Chaos Synchronization of Two Györgyi–Field Systems for the Belousov–Zhabotinsky Chemical Reaction
Abstract
:1. Introduction
2. Models and Methods
2.1. Györgyi–Field Model
2.2. Numerical Calculations
2.3. The Synchronizations
3. Results and Discussion
3.1. Behavior of the System at Different Input Concentrations
3.1.1. Low Flux Input
3.1.2. High Flux Input
3.2. Synchronization of Two Györgyi–Field Systems
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sagues, F.; Epstein, I. Nonlinear chemical dynamics. Dalton Trans. 2003, 7, 1201–1217. [Google Scholar] [CrossRef]
- Zhabotinsky, A.M. A history of chemical oscillations and waves. Chaos Interdiscip. J. Nonlinear Sci. 1991, 1, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Horvath, V.; Epstein, I.R. Pulse-coupled Belousov-Zhabotinsky oscillators with frequency modulation. Chaos 2018, 28, 045108. [Google Scholar] [CrossRef] [PubMed]
- Field, R.J.; Koros, E.; Noyes, R.M. Oscillations in chemical systems. II. Thorough analysis of temporal oscillation in bromate-cerium-malonic acid system. J. Am. Chem. Soc. 1972, 94, 8649–8664. [Google Scholar] [CrossRef]
- Field, R.J.; Noyes, R.M. Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction. J. Chem. Phys. 1974, 60, 1877. [Google Scholar] [CrossRef] [Green Version]
- Györgyi, L.; Rempe, S.L.; Field, R.J. A novel model for the simulation of chaos in low-flow-rate experiments with the Belousov-Zhabotinsky reaction: A chemical mechanism for two-frequency oscillations. J. Phys. Chem. 1991, 95, 3159–3165. [Google Scholar] [CrossRef]
- Yoshimoto, M.; Kurosawa, S. Pattern dynamics in the Belousov-Zhabotinsky coupled map lattice. Indian J. Phys. 2022, 96, 1489–1500. [Google Scholar] [CrossRef]
- Kopets, E.; Karimov, A.I.; Khafizova, A.M.; Katser, E.A.; Shchetinina, T.G. Simulation of Chemical Oscillator Network. In Proceedings of the Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), St. Petersburg, Russia, 25–28 January 2022; pp. 704–707. [Google Scholar] [CrossRef]
- Kopets, E.; Tatiana, S.; Rybin, V.; Dautov, A.; Karimov, T.; Karimov, A. Simulation of a Small-Scale Chemical Reservoir Computer for Pattern Recognition. In Proceedings of the 11th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 7–10 June 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Li, Y.; Lu, J.; Alofi, A.S.; Lou, J. Impulsive cluster synchronization for complex dynamical networks with packet loss and parameters mismatch. Appl. Math. Model. 2022, 112, 215–223. [Google Scholar] [CrossRef]
- Bao, H.; Zhang, Y.; Liu, W.; Bao, B. Memristor synapse-coupled memristive neuron network: Synchronization transition and occurrence of chimera. Nonlinear Dyn. 2022, 100, 937–950. [Google Scholar] [CrossRef]
- Shepelev, I.A.; Vadivasova, T.E. Synchronization in multiplex networks of chaotic oscillators with frequency mismatch. Chao Solitons Fractals 2021, 147, 110882. [Google Scholar] [CrossRef]
- Eroglu, D.; Lamb, J.S.W.; Pereira, T. Synchronisation of chaos and its applications. Contemp. Phys. 2017, 58, 207–243. [Google Scholar] [CrossRef]
- Wang, C.C.; Su, J. A new adaptive variable structure control for chaotic synchronization and secure communication. Chaos Solitons Fractals 2004, 20, 967–977. [Google Scholar] [CrossRef]
- Vaseghi, B.; Pourmina, M.A.; Mobayen, S. Finite-time chaos synchronization and its application in wireless sensor networks. Trans. Inst. Meas. Control 2018, 40, 3788–3799. [Google Scholar] [CrossRef]
- Chen, G.; Dong, X. From Chaos to Order: Methodologies, Perspectives and Applications; Series A; World Scientific Series on Nonlinear Science: Singapore, 1998; Volume 24. [Google Scholar] [CrossRef]
- Grosu, I. Robust Synchronization. Phys. Rev. E 1997, 56, 3709–3712. [Google Scholar] [CrossRef]
- Lerescu, A.I.; Constandache, N.; Oancea, S.; Grosu, I. Collection of master-slave synchronized chaotic systems. Chaos Solitons Fractals 2004, 22, 599–604. [Google Scholar] [CrossRef] [Green Version]
- Lerescu, A.I.; Oancea, S.; Grosu, I. Collection of mutually synchronized chaotic systems. Phys. Lett. A 2006, 352, 222–228. [Google Scholar] [CrossRef] [Green Version]
