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Abstract: The paper aims to identify the situations in which a complex elastic system, which is subject
to mechanical vibrations, can act as a dynamic absorber of vibrations for certain frequencies. The
conditions that the system must fulfill in order to achieve this goal are determined and then a calcula-
tion example is presented. The method is interesting because it allows to avoid attaching an absorber
specially built for this, a situation that complicates the project and increases manufacturing costs.
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1. Introduction

Dynamic absorbers represent an ingenious and relatively cheap solution to reduce
vibrations, with numerous applications in engineering, from civil engineering, mechanical
engineering, vehicles, aeronautics, naval engineering and the examples can go on. The
first dynamic absorber was patented by Frahm [1] in 1909. The theoretical foundations
are laid by the work of Ormondroyd and Den Hartog [2] in 1928. Taking into account the
performance of this vibration reduction system and the low manufacturing price, numerous
studies followed in this field. The aim was to increase the effectiveness of the designed
absorbers and to optimize the various constructive parameters. Numerous improvements
have also been proposed and numerous types of unconventional absorbers, active or
passive, have been created. At the moment, the dynamic absorber is still finding new
applications, in new fields, requiring a continuous study of the subject.

For example, a dynamic absorber that attenuates the vibrations of three resonance
frequencies simultaneously is studied and proposed in [3]. It is known to suppress a
disturbing frequency it is sufficient to install a single damper whose natural frequency is ad-
justed to the excitation frequency. Obviously, to suppress more frequencies, more absorbers
can be mounted, but this approach leads to additional costs and a more complicated device.
The paper presents a system that allows, by adjusting the geometric dimensions, the precise
adjustment of the natural frequency of the absorber according to the value of the frequency
to be absorbed. Numerical examples prove the validity of the proposed solution. In [4],
a nonlinear dynamic vibration absorber (DVA) with variable frequency and damping is
analyzed. Numerical simulation for this vibration absorber for a coupled system with two
degrees of freedom shows that the proposed absorber can adapt to different conditions
that may occur in operation. For the seismic impact protection of a building, in [5] a DVA
with several frequencies is proposed in the form of an elastic continuum. This material has
several natural frequencies in the frequency range of seismic effects. When the absorber
has several natural frequencies close to the resonant frequency of the protected building,
part of the building’s oscillation energy is transferred to the absorber’s oscillations and the
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peak level of the frequency response function is reduced. A specific problem is presented
in [6] where a DVA is designed to help prevent the overturning of a rigid block. For
this, a pendulum shock absorber is used. Variable parameters are considered geometric
characteristics. The results prove that the existence of DVA leads to a general improvement
of the dynamic response of the system. The experimental results confirm the validity of the
analytical model and validate the effectiveness of the pendulum mass damper.

DVA are mainly used for the damping of forced vibrations with harmonic excitation.
One or more harmful frequencies are usually eliminated. Interesting research that uses
magnetic force to achieve dynamic absorption is presented in [7]. Vibration control in
rotating systems is studied. Two Jeffcott rotor vibration absorption systems are proposed.
For the first version, the shock absorber is located between the absorber mass and the disc,
and in the second, it is located between the absorber mass and the ground. The optimal
parameters of the absorption system are obtained analytically using the classical theory. To
evaluate and validate the obtained results, the experimental data of the proposed dynamic
absorbers were compared with the simulation results. The effectiveness of the proposed
solution was thus verified.

Devices operating at supercritical speeds need to go through all speeds, including
the critical ones, during start-up. Passing through the resonance zone can lead to machine
failures, if the amplitude level when passing through the resonance is too high. This raises
the problem of designing some DVA that will act during the passage of the car through
the critical speeds. For this, in [8] a rotating dynamic absorber with a viscoelastic element
is proposed. A finite element modeling is used in the dimensioning step. A significant
reduction of the amplitudes and requests that occur when passing through the critical zone
is obtained. Thus, the rotating system can reach a super-critical speed through a smooth
run-up.

