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Abstract: In previous studies, the authors formulated precise criteria for finding moving singular
points of one class of nonlinear differential equations with a second degree polynomial right-hand
side for a real domain. In this paper, the authors generalize these exact criteria to a complex one by
using phase spaces. The proposed technology for obtaining an approximate value of moving singular
points is necessary for developing PC programs. This technology has been tested in a manual version
based on a numerical experiment.
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1. Introduction

As is known, differential equations are the basis of mathematical models in many
areas, including building structures [1–3], as well as the study of wave processes in elastic
beams [4,5]. If in the case of linear equations there are no problems, then for nonlinear
differential equations the problem is related to finding moving singular points. Let us
note that, for nonlinear differential equations, there is a possibility for an asymptotic
approach [6,7] in single cases of solvability in quadratures [8–11]. Let us present the
development of the authors’ approach in the method of analytical approximate solution for
a certain class of nonlinear equations [12–19].

On the basis of the authors’ results in [19], this paper comes up with necessary and
sufficient criteria for the existence of moving singular points for a complex domain. It
should be noted that these criteria are divided into point and interval. If the first category
is necessary to confirm the fact of the existence of a moving singular point, then the second
allows to obtain these singular points with a given accuracy.

2. Research Results

In [18] for a nonlinear differential form:

y′′′(z) =
2

∑
n=0

an(z)yn(z),

reduced to normal form with the help of some substition, we consider the Cauchy problem

y′′′(z) = y2(z) + r(z), (1)
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y(z0) = y0,
y′(z1) = y1,
y′′(z2) = y2.

(2)

By using the Singular Point Regularization Technique with the change of variable

y(z) =
1

w(z)
, (3)

we procede to the inverse problem for the function w(z):

w′′′w2 = −6w′3 + 6ww′w′′ − w2 − r(z)w4, (4)
w(z0) = w0,
w′(z0) = w1,
w′′(z0) = w2.

(5)

Function w(z) is represented in the form w(z) = u(x, y) + i · v(x, y), where functions
u(x, y) and v(x, y) are characterized accordingly by the phase spaces Φ1(x, y, u(x, y)) and
Φ2(x, y, v(x, y)). Let us use terminology [17] to determine the correct and incorrect lines,
necessary to facilitate the presentation of the following provisions.

Theorem 1. A necessary and sufficient condition for the existence of a moving singular point
z∗ of multiplicity 3, for a solution y(z) to the Cauchy problem (1) and (2), is the fulfillment of
the conditions:

1. Re(w(z)) and Im(w(z)) w(z) function w(z), are functions of some domain G, which is a
neighborhood of a regular point z∗(x∗, y∗) for the function w(z), phase spaces Φ1 and Φ2 are
continuous with respect to their arguments.

2. Functions Re(w(z)) and Im(w(z)) change signs, passing through z∗(x∗, y∗), moving along
the correct line l in the direction of the axes Ox and Oy, while l : {z∗ ∈ l ⊂ G, l ∈ (Φ1 ∪Φ2)}.

Proof of Necessity. Knowing that z∗ is a moving singular point for y(z) of the Cauchy
Problem (1) and (2), let us prove that in this case Re(w(z)) and Im(w(z)) satisfy Theorem 1.

From [18], if we replace the real variable x with the complex variable z, it follows that
the function has the structure:

y(z) = (z∗ − z)−3
∞

∑
n=0

Cn(z∗ − z)n. (6)

In this case, based on [18], we have

r(z) =
∞

∑
n=0

An(z∗ − z)n, C0 = −60, C1 = 0, C2 = 0, C3 = 0, C4 = 0, C5 = 0, C6 =
A0

126
.

Taking into account the main part of the function y(z) , y(z) = O
(
−60/(z∗ − z)3

)
and the regularization of the moving singular point (3), we can write down for the function
w(z) in the domain G: w(z) = o

(
−(z∗ − z)3/60

)
.

Further, in this situation we have:

sign(u(x, y)) = sign((x∗ − x)), (7)

sign(v(x, y)) = sign((y∗ − y)). (8)

Analysis of the right-hand part w(z): the sign of the function u(x, y) is determined by
the sign of x, and the sign of the function v(x, y) is determined by the sign of y. Thus, we
establish the fulfillment of Conditions 1 and 2 of Theorem 1.
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Proof of Sufficiency. Conditions 1 and 2 of Theorem 1 are satisfied. Taking into account
the substitution (3) and formula (6), the function w(z) must have the structure as follows:

w(z) = (z∗ − z)3
∞
∑
0

Dn(z∗ − z)n.

Then, from (3), we find y(z) : y(z) = (z∗ − z)−3
∞
∑
0

Cn(z∗ − z)n. It follows from the last

equality that z∗ is a moving singular point of the function y(z) with multiplicity 3.

