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Abstract: This paper presents an impact-angle guidance law of unmanned aerial vehicles (UAVs)
with time-varying thrust in a boosting phase. Most current research on impact-angle guidance law
assumes that UAV speed is constant in terms of controlled thrust. However, the UAV speed and the
acceleration in a boosting phase keep changing because of time-varying thrust. Environmental factors
and manufacturing process error may prohibit accurately predicting vehicle-thrust profiles. We
propose a nonlinear impact-angle guidance law by analytically solving second-order error dynamics
with nonlinear time-varying coefficients. The proposed analytic solution enables one to update
guidance gains according to initial and current states so that desired impact angle is met while the
miss-distance error is reduced . We prove the finite-time error convergence of the proposed guidance
law with the Lyapunov stability theory. Various simulation studies are performed to verify the
proposed guidance law.

Keywords: impact-angle guidance; second-order error dynamics; unmanned aerial vehicles

MSC: 37N35

1. Introduction

The impact-angle control is critical to unmanned aerial vehicles (UAVs) such as launch
vehicles and guided weapons. A successful handover flight in the reentry phase of reusable
launch vehicles [1] and increasing the target lethality in the terminal phase of missiles [2]
rely on controlling the impact angle. From engine-control systems, vehicle speed is typically
constant or slowly time-varying by balancing the thrust with the drag force [3]. In a
boosting phase, however, vehicle speed and acceleration keep changing because of the
time-varying thrust. In addition, the accurate prediction of the total impulse of the thrust
can be prohibited by environmental conditions such as the temperature and chamber
pressure [4]. This may result in mission failures of UAVs.

We propose an impact-angle guidance law for impact angle and miss-distance con-
straints of unmanned aerial vehicles (UAVs) in a boosting phase. For the time-varying
thrust, we use body axial acceleration that vehicle accelerometers sense. Since the disper-
sion of the vehicle trajectory is caused by initial states and time-varying thrust, we update
the guidance gains of the proposed guidance law according to initial states and body axial
acceleration, while guaranteeing finite-time error convergence.

The impact-angle control of guided weapons is active in research. Since the propor-
tional guidance law (PNG) [5] is developed to decrease miss distance, various approaches
reducing the impact-angle error are proposed. Biased proportional navigation guidance
laws (BPNG) are developed by adding fixed bias [2], an integral of bias [6], time-varying
bias [7], and shaping bias [8] into the PNG in order to control the impact angle. Sliding
mode control (SMC) techniques are proposed for impact-angle control of maneuvering
targets in head-on, tail-chase, and head-pursuit engagement scenarios [9]; impact angle and
time control [10]; and finite-time interception with impact angle [11]. Singularity caused by
control saturation and chattering issues is resolved by nonsingular terminal sliding mode
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guidance laws [11,12]. On the other hand, many researchers have studied optimal guidance
laws to control the impact angle, an energy-optimal guidance law [13], the optimality of
guidance gains by solving the inverse problem of optimal control [14], an optimal guidance
law with first-order lag [15], and cooperative guidance law [16]. However, the proposed
approaches address constant vehicle speed by assuming that thrust and drag force are
balanced.

Many researchers have proposed guidance laws for time-varying vehicle speed. An op-
timal guidance law is proposed for the constraints of terminal velocity and propulsion
burn-out time [17]. For constant acceleration and deceleration caused by aerodynamic
drag, guidance commands based on optimal control theory are generated to reduce the
miss distance [18]. An integrated guidance and autopilot algorithm is developed for target
maneuver and model uncertainties [19]. However, these works [17–19] do not consider
the impact-angle constraints. To control the impact-angle error of an interceptor to a time-
varying predicted target position, a sub-optimal guidance law is proposed by satisfying
the geometry conditions at the propulsion burn-out time [20]. Adaptive second-order
polynomial guidance for decelerating vehicles using known profile information on time-
varying velocity is proposed [21]. However, the proposed scheme is developed with
linearized kinematics.

Recent works associated with guidance and path-following strategies have been stud-
ied for various applications. Space vehicle guidance based on differential game theory is
proposed for inaccurate target information by incorporating a multiple-model adaptive-
control scheme and a bank of filters that estimate different target information modes [22].
For a non-minimum-phase and 2-DOF manipulator equipped with five bar linkages, a path-
following controller based on transverse feedback linearization is developed in [23]. An im-
mersion and invariance orbital stabilization method is extended to the path-following
problem for marine surface vehicles [24].