New methods as use of the magneto-rheological elastomer (a smart materials with
elastic property variable in the external magnetic field) were developed in the last period to
absorb the vibration energy [9,10]. In the paper [11], two versions of a possible semi-active
suspension of a work machine seat are presented. The first version uses a magneto-
rheological damper and the second a combination of magneto-rheological damper and
passive dynamic absorber. The optimum of the passive parameters of the seat suspension
and the dynamic absorber was obtained using genetic algorithms according to the defined
minimization function. In [12,13] various aspects of the design of DVA were studied. More
results are presented in [14–20].

Although most works deal with the introduction of special elements to achieve dy-
namic absorption, the calculation methods involved can be very useful in the development
of our work. We present some such works that helped us in the development of the
proposed ideas below.

In the case of boring processes, it is necessary to reduce the excessive vibrations caused
by the low rigidity of the material of the tools used [21]. Vibration reduction is achieved
using a DVA, located on the edge of the boring bar. The dynamic absorber is represented
by a thin steel tube inside which there is natural rubber. Tuning the DVA to the vibration
that is desired to be absorbed is achieved by varying the number of inserted rubber sleeves.
Thus a customized design of the drill rod with DVA can remain stable at higher forces.

In [22], a new e-DVA module is proposed that signals the synergy that exists between
vehicle driving and vibration attenuation. This allows the design of a mechanism that
ensures the tuning of the absorber in relation to the excitation of the road. An analysis of the
vertical dynamics in the frequency and time domain demonstrates the increase in comfort
while driving and the stability of handling. This synergy represented a suggestion regarding
the use of a judicious design in order to use the mechanical system as a mechanical absorber.
In the paper [23], a new method is proposed to allow the optimal configuration of the DVA
attached to a non-damped/damped primary structure. Based on the Lyapunov equation,
the performance indices are expressed by quadratic matrix forms. Using this method,
the classical solutions can be obtained in the case of an external force or an excitation by
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acceleration of the base. More interesting method to calculate the vibration absorbtion of a
mechanical system are presented in [24–27].

In the current work, it is studied to what extent a judicious dimensioning of a system
allows it to function as a dynamic absorber, for one or more exciting frequencies. In
this way, a reduction of vibrations on certain frequency ranges can be ensured, without
mounting an additional absorber. In this way, the design of the elastic system is simplified
and, obviously, the manufacturing costs decrease. The complexity of the system and the
large number of parameters involved allow that by changing some of these parameters,
a dynamic absorption can be obtained for the mass that is of interest to the user, without
adding a dedicated absorber.

2. Model and Method

For simplicity, let’s consider a vibrating system, without damping, with degrees
of freedom. It is also assume that the system is subject to a harmonic excitation with
pulsation ω. The equations of motion for this system are given by the system of differential
equations [28–31]:

[M]
{ ..

X
}
+ [K]{X} = {F} cos ωt, (1)

where [M] represents the mass matrix, [K] represents the stifness matyrix and {F} the
excitation forces vector. Let’s also assume that the excitation acts on a single element of the
system, let’s say on the element n. It is desired that the system as a whole act as a dynamic
shock absorber, that is, p masses not to move if the excitation acts. Let’s assume that these
are the last p masses in the system (this can be achieved, regardless of the masses we focus
on, by renumbering the masses). We propose to determine the condition that the masses
and rigidities of the system must fulfill for this to happen. Let’s partition the system of
equations as follows:

[
[M11] [M12]
{M21} [M22]

]
{ ..