Theorem 2. Let z∗ be a moving singular point, with multiplicity 3, of the solution y(z) to the
Cauchy problem (1) and (2), then the necessary and sufficient condition is:

1. The functions Re(w(z)) and Im(w(z)) are continuous with respect to their arguments in
some domain G, the neighborhood of a regular point z∗(x∗, y∗) for the function w(z), phase
spaces Φ1 and Φ2.

2. Re(w(z)) and Im(w(z)) change signs, passing through z∗(x∗, y∗), moving sequentially
along the wrong line l1, l2 in the direction of the axes Ox and Oy, provided that

l1, l2 : {z∗ ∈ l1 ⊂ G, z∗ ∈ l2 ⊂ G, l1 ∈ Φ1, l1 ∈ Φ2, l2 ∈ Φ1, l2 ∈ Φ2}.

Proof of Necessity. Knowing that z∗ is a moving singular point with multiplicity 3 of
the function y(z), we will prove that the functions Re(w(z)) and Im(w(z)) also satisfy
Theorem 2.

Based on previously obtained results [18], if we replace the real variable x with the
complex variable z, the function y(z) can be represented in the form (6), where C0 = −60,
C1 = 0, C2 = 0, C3 = 0, C4 = 0, C5 = 0, C6 = A0

126 .

Then, the main part of the function is y(z) = O
(
−60/(z∗ − z)3

)
. Taking into account

the substitution (3), for the inverse function of the Cauchy Problem (4) and (5) we have:
w(z) = o

(
−(z∗ − z)3/60

)
.

Let us take a straight line l1 : y = const as an irregular line. Moving along the specified
line, taking into account expression (7), the function of the real part u(x, const) ∈ C(G) will
certainly change sign when passing through z∗(x, const). Therefore, by using the bisection
procedure for the integration step over the coordinate ′′x′′ , we obtain it with a given
accuracy. Acting similarly, we set x = x∗, and, having l2 : x = x∗ as an irregular line, we
obtain the second coordinate of the moving singular point y∗ in the analysis of the function
v(x∗, y).

Proof of Sufficiency. Let the imaginary and real parts of the function w(z) in some neigh-
borhood of the region G of phase spaces Φ1 and Φ2 satisfy conditions 1, 2 of Theorem 2.
Let us prove that z∗ is a moving singular point of the solution y(z) to the Cauchy Problem
(1) and (2).

Based on Conditions 1 and 2 of Theorem 2, the connection between the original
Problem (1) and (2) and the inverse Problem (4) and (5), as well as the results of [18], if we
replace the real variable x with the complex variable z, it follows that z∗ is a regular point
for solving Problem (4) and (5). In this case, the function can be represented as:

w(z) = (z∗ − z)3
∞

∑
0

Cn(z∗ − z)n.

Taking into account the regularization procedure y(z) = 1
w(z) , we have

y(z) = (z∗ − z)−3
∞

∑
0

Cn(z∗ − z)n.

Here, it follows that z∗ is a moving singular point of multiplicity 3 of the solution to
the Cauchy Problem (1) and (2).
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Theorem 3. (point criterion for the existence of movable singular points). A necessary and sufficient
condition for the fact that z∗ is a movable singular point of multiplicity 3 belonging to the function
y(z), a solution to the Cauchy Problem (1) and (2), is the fulfillment of the conditions

z(0) = z∗, z′(0) = 0, z′′(0) = 0, z′′′(0) =
1

10
, (9)

where z(w) is the inverse function for the inverse Cauchy Problem (4)–(5) solution.

Proof of Necesity. Knowing that z∗ is a moving singular point of the function y(z), which
is the solution to the Cauchy Problem (1) and (2), we will prove that the function satisfies
the conditions:

z(0) = z∗, z′(0) = 0, z′′(0) = 0, z′′′(0) =
1

10
.

Based on substitution (3), we represent the function as a regular series:

w(z) = D0(z∗ − z)3 + D1(z∗ − z)4 + D2(z∗ − z)5 + . . . . (10)

Taking into account that w(z∗) = 0, based on the Lagrange theorem on the inversion
of series [20], we obtain:

z∗ − z =
∞

∑
3

Bn · wn,

where B3 = 1
C0

.
When w = 0 we obtain z(0) = z∗. Differentiating with respect to w, we obtain:

z′ = −3B3 · w2 − 4B4w3 − 5B5w4 + . . . .

Finding the value z′(0) = 0. Differentiating the previous expression with respect to w,
we get: z′′ = −6B3w− 12B4w2 − 20B5w3 + . . . .

We obtainen what was sought z(0) = z∗, z′(0) = 0, z′′(0) = 0, z′′′(0) = 1
10 .

Proof of Sufficiency. Taking into account the conditions of the theorem, the function z(w),
which is the inverse function to the solution of the inverse Cauchy Problem (4) and (5),
satisfies the conditions: z(0) = z∗, z′(0) = 0, z′′(0) = 0, z′′′(0) = 1

10 . Let us prove that the
function y(z) has a moving singular point of multiplicity 3.