The proposed guidance law is developed from the analytic solution of a line-of-sight
error dynamic system represented by a second-order ordinary differential equation with
nonlinear time-varying coefficients. Previous works have designed guidance laws that
minimize errors or cost functions. However, our approach generates guidance gains in
order for the analytic solution of the line-of-sight error dynamic system to exist. In addition,
the main advantage of this scheme is that it enables finite-time convergence associated with
the analytic solution. From the Lyapunov stability theory and zero error solution at impact
time, we prove the finite-time convergence with the inequality conditions of the exponent
of the analytic solution.

The remainder of this paper has been organized into the following sections: in
Sections 2 and 3, we present the problem setup and analytic solution of the line-of-sight
error dynamic system. In Section 4, we describe a nonlinear impact-angle guidance law
with convergence of the line-of-sight error dynamic system. In Section 5, we demonstrate
mathematical simulation with various scenarios. In Section 6, we provide conclusion and
future work.

2. Problem Setup

Let M and T be an unmanned aerial vehicle (UAV) and a goal point in a coordinate
system represented by OI − XIYI , respectively. Let λ be a line-of-sight angle, which is
an angle between the XI-axis and a line from M to T. Let γ be a flight-path angle that
represents the direction of vehicle velocity vector V with respect to the XI-axis. The heading
angle error ξ is the difference between the line-of-sight angle λ and the flight-path angle
γ. Range-to-go r is the distance between the current vehicle position and the goal point.
Figure 1 shows a guidance geometry in a planar plane, including the defined symbols.
The vehicle starts moving at origin OI with initial conditions λ0, γ0, V0, and r0 towards
the goal point while controlling the velocity vector. The vehicle is satisfied with zero miss
distance and impact angle λd when the vehicle impacts on goal point T with the vehicle
flight-path angle λd.
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Figure 1. Guidance geometry.

The vehicle dynamics associated with range-to-go r, line-of-sight angle λ, vehicle
speed V, and heading angle error ξ are represented by

ṙ = −V cos ξ (1)

λ̇ = −V
r

sin ξ (2)

ξ = γ− λ. (3)

Let f (t) be a positive continuous function that represents time-varying thrust. Let tb
be a burn-out time of thrust. Then, vehicle acceleration V̇ is modeled by

V̇ =

{
f (t) if t < tb
0 if t ≥ tb.

(4)

Assumption 1. The magnitude of heading error is less than π
2 .

Assumption 2. The vehicle speed is nonzero positive.

Assumption 3. The desired line-of-sight angle is constant.

Remark 1. The direction of the vehicle velocity vector usually goes towards a goal point. However,
the angular velocity of the vehicle velocity vector is not zero. The vehicle speed is not zero, which
means the initial speed exists at t = 0. Function f (t) represents general acceleration profiles.
For example, no thrust means f (t) = 0, and constant thrust means f (t) = c, where c is constant.
In real applications, f (t) is not known a priori but measured by vehicle accelerometers. The fixed
desired line-of-sight angle represents a stationary target.

3. Analytic Solution of Line-of-Sight Error Dynamic System

This section describes a line-of-sight error dynamic system and its analytic solution.
Let e be the line-sight-error as follows:

e = λ− λd. (5)

Zero line-of-sight error means the vehicle velocity vector γ equals the desired line-of-
sight angle λd shown in Figure 1. This implies that the desired line-of-sight angle on an
impact time is an impact angle in that the heading error is zero from (3), the line-of-sight
rate is zero from (2), and the range velocity is negative from (1).

We propose a line-of-sight error dynamic system that represents a second-order ordi-
nary differential equation (ODE). The proposed ODE composed of nonlinear time-varying
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coefficients and gains will be solved analytically from the following assumption and
Lemma.

Assumption 4. V̈/V is significantly small. Thus, V̈/V ≈ 0.

Assumption 5. sin ξξ̇ is significantly small. Thus, sin ξξ̇ ≈ 0.

Remark 2. The vehicle speed V keeps increasing by integrating the jerk term V̈ twice in a boosting
phase. Therefore, V̈/V is significantly small in a steady-state. In addition, sin ξ is less than 1 by
Assumption 1. ξ̇ is quite small in a steady-state. Hence, sin ξξ̇ is significantly small in most flight
time.