X1

}{ ..
X2

}+

[
[K11] [K12]
[K21] [K22]

]{
{X1}
{X2}

}
=

{
{F1}
{F2}

}
cos ωt, (2)

where the vector {X1} =
[
x1 x2 . . . xn−p

]
contains the first n-p masses of the sys-

tem (has dimension (n − p) × 1 and {X2} =
[
xn−p+1 . . . xn

]
the next p masses (has

dimension (p × 1). The matrices [M11], [K11] have dimension ((n − p) × (n − p), matrices
matricele [M12], [K12] have dimension (n − p) × p, the matrices [M21], [K21] have the di-
mension p × (n − p), and also [M22], [K22] the dimension p × p. The solution is chosen in
the form: {

{X1}
{X2}

}
=

{
{Φ}1
{Φ2}

}
cos ωt, (3)

One obtain: 
{ ..

X1

}{ ..
X2

} = −ω2
{
{Φ1}
{Φ2}

}
cos ωt, (4)

Putting the condition that the solution (3) verifies Equation (2), it obtains:[
[K11]−ω2[M11] [K12]−ω2[M12]
[K21]−ω2[M21] [K22]−ω2[M22]

]{
{X1}
{X2}

}
=

{
{F1}
{F2}

}
, (5)

or: (
[K11]−ω2[M11]

)
{X1}+

(
[K12]−ω2[M12]

)
{X2} = {F1}(

[K21]−ω2[M21]
)
{X1}+

(
[K22]−ω2[M22]

)
{X2} = {F2}

(6)
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In the conditions in which {F1} = 0 (there is no excitation on the first part of the
system) it is impose that {X2} = 0. Let’s look for the conditions for this to happen. By
entering the conditions in Equation (6), we get:(

[K11]−ω2[M11]
)
{X1} = {0}, (7)(

[K21]−ω2[M21]
)
{X1} = {F2}, (8)

It is denoted:
[C11] = [K11]−ω2[M11] (9)

In order for the first system to admit a non-zero solution, it must have the condition:

P(ω) = det
(
[K11]−ω2[M11]

)
= {0}, (10)

which represents a first condition.
Suppose that we have determined a normalized solution of system (7), denote it by

{Y} Then any vector {X} = λ{Y} is a solution of system (7) and system (8) can be written:(
[K21]−ω2[M21]

)
λ{Y1} = {F2}, (11)

Equation (11) represents a system of p conditions that must be respected in order to
have rest of the p bodies. λ can be eliminated if is multiplied Equation (11) by {Y1}T .

λ{Y1}T
(
[K21]−ω2[M21]

)
{Y1} = {Y1}T{F2}, (12)

It results λ:

λ =
{Y1}T{F2}

{Y1}T([K21]−ω2[M21]){Y1}
, (13)

Introducing into Equation (12) it obtains:

(
[K21]−ω2[M21]

) {Y1}T{F2}
{Y1}T([K21]−ω2[M21]){Y1}

{Y1} = {F2}. (14)

From this set (Equation (14)) of p conditions only p − 1 are now independent. Now
there are 1 + p − 1 = p conditions that must be respected by the parameters of the system,
so p masses (in our case the last p numebered) remain in rest.

Let’s now deal with the most common case in practice, namely the one where we have
a work machine that, powered by a motor (usually electric) that rotates at a speed ω, and
it desired it to work without vibrating. So we want to dynamically isolate a single mass
mn and then p = 1. The matrix [K11] has size (n − 1)x(n − 1), the vector {F2} has only one
element F, the condition that the geometric, mass and elastic quantities must fulfill are
given by det

(
[K11]−ω2[M11]

)
= {0} (to have zero displacement of mass n at frequency

ω). So: {X2} = xn,[
[K11]−ω2[M11] [K12]−ω2[M12]
[K21]−ω2[M21] kn −ω2mn

]{
{X1}

xn

}
=

{
0

Fn

}
, (15)

(
[K11]−ω2[M11]

)
{X1} = {0}, (16)(

[K21]−ω2[M21]
)
{X1} = Fn, (17)

In order for the first system to admit a non-zero solution, it must to have condition
(10), which in this case is the only condition that must be fulfilled.
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It is assumed that it was determined a normalized solution of system (16), denote it by
{Y1}. Then any vector {X1} = λ{Y1} is a solution of system (16) and system (17) can be
written: (

[K21]−ω2[M21]
)

λ{Y1} = Fn, (18)

which provides λ, therefore also provides the amplitudes of the forced oscillations of the
other n − 1 flywheels.