Based on the conditions of the theorem, we conclude that the function is represented
by a regular series:

z(w) = B̃0 + B̃1w + B̃2w2 + . . . (11)

and in accordance with the condition of the theorem B̃0 = z∗. Differentiating (11), we obtain:

z′ = B̃1 + 2B̃2w + 3B̃3w2 + . . . . (12)

From (12) it follows that B1 = 0 . Further, differentiating (12), we have:

z′′ = 2B̃2 + 6B̃3w + 12B̃4w2 + . . . , (13)

wherein it follows that B2 = 0. Differentiating (13): we get:

z′′′ = 6B̃3 + 24B̃4w + . . . (14)

Taking into account the initial conditions, we obtain B̃3 = 1
60 .

Thus, for z(w) we obtain the decomposition:

z(w) = z∗ +
1

60
w3 + . . . .
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or
z∗ − z = − 1

60
w3 − B4w4 − . . . . (15)

Based on the series inversion theorem [20], it follows from (15):

w(z) = D0(z∗ − z)3 + D1(z∗ − z)4 + D2(z∗ − z)5 + ...,

where D0 = C0 = −60.
By virtue of the singular point regularization technology (3), we obtain the following

representation for the function y(z):

y(z) = 1
w(z) = (z∗ − z)−3

∞
∑
0

Cn(z∗ − z)n, wherey it follows that B2 = 0.

The latter proves that the solution of the Cauchy Problem (1) and (2) has a moving
singular point of multiplicity 3.

Next, we turn to the application of the above theorems and theorems from [19] for
compiling an algorithm that allows us to find a moving singular point of the equation
under consideration with any predetermined accuracy. We illustrate the operation of the
algorithm with the help of a block diagram and a description of each step.

3. Description of the Algorithm for Finding an Approximate Value of a Moving
Singular Point with a Given Accuracy

1. We find the radius of convergence of the solution to the Cauchy Problem (1) and (2)
Rl , by admitting z1,l = zi+j. Then we move on to point 2.

2. We choose a step for the analytical approximate solution y(z), taking into account the
condition that the step should not exceed the radius of convergence for the analytical
approximate solution. Let us move on to point 3.

3. Calculation of function values y(z) at the corresponding points: y(zi + H), zi+1 =
zi + H, y′(zi+1), y′′(zi+1). Next, we go to point 4.

4. Verification of the condition for falling into the neighborhood of a moving singular
point y(zi) > 0, y′(zi) > 0, y′′(zi) > 0. If these conditions are met, go to step 7;
otherwise, go to step 5.

5. When the system of inequalities |zi+1|+ |H| ≤
∣∣z1,l

∣∣+ Rl , |zi+1|+ |H| ≤ b is fulfilled,
go to point 3; otherwise go to the next point.

6. If the conditions |zi+1|+ |H| >
∣∣z1,l

∣∣+ Rl and |zi+1|+ |H| ≤ b are met, we return to
point 1. In the case |zi+1|+ |H| > b, to point 11.

7. We consider the value of the solution of the inverse Cauchy Problem (4) and (5)
and the fulfillment of the corresponding conditions w

(
zi+j

)
· w
(
zi+j+1

)
< 0. If the

condition is met, go to step 8; otherwise, go to step 10.
8. We consider the value of the solution of the inverse Cauchy Problem (4) and (5) at

the corresponding points w(zi+1), w′(zi+1), w′′(zi+1), w′′′(zi+1). Let us move on to
point 9.

9. If |w(zi+1)| < ε1, |w′(zi+1)| < ε2, |w′′(zi+1)| < ε3, |w′′′(zi+1) + 360| < ε4, go to point
11; otherwise, go to point 10.

10. Let us reduce the step H = H/2, zi+j+1 = zi+j + H, j = j + 1 and go to step 7.
11. End of the algorithm.

The block diagram of the moving singular point search algorithm is shown in Figure 1.
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Figure 1. Block diagram of the algorithm of searching for a moving singular point.

4. Discussion

On the basis of theoretical provisions, an algorithm for finding a moving singular point
with a given accuracy has been compiled. For practical application, Theorem 2 is the best
option, since Theorem 1 is related to the solution of an additional problem of optimizing
the deviation when moving along the correct line. Theorem 3 is applied to confirm the
obtained value of the moving singular point. This algorithm was tested in a manual version
in Matlab for a specific task r(z) = 0; y(0) = 1

4 ; y′(0) = i; y′′(0) = 1, an approximate value
z∗ = 2.652717 of the moving singular point was obtained with an accuracy of ε = 10−6.

5. Conclusions

This paper presents a technology for obtaining moving singular points based on
formulated and proven theorems related to the necessary and sufficient condition for the
existence of moving singular points in a complex domain. The results obtained are the
theoretical basis of the program for finding a moving singular point with a given accuracy.
The results of the study were tested for a specific Cauchy Problem (1) and (2) in a manual
version in Matlab, taking into account the initial data discussed in Section 3.
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