Lemma 1. Let c 6= 0, x 6= −1, and k1 6= 0 are constants, respectively. A second-order ordinary
differential equation with nonlinear time-varying coefficients

(r2)ë + (k1Vr cos ξ)ė + (k2V2 cos2 ξ)e = 0 (6)

is analytically solved when

k2 = (x + 1)
[

k1

(
1 +

V̇r
V2 cos ξ

)
− x
(

1 +
V̇r

V2 cos ξ

)2

− V̇r
V2 cos ξ

− 2
(

V̇r
V2 cos ξ

)2]
. (7)

The analytic solution of (6) is

e = c
( r

V

)x+1
. (8)

Proof. Let β be V̇/V. After taking single and double derivative of r/V, we obtain

d
dt

( r
V

)
=

ṙ
V
− β

r
V

(9)

d2

dt2

( r
V

)
=

r̈
V
−
( r

V

)( V̈
V

)
− 2β

ṙ
V

+ 2β2 r
V

. (10)

By Assumptions 4 and 5, and (1),

d
dt

( r
V

)
= − cos ξ − β

r
V

(11)

d2

dt2

( r
V

)
= β cos ξ + 2β2 r

V
. (12)

We let e be c(r/V)x+1 to show that (3) is satisfied. From Assumption 2, when dividing
both sides of (1) with V2, we have( r

V

)2
ë +

(
k1

r
V

cos ξ
)

ė + (k2 cos2 ξ)e = 0. (13)

The single and double derivative of e are

ė = c(x + 1)
( r

V

)x d
dt

( r
V

)
(14)

ë = cx(x + 1)
( r

V

)x−1
(

d
dt

( r
V

))2
+ c(x + 1)

( r
V

)x d2

dt2

( r
V

)
. (15)
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We plug (8), (14) and (15) into (6) by using (9) and (10). Then,

c
( r

V

)x+1
[

x(x + 1)
(

1 +
βr

V cos ξ

)2
+ (x + 1)

(
βVr cos ξ + 2β2r2

V2 cos2 ξ

)
− k1(x + 1)

(
1 +

βr
V cos ξ

)
+ k2

]
= 0.

(16)

Since k2 is (x + 1)
(

k1

(
1 + βr

V cos ξ

)
− x
(

1 + βr
V cos ξ

)2
− βr

V cos ξ − 2
(

βr
V cos ξ

)2
)

, (16) is

satisfied regardless of
( r

V
)x+1. Therefore, e = c

( r
V
)x+1.

Remark 3. An analytic solution of the line-of-sight error dynamic system exists when guidance
gains k1 and k2 are designed by (7) from Lemma 1.

4. Nonlinear Impact-Angle Guidance Law

This section describes the proposed impact-angle guidance law by using the analytic
solution of the line-of-sight error dynamic system in the previous section. By using (2) and
the derivative of (3), the double derivative of line-of-sight error is

ë = − V̇
r

sin ξ +
Vṙ
r2 sin ξ − V

r
cos ξξ̇

= − V̇
r

sin ξ +
Vṙ
r2 sin ξ − V2

r2 sin ξ cos ξ − V
r

cos ξγ̇.
(17)

Let k1 > 0 be a positive constant. Let k2 > 0 be a time-varying parameter that meets (7).
We design a nonlinear impact-angle guidance law by the following equation.

γ̇ =

(
2− V̇

V
r
ṙ

)
ė + k1 ė + k2

(
V cos ξ

r

)
e. (18)

In (18), the first term sequentially cancels three nonlinear terms from the left of (17).
The second and the third terms of (18) are associated with error dynamics with design
parameters k1 and k2. We prove Theorem 1 to show that line-of-sight angle goes to a desired
value at an impact time.

Theorem 1. Let x > 0 be a constant. Let k2 be a time-varying parameter selected by (7) of Lemma 1.
The line-of-sight error e governed by (6) of Lemma 1 goes to zero when the range-to-go goes to zero.
In addition, the line-of-sight error e is zero when the range-to-go is zero.

Proof. First, we show that the line-of-sight error e is governed by (6). By plugging (18)
into (17), we obtain (6) of Lemma 1 as follows:

(r2)ë + (k1Vr cos ξ)ė + (k2V2 cos2 ξ)e = 0. (19)

Then,

ė =
V

(k1r cos ξ)

(
−
( r

V

)2
ë−

(
k2 cos2 ξ

)
e
)

. (20)

Consider a Lyapunov function candidate VL = 1
2 e2. The derivative of VL is

V̇L = eė = e
(
− r

k1V cos ξ
ë− k2V cos ξ

k1r
e
)

(21)

= − r
k1V cos ξ

eë− k2V cos ξ

k1r
e2 (22)
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Since k2 is selected by (7) of Lemma 1, multiplying (8) by (15) is

eë = c2
( r

V

)2x
(x + 1)

(
x
(

cos ξ + β
( r

V

))2
+ β cos ξ

( r
V

)
+ 2β2

( r
V

)2
)

. (23)

When r is nonzero, eë > 0 because cos ξ + β r
V is positive, β cos ξ r

V + 2β2( r
V
)2 nonneg-

ative, and x > 0. In addition, k1 and k2 are positive. Hence, V̇L < 0. When r is zero, (8) is
zero. Thus, VL = 0 and V̇L = 0. Therefore, e goes to zero when r goes to zero. Moreover, e
is zero when r is zero.