The cases in which there is not damping do not exist in practice. In any engineer-
ing system there are frictions and processes through which the energy of the system is
dissipated. Let’s then analyze a system in which it is considered that there is a viscous
damping. From the point of view of the obtained results, all the previous considerations
remain valid from a qualitative point of view. The difference lies in the fact that the phases
of the oscillations of the different masses are different. Also, the number of parameters
involved is higher, additional damping properties appear, but from the point of view of
the proposed purpose, this represents an advantage, the number of parameters that can be
varied increases, so the possibilities of tuning the system to reduce unwanted frequencies
increase.

System (1) becomes in this case:

[M]
{ ..

X
}
+ [C]

{ .
X
}
+ [K]{X} = {F} cos ωt, (19)

There are different forms for the matrix [C], but in what follows this is not important.
The harmonic solution that must check the system (19) is:{

{X1}
{X2}

}
=

{
{A1}
{A2}

}
cos ωt +

{
{B1}
{B2}

}
sin ωt. (20)

It obtains, successively:
{ .

X1

}{ .
X2

} = −ω

{
{A1}
{A2}

}
sin ωt + ω

{
{B1}
{B2}

}
cos ωt. (21)

{ ..
X1..
X2

}
= −ω2

{
A1
A2

}
cos ωt−ω2

{
B1
B2

}
sin ωt. (22)

By partitioning the matrices, in accordance with the previous considerations, it obtains:

[
[M11] [M12]
{M21} [M22]

]
{ ..

X1

}{ ..
X2

}+

[
[C11] [C12]
{C21} [C22]

]
{ .

X1

}{ .
X2

}+

[
[K11] [K12]
[K21] [K22]

]{
{X1}
{X2}

}
=

{
{F1}
{F2}

}
cos ωt. (23)

By introducing this solution into system (19), it obtains:[
[M11] [M12]
{M21} [M22]

](
−ω2

{
{A1}
{A2}

}
cos ωt−ω2

{
{B1}
{B2}

}
sin ωt

)
+[

[C11] [C12]
{C21} [C22]

](
−ω

{
{A1}
{A2}

}
sin ωt + ω

{
{B1}
{B2}

}
cos ωt

)
+[

[K11] [K12]
[K21] [K22]

]({
{A1}
{A2}

}
cos ωt +

{
{B1}
{B2}

}
sin ωt

)
=

{
{F1}
{F2}

}
cos ωt

(24)

or:
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(
−ω2

[
[M11] [M12]
[M21] [M22]

]{
{A1}
{A2}

}
+ ω

[
[C11] [C12]
{C21} [C22]

]{
{B1}
{B2}

}
+

[
[K11] [K12]
[K21] [K22]

]{
{A1}
{A2}

}
−
{
{F1}
{F2}

})
cos ωt+

+

(
−ω2

[
[M11] [M12]
[M21] [M22]

]{
{B1}
{B2}

}
−
[
[C11] [C12]
{C21} [C22]

]{
{A1}
{A2}

}
+

[
[K11] [K12]
[K21] [K22]

]{
{B1}
{B2}

})
sin ωt = 0

(25)

Since Equation (24) must be valid at any time, this equation is equivalent to the
following two systems:([

[K11] [K12]
[K21] [K22]

]
−ω2

[
[M11] [M12]
[M21] [M22]

]){
{A1}
{A2}

}
+ ω

[
[C11] [C12]
{C21} [C22]

]{
{B1}
{B2}

}
=

{
{F1}
{F2}

}
. (26)

−
[
[C11] [C12]
{C21} [C22]

