On Novel Fractional Operators Involving the Multivariate Mittag–Leffler Function
Abstract
:1. Introduction
2. Generalized Fractional Integral Operators Involving the Multivariate Mittag– Leffler Function
- (i)
- (ii)
- (iii)
- Substituting , and , we obtain the generalized Prabhakar integral operator introduced by Gustavo A. Dorrego in [35] and given in Definition 8.
- (iv)
- (v)
- (vi)
- Substituting , and into (8), it reduces to the classical (R-L) fractional integral.
3. Generalized Fractional Derivative Involving the Multivariate Mittag–Leffler Function
4. Laplace Transform of the Fractional Operators
5. Applications to a Real-Life Problem
6. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abel, N.H. Solution de Quelques Problemes L’aide D’integrales Definies. Mag. Naturv 1823, 1, 1–27. [Google Scholar]
- Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives, Theory and Applications; Gordon and Breach: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Jarad, F.; Abdeljawad, T. Generalized Fractional Derivatives and Laplace Transform; Discrete and Continuous Dynamical Systems Series S; American Institute of Mathematical Sciences, 2020; Volume 13, pp. 709–722. Available online: www.aimsciences.org/article/doi/10.3934/dcdss.2020039 (accessed on 17 October 2022).
- Samraiz, M.; Perveen, Z.; Abdeljawad, T.; Iqbal, S.; Naheed, S. On Certain Fractional Calculus Operators and Their Applications in Mathematical Physics. Phys. Scr. 2020, 95, 115–210. [Google Scholar] [CrossRef]
- Samraiz, M.; Perveen, Z.; Rahman, G.; Nisar, K.S.; Kumar, D. On (k,s)-Hilfer Prabhakar Fractional Derivative with Applications in Mathematical Physics. Front. Phys. 2020, 8, 309. [Google Scholar] [CrossRef]
- Adjabi, Y.; Jarad, F.; Baleanu, D.; Abdeljawad, T. On Cauchy problems with Caputo-Hadamard fractional derivatives. J. Comp. Anal. Appl. 2016, 21, 661–681. [Google Scholar]
- Kilbas, A.A. Hadamard-type fractional calculus. J. Korean Math. Soc. 2020, 38, 1191–1204. [Google Scholar]
- Kilbas, A.A.; Trujillo, J.J. Hadamard-type integrals as G-transforms. Integral Transform. Spec. Funct. 2003, 14, 413–427. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Frac. Differ. Appl. 2015, 2, 73–85. [Google Scholar]
- Losada, J.; Nieto, J.J. Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 87–92. [Google Scholar]
- Yang, X.J.; Srivastava, H.M.; Machado, J.A.T. A new fractional derivative without a singular kernel: Application to the moddeling of the steady heat flow. Thermal Sci. 2016, 20, 753–756. [Google Scholar] [CrossRef]
- Agarwal, P.; Nieto, J.J. Some fractional integral formulas for the Mittag-Leffler type function with four paramete. Open Math. 2015, 13, 537–546. [Google Scholar] [CrossRef]
- Fernez, A.; Ozarslan, M.A.; Baleanu, D. On fractional calculus with general analytic kernels. Appl. Math. Comput. 2019, 354, 248–265. [Google Scholar]
- Teodoro, G.S.; Machado, J.A.T.; De Oliveira, E.C. A review of definitions of fractional derivatives and other operators. J. Comput. Phys. 2019, 388, 195–208. [Google Scholar] [CrossRef]
- Nisar, K.S.; Rahman, G.; Baleanu, D.; Mubeen, S.; Arshad, M. The (k,s)-fractional calculus of k-Mittag-Leffler function. Adv. Diff. Equ. 2017, 2017, 118. [Google Scholar] [CrossRef]
- Zhao, D.; Luo, M. Representations of acting processes and memory effects: General fractional derivative and its application to theory of heat conduction with finite wave speeds. Appl. Math. Comput. 2019, 49, 531–544. [Google Scholar] [CrossRef]