Corollary 1. Let e0 6= 0 and ė0 6= 0 be the line-of-sight error and line-of-sight rate at t = 0,
respectively. Let r0 6= 0, V0 6= 0 and ξ0 be the initial range-to-go, initial speed, and initial heading
error. Then,

x = − ė0

e0

(
V0r0

V2
0 cos ξ0 + V̇0r0

)
− 1. (24)

Furthermore, error convergence is guaranteed when

ė0

e0

(
V0r0

V2
0 cos ξ0 + V̇0r0

)
< −1 (25)

Proof. Let β0 be V̇0/V0. Equations (8) and (14) at t = 0 are

e0 = c
(

r0

V0

)x+1
(26)

ė0 = c(x + 1)
(

r0

V0

)x(
−β0 −

(
r0

V0

))
, (27)

respectively. Then, x = − ė0
e0

(
r0

V0 cos ξ0+β0r0

)
− 1. By Theorem 1, the line-of-sight error e goes

to zero when x > 0. Therefore, ė0
e0

(
r0

V0 cos ξ0+β0r0

)
< −1.

5. Simulation Results

In this section, we present various simulations that verify the proposed guidance
scheme. We will show that the analytic solution of the line-of-sight error corresponds
to the true line-of-sight error computed by integrating the line-of-sight error dynamic
system. Two types of acceleration profiles that represent constant and time-varying thrust
are applied to this simulation.

The target positions in the X-axis and Y-axis are 0 m and 3500 m, respectively. The ini-
tial position in the X-axis is zero, and the initial position in the Y-axis is determined by
the initial line-of-sight angle, which is 40 deg. The impact angle is required to be 60 deg.
The initial vehicle speed is 500 m/s, and the vehicle speed varies according to a function
of (4) given. The burn-out time tb is set by the impact time of each simulation. This im-
plies that thrust is activated until a vehicle reaches a target point. The guidance gain k1
is set to 20. The guidance gain k2 is computed by (7). For the first scenario associated
with the analytic solution, we set f (t) = 10 and f (t) = 10 sin t + 10, which represent
constant and time-varying thrust, respectively, while the initial flight-path angle is 10
deg. Figures 2 and 3 represent analytic and true solutions. Figure 2 shows that the ana-
lytic solution of the line-of-sight error is equal to the true solution of line-of-sight error
in the constant-thrust scenario. From the time-varying-thrust scenario of Figure 3, both
of the analytic and true solutions of the line-of-sight error are well matched, even if a
vehicle has a transient period of flight, which violates Assumption 4. These results indicate
that error profiles that the proposed guidance law generate go to zero at impact times,
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consistently. We select more scenarios of constant thrust represented by f (t) = 10, 30,
and 50 as Cases 1, 2, and 3 (see Figure 4). In terms of time-varying thrust, we choose
f (t) = 10 sin t + 10, f (t) = 30 sin t + 30, and f (t) = 50 sin t + 50 as Cases 4, 5, and 6 (see
Figure 5). Figures 6 and 7 represent trajectories of Cases 1–6.

Figure 2. Analytic and true solutions (constant thrust scenario).

Figure 3. Analytic and true solutions (time-varying thrust scenario).

Figure 4. Thrust profiles of Cases 1–3.
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Figure 5. Thrust profiles of Cases 4–6.

Figure 6. Trajectories of Cases 1–3.

Figure 7. Trajectories of Cases 4–6.

Figure 6 shows vehicle trajectories according to three scenarios produced by the
constant acceleration profiles of Figure 4. Figure 7 shows three case-vehicle trajectories
related to time-varying acceleration profiles of Figure 5. Cases 1–3 in Figure 4 have constant
thrust, but their thrust magnitudes are different. Cases 4–6 in Figure 5 have sinusoidal
thrust profiles with 1 Hz frequency, but their thrust magnitudes are different. All of the
trajectories in Cases 1–6 are consistent, although the thrust magnitude and shape differ
from each other in all the cases. Table 1 represents the miss distance and angle error at
impact time. From Table 1, the proposed guidance law makes almost zero miss distances
and zero impact-angle errors.
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Table 1. Miss distance and impact-angle error of Cases 1–6.