]{
A1
A2

}
+

([
[K11] [K12]
[K21] [K22]

]
−ω2

[
[M11] [M12]
[M21] [M22]

]){
B1
B2

}
= 0. (27)

or:
[
[K11] [K12]
[K21] [K22]

]
−ω2

[
[M11] [M12]
[M21] [M22]

]
ω

[
[C11] [C12]
{C21} [C22]

]
−ω

[
[C11] [C12]
{C21} [C22]

] [
[K11] [K12]
[K21] [K22]

]
−ω2

[
[M11] [M12]
[M21] [M22]

]


{A1}
{A2}
{B1}
{B2}

 =


〈0〉
〈0〉
{F1}
〈F2〉

 (28)

It can obtain {A1}, {B1}, {A2}, {B2} and the harmonic solution:

{
{X1}
{X2}

}
=

{
{A1}
{A2}

}
cos ωt +

{
{B1}
{B2}

}
sin ωt =



a1 cos(ωt + ϕ1)
a2 cos(ωt + ϕ2)

...
an−p cos(ωt + ϕn−p)

an−p+1 cos(ωt + ϕn−p+1)
an−p+2 cos(ωt + ϕn−p+2)

...
an cos(ωt + ϕn)


. (29)

The notation:

{
{A1}
{A2}

}
=



A1
A2
...

An−p
An−p+1
An−p+2

...
An


;
{
{B1}
{B2}

}
=



B1
B2
...

Bn−p
Bn−p+1
Bn−p+2

...
Bn


. (30)

is made. Solution (29) can also be written:{
{X1}
{X2}

}
= [\d\]{a}. (31)

{a} =
⌊

a1 a2 . . . an−p an−p+1 an−p+2 . . . an
⌋
. (32)

where:

ϕj = atan

(
Bj

Aj

)
; aj =

√
A2

j + B2
j ; i = 1, 2 ; j = 1, n. where : (33)
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[\d\] =



cos(ωt + ϕ1)
cos(ωt + ϕ2) 0

. . .

0
. . .

cos(ωt + ϕn)


. (34)

Imposing the conditions {F1} = 0 (there is no excitation on the first part of the system)
and the solution {X2} = 0. it obtain:(

[K11]−ω2[M11]
)
{A1}+ ω[C11]{B1} = {0}(

[K21]−ω2[M21]
)
{A1}+ ω[C21]{B1} = {0}

−ω[C11]{A1}+
(
[K11]−ω2[M11]

)
{B1} = {0}

−ω[C21]{A1}+
(
[K21]−ω2[M21]

)
{B1} = {F2}

(35)

which represent the conditions that must be met to obtain a maximum absorption of
vibrations for the masses n − p + 1, n − p + 2, . . . , n.

3. Results and Discussion

Through a careful dimensioning of the system, it can also play the role of a dynamic
shock absorber, without the need to add an additional element.

A simple example will illustrate this. Consider an elastic system presented in Figure 1
made up of 6 flywheels, linked together with elastic elements having known stiffness.
Flywheels can have rotational movement. An exciting moment acts on the last flywheel.
It results the problem of determining the conditions for which, under the action of this
excitation, flywheel 4 stays in place, without vibrating. The number of DOF for this system
is six.
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The equations of motion for this system are:



J1 0 0 0 0 0
0 J2 0 0 0 0
0 0 J1

′ 0 0 0
0 0 0 J2

′ 0 0
0 0 0 0 J3 0
0 0 0 0 0 J4





..
ϕ1..
ϕ2..
ϕ1
′

..
ϕ2
′

..
ϕ3..
ϕ4


+



k1 −k1 0 0 0 0
−k1 k1 + k2 0 0 −k2 0

0 0 k1
′ −k1

′ 0 0
0 0 −k1

′ k1
′ + k2

′ −k2
′ 0

0 −k2 0 −k2
′ k2 + k2

′ + k3 −k3
0 0 0 0 −k3 k3 + k4





ϕ1
ϕ2
ϕ1
′

ϕ2
′

ϕ3
ϕ4


=



0
0
0
0
0

Mo cos ωt
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It is noted:

[J] =



J1 0 0 0 0 0
0 J2 0 0 0 0
0 0 J1

′ 0 0 0
0 0 0 J2

′ 0 0
0 0 0 0 J3 0
0 0 0 0 0 J4

;

[K] =



k1 −k1 0 0 0 0
−k1 k1 + k2 0 0 −k2 0

0 0 k1
′ −k1

′ 0 0
0 0 −k1

′ k1
′ + k2

′ −k2
′ 0

0 −k2 0 −k2
′ k2 + k2

′ + k3 −k3
0 0 0 0 −k3 k3 + k4

; {M} =



0
0
0
0
0

Mo cos ωt


.

If it is considered a harmonic solution and put the condition that this solution verifies
the system of differential equations, it obtains:



k1 −k1 0 0 0 0
−k1 k1 + k2 0 0 −k2 0

0 0 k1
′ −k1

′ 0 0
0 0 −k1

′ k1
′ + k2

′ −k2
′ 0

0 −k2 0 −k2
′ k2 + k2

′ + k3 −k3
0 0 0 0 −k3 k3 + k4

−ω2



J1 0 0 0 0 0
0 J2 0 0 0 0
0 0 J1

′ 0 0 0
0 0 0 J2

′ 0 0
0 0 0 0 J3 0
0 0 0 0 0 J4







e1
e2
e1
′

e2
′

e3
e4


=



0
0
0
0
0

Mo


where the amplitude of the harmonic oscillations is found in the vector:
{X} =

[
e1 e2 e1

′ e2
′ e3 e4

]T . It must to find the condition for which: e4 = 0. The
determinant of the system is:

[C] =



k1 −ω2 J1 −k1 0 0 0 0
−k1 k1 + k2 −ω2 J2 0 0 −k2 0

0 0 k1
′ −ω2 J1

′ −k1
′ 0 0

0 0 −k1 k1
′ + k2

′ −ω2 J2
′ −k2

′ 0
0 −k2 0 −k2 k2 + k2

′ + k3 −ω2 J3 −k3
0 0 0 0 −k3 k3 + k4 −ω2 J4



[C11] =


k1 −ω2 J1 −k1 0 0 0
−k1 k1 + k2 −ω2 J2 0 −k2 0

0 0 k1
′ −ω2 J1

′ −k1
′ 0

0 0 −k1
′ k1

′ + k2
′ −ω2 J2

′ −k2
0 0 0 −k2

′ k2 + k2
′ + k3 −ω2 J3


The values considered in the applications are:
J1 = 1.0 kgm2; J2 = 3.0 kgm2; J1

′ = 1.0 kgm2; J2
′ = 6.0 kgm2; J3 = 2.0 kgm2;

J4 = 6.0 kgm2; k1 = k1
′ = 1, 000, 000 N·m/rad; k2 = k2

′ = 3, 000, 000 N·m/rad;
k3 = 2, 000, 000 N·m/rad; k4 = 1, 000, 000 N·m/rad and the excitation moment

M = 10, 1000 N·m.
The condition P(ω) = det

(
K11 −ω2M11

)
= {0} leads to the pulsation:

A graph of the function from condition (9) where it can follow the ω values where this
condition is fulfilled is represented in Figure 2. The values obtained in Table 1 can be seen.

The five values obtained for the considered data represent frequencies for which, upon
excitation with a harmonic moment with an amplitude of 100 Nm acting on flywheel 6, a
total vibration absorption is obtained at this flywheel (in the case of zero damping). If there
is damping, the absorption is very high around these determined values. So we note that for
a complex system, there are several eigenpulsations at which vibration absorption can be
done. If the system has many components, then the number of excitation frequencies that
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can be absorbed increase. In