- Chen, S.B.; Rashid, S.; Noor, M.A.; Ashraf, R.; Chu, Y.M. A new approach on fractional calculus and probability density function. AIMS Math. 2020, 5, 7041–7054. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus: Models and Numerical Methods; Series on Complexity, Nonlinearity and Chaos; World Scientific: Singapore, 2012. [Google Scholar]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models; World Scientific Publishing Company: Singapore; Hackensack, NJ, USA; London, UK, 2010. [Google Scholar]
- Samraiz, M.; Umer, M.; Abduljawad, T.; Naheed, S.; Rahman, G.; Shah, K. On Riemann-type weighted fractional operator and solution to cauchy problems. Comput. Model. Eng. Sci. 2022. accepted. [Google Scholar]
- Mittag-Leffler, M.G. Sur la nouvelle fonction E(x). Comptes Rendus Acadmie Sci. 1903, 137, 5548. [Google Scholar]
- Garg, M.; Manohar, P.; Kalla, S.L. A Mittag-Leffler-type function of two variables. Int. Transf. Spec. Funct. 2013, 24, 9344. [Google Scholar] [CrossRef]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag-Leffler Functions, Related Topics and Applications; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Dorrego, G.A.; Cerutti, R.A. The k-Mittag-Leffler Function. Int. J. Contemp. Math. Sci. 2012, 7, 705–716. [Google Scholar]
- Özarslan, M.A.; Kürt, C. Bivariate Mittag-Leffler functions arising in the solutions of convolution integral equation with 2D-Laguerre-Konhauser polynomials in the kernel. Appl. Math. Comput. 2019, 347, 631–644. [Google Scholar] [CrossRef]
- Saxena, R.K.; Kalla, S.L.; Saxena, R. Multivariate analogue of generalised Mittag-Leffler function. Int. Transf. Spec. Funct. 2011, 22, 533–548. [Google Scholar] [CrossRef]
- Diaz, R.; Pariguan, E. On hypergeometric functions and Pochhammer k-symbol. Divulg. Math. 2007, 15, 179–192. [Google Scholar]
- Mubeen, S.; Habibullah, G.M. k-fractional integrals and application. Int. J. Contemp. Math. Sci. 2012, 7, 89–94. [Google Scholar]
- Nisar, K.S.; Rahman, G.; Choi, J.; Mubeen, S.; Arshad, M. Generalized hypergeometric k-functions via (k,s)-fractional calculus. J. Nonlinear Sci. Appl. 2017, 10, 1791–1800. [Google Scholar] [CrossRef] [Green Version]
- Garra, R.; Gorenflo, R.; Polito, F.; Tomovski, Z. Hilfer-Prabhakar derivatives and some applications. Appl. Math. Comput. 2014, 242, 576–589. [Google Scholar] [CrossRef] [Green Version]
- Dorrego, G.A. Generalized Riemann-Liouville fractional operators associated with a generalization of the Prabhakar integral operator. Progr. Fract. Differ. Appl. 2016, 2, 131–140. [Google Scholar] [CrossRef]
- Wu, S.; Samraiz, M.; Mehmood, A.; Jarad, F.; Khan, M.A.; Naheed, S. Some symmetric properties and application of weighted fractional integral operator. 2022. submitted. [Google Scholar]
- Jarad, F.; Abdeljawad, T.; Shah, K. On the weighted fractional of a function with respect to another function. Fractals 2020, 28, 2040011. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samraiz, M.; Mehmood, A.; Naheed, S.; Rahman, G.; Kashuri, A.; Nonlaopon, K. On Novel Fractional Operators Involving the Multivariate Mittag–Leffler Function. Mathematics 2022, 10, 3991. https://doi.org/10.3390/math10213991
Samraiz M, Mehmood A, Naheed S, Rahman G, Kashuri A, Nonlaopon K. On Novel Fractional Operators Involving the Multivariate Mittag–Leffler Function. Mathematics. 2022; 10(21):3991. https://doi.org/10.3390/math10213991
Chicago/Turabian StyleSamraiz, Muhammad, Ahsan Mehmood, Saima Naheed, Gauhar Rahman, Artion Kashuri, and Kamsing Nonlaopon. 2022. "On Novel Fractional Operators Involving the Multivariate Mittag–Leffler Function" Mathematics 10, no. 21: 3991. https://doi.org/10.3390/math10213991
APA StyleSamraiz, M., Mehmood, A., Naheed, S., Rahman, G., Kashuri, A., & Nonlaopon, K. (2022). On Novel Fractional Operators Involving the Multivariate Mittag–Leffler Function. Mathematics, 10(21), 3991. https://doi.org/10.3390/math10213991