Cases Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Miss Distance 0.0104 m 0.0120 m 0.0151 m 0.0035 m 0.0103 m 0.0209 m
Angle Error 1 −0.0077 deg −0.0004 deg 0.0068 deg 0.0000 deg −0.0004 deg −0.0238 deg

1 This is impact-angle error.

Figures 8 and 9 represent line-of-sight error according to thrust profiles. In Figures 8
and 9, all of the line-of-sight errors converge to zero when time goes by. Furthermore, all
of the line-of-sight errors are zero at impact times from Table 1. Therefore, Theorem 1 is
verified by these simulation results. Figures 10 and 11 show a heading error according to
the thrust profiles. When vehicles go toward the goal point, all the heading errors converge
to zero. At impact times when the vehicles reach the goal point, all of the heading errors
are zero. Since the line-of-sight angle at an impact time is equivalent to the impact angle
from (3), the impact-angle requirements are consequently satisfied from Figures 8 and 9.

Figure 8. Line-of-sight angle error (constant thrust scenario).

Figure 9. Line-of-sight angle error (time-varying thrust scenario).
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Figure 10. Heading error (constant thrust scenario).

Figure 11. Heading error (time-varying thrust scenario).

Figure 11 has an oscillation mode, but Figure 10 has no oscillation. This is explained
by Figures 12 and 13 . Figure 12 shows that speed keeps increasing with a constant slope
because of constant thrust. Figure 13 represents continuously increasing speed with an
oscillation mode because the time-varying thrust is generated from a 1 Hz sinusoidal
function. From (2) and (18), speed and acceleration are employed to produce line-of-sight
and flight-path-angle rates. Hence, the 1 Hz frequency mode is included in the heading
error calculated by integrating the difference between the line-of-sight and flight-path-angle
rates. Figures 14 and 15 represents guidance gains according to thrust. When time goes by,
guidance gains decrease. The 1 Hz oscillation mode is included in the guidance-gain profiles
of Figure 15 due to feedback information such as acceleration, speed, and heading error.

Figure 12. Speed profile (constant thrust scenario).
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Figure 13. Speed profile (time-varying thrust scenario).

Figure 14. Guidance gain (constant thrust scenario).

Figure 15. Guidance gain (time-varying thrust scenario).

In real applications, acceleration is measured by sensors such as accelerometers that
contain high-frequency noise. We devise three scenario Cases 7–9 by adding measurement
noise into time-varying thrust represented by Cases 4–6. The maximum magnitude of
measurement noise is assumed to be 20% of the maximum time-varying thrust of each case.
The frequency of measurement noise is set to be 20 Hz. Figures 16 and 17 represent all of
the trajectories and guidance gains of Cases 4–9, respectively. Although significantly large
measurement noise is included in the proposed guidance law, zero miss distance and zero
impact-angle error are met in Table 2.
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Figure 16. Trajectories of Case 4–9.

Figure 17. Guidance gain of Cases 4–9.

Table 2. Miss Distance and impact-angle error of Cases 4–9.

Cases Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

Miss Distance 0.0035 m 0.0103 m 0.0209 m 0.0066 m 0.0083 m 0.0068 m
Angle Error 1 0.0000 deg −0.0004 deg −0.0238 deg 0.0000 deg 0.0004 deg 0.0017 deg

1 This is an impact-angle error.

We simulate a biased proportional navigation guidance (BPNG) law practically widely
used for an actual UAV application in [2] to compare the proposed guidance law. Table 3
shows the BPNG law simulation results of miss distance and impact-angle error according
to the thrust profiles of Cases 1–6. From Tables 1 and 3, the proposed guidance law
and the BPNG law exhibit similar performance in terms of miss distance. However, the
impact-angle error of the BPNG law is much larger than that of the proposed guidance law.
Therefore, the proposed guidance law is more advantageous than the BPNG law for the
time-varying thrust.

Table 3. Miss Distance and impact-angle error of Biased PNG [2].

Cases Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Miss Distance 0.0102 m 0.0051 m 0.0176 m 0.0046 m 0.0152 m 0.0088 m
Angle Error 1 −0.4699 deg −1.4314 deg −2.0026 deg −0.4950 deg −1.4792 deg −2.0610 deg

1 This is impact-angle error.
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6. Conclusions

This paper presents a nonlinear impact-angle guidance law for unmanned aerial
vehicles (UAVs) with time-varying thrust. By analytically solving second-order error
dynamics with nonlinear time-varying coefficients, we update guidance gains according to
initial and current states by real time. This strategy, which is based on an analytic solution,
enables one to reduce the dispersion of trajectory. Furthermore, we show that the proposed
guidance gains guarantee finite-time error convergence from the Lyapunov stability theory.
Future work will deal with various physical constraints such as acceleration constraints.
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