof, although Lemma 1 is used instead of
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the KKMS lemma in Shapley’s [2] proof. Our proof is nearly identical to that of
Hwang [3] in Theorem 2 under Equation (1).

In conclusion, we want to stress that, although the proving methodology is not
novel, it is crucial to produce a sufficient demonstration that the host game has a
non-empty core.

2. There are several types of conditions which guarantee non-emptiness of the core for
NTU games. For example,

• Scarf [1] proved that every balanced NTU game has a non-empty core.
• Billera [8] further generalized the notion of a balanced game. In Billera’s work,

the balancedness condition is defined with respect to a system π of coalitional
vectors specifying the weight of each player within every coalition. The existence
of the system of the coalitional vectors π such that the game is π-balanced suffices
for the core to be non-empty. Moreover, Billera [8] proposed a necessary and
sufficient condition of a nonempty core for all NTU games whose payoff sets are
assumed to be convex.

• Vilkov [12] extended Shapley’s definition of convex games [13] to the context of
NTU games and proved that such games have non-empty cores. Greenberg [14]
generalized Vilkov’s result [12] that convex games have non-empty cores, and
moreover, that the class of convex games is not contained in the class of bal-
anced games.

• An extension of the π-balancedness condition is reached by allowing the system
of coalitional vectors π to depend on the utility distributions. Predtetchinski
and JeanJacques Herings [15] introduced the balancedness of the game with
respect to a correspondence Π that assigns to each distribution of utilities a set
of coalitional vectors π: they allowed the weight of a player within a coalition
to depend on the utility distribution that is proposed. They showed that the
core of an NTU game is non-empty if and only if it is balanced with respect to
some correspondence Π. An alternative necessary and sufficient balancedness
condition for non-emptiness of the core was defined by Keiding and Thorlund-
Petersen [16]. Predtetchinski and Jean-Jacques Herings [15] pointed out the
difference between the two works: the advantage of the Π-balancedness condi-
tion in Predtetchinski and Jean-Jacques Herings’ paper [15] over the condition
in Keiding and Thorlund-Petersen’s paper [16] is that it applies directly to the
game of interest and avoids the construction of any auxiliary games or sequences
of approximating games.

At present, the extension of the Π-balancedness condition to host games is an open
problem. We plan to propose some more extensions in subsequent researches.
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