- Oancea, S.; Grosu, F.; Lazar, A.; Grosu, I. Master–slave synchronization of Lorenz systems using a single controller. Chaos Solitons Fractals 2009, 41, 2575–2580. [Google Scholar] [CrossRef]
- Oancea, S.; Grosu, I.; Oancea, A.V. Synchronization and antisynchronization for dissipative chaotic flows. J. Adv. Res. Phys. 2010, 1, 021009. [Google Scholar]
- Bodale, I.; Oancea, A.V. Chaos control for Willamowski-Rössler model of chemical reactions. Chaos Solitons Fractals 2015, 78, 1–9. [Google Scholar] [CrossRef]
- Lei, A.; Ji, L.; Xu, W. Delayed feedback control of a chemical chaotic model. Appl. Math. Model. 2009, 33, 677–682. [Google Scholar] [CrossRef]
- Rybin, V.; Tutueva, A.; Karimov, T.; Kolev, G.; Butusov, D.; Rodionova, E. Optimizing the Synchronization Parameters in Adaptive Models of Rössler system. In Proceedings of the 10th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 7–10 June 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Huang, D. Simple adaptive-feedback controller for identical chaos synchronization. Phys. Rev. E 2005, 71, 037203. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Chen, S.; Zhou, H. A simple adaptive-feedback controller for chaos Synchronization. Chaos Solitons Fractals 2009, 39, 316–321. [Google Scholar] [CrossRef]
- Györgyi, L.; Field, R.J. A three-variable model of deterministic chaos in the Belousov-Zhabotinsky reaction. Nature 1992, 355, 808–810. [Google Scholar] [CrossRef]
- Zhang, D.; Gyorgyi, L.; Peltier, W.R. Deterministic chaos in the Belousov-Zhabotinsky reaction: Experiments and simulations. Chaos Interdiscip. J. Nonlinear Sci. 1993, 3, 723–745. [Google Scholar] [CrossRef]
- Nagyová, J.B.; Jansík, B.; Lampart, M. Detection of embedded dynamics in the Györgyi-Field model. Sci. Rep. 2020, 10, 21030. [Google Scholar] [CrossRef]
- Bao, H.; Ding, R.; Hua, M.; Wu, H.; Chen, B. Initial-Condition Effects on a Two-Memristor-Based Jerk System. Mathematics 2022, 10, 411. [Google Scholar] [CrossRef]
- Chen, B.; Cheng, X.; Bao, H.; Chen, M.; Xu, Q. Extreme Multistability and Its Incremental Integral Reconstruction in a Non-Autonomous Memcapacitive Oscillator. Mathematics 2022, 10, 754. [Google Scholar] [CrossRef]
- Cassani, A.; Monteverde, A.; Piumetti, M. Belousov-Zhabotinsky type reactions: The non-linear behavior of chemical systems. J. Math. Chem. 2021, 59, 792–826. [Google Scholar] [CrossRef]
- Kabziński, J.; Mosiołek, P. Adaptive, Observer-Based Synchronization of Different Chaotic Systems. Appl. Sci. 2022, 12, 3394. [Google Scholar] [CrossRef]
Chemical Intermediate Species | Concentration | Reaction Parameters in GF Model | Value | Reaction Parameters in GF Model | Value |
---|---|---|---|---|---|
A | 0.1 mol | α | 666.67 | k3 | 3000 mol−1 s−1 |
M | 0.25 mol | β | 0.3478 | k4 | 55.2 mol−2.5 s−1; |
H | 0.26 mol | kf | 3.9 × 10−4 | k5 | 7000 mol−1 s−1; |
C | 8.33·10−4 mol | k1 | 4 × 106 mol−1 s−1 | k6 | 0.09 mol−1 s−1 |
k2 | 2 mol−3 s−1 | k7 | 0.23 mol−1 s−1 |
Chemical Intermediary Species | Concentration | Reaction Parameters in GF Model | Value | Reaction Parameters in GF Model | Value |
---|---|---|---|---|---|
A | 0.14 mol | α | 333.33 | k3 | 3000 mol−1 s−1 |
M | 0.3 mol | β | 0.2609 | k4 | 55.2 mol−2.5 s−1 |
H | 0.26 mol | kf | 6.18 × 10−4 | k5 | 7000 mol−1 s−1 |
C | 0.001 mol | k1 | 4 × 106 mol−1 s−1 | k6 | 0.09 mol−1 s−1 |
k2 | 2 mol−3 s−1 | k7 | 0.23 mol−1 s−1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oancea, A.V.; Bodale, I. Chaos Synchronization of Two Györgyi–Field Systems for the Belousov–Zhabotinsky Chemical Reaction. Mathematics 2022, 10, 3947. https://doi.org/10.3390/math10213947
Oancea AV, Bodale I. Chaos Synchronization of Two Györgyi–Field Systems for the Belousov–Zhabotinsky Chemical Reaction. Mathematics. 2022; 10(21):3947. https://doi.org/10.3390/math10213947
Chicago/Turabian StyleOancea, Andrei Victor, and Ilie Bodale. 2022. "Chaos Synchronization of Two Györgyi–Field Systems for the Belousov–Zhabotinsky Chemical Reaction" Mathematics 10, no. 21: 3947. https://doi.org/10.3390/math10213947
APA StyleOancea, A. V., & Bodale, I. (2022). Chaos Synchronization of Two Györgyi–Field Systems for the Belousov–Zhabotinsky Chemical Reaction. Mathematics, 10(21), 3947. https://doi.org/10.3390/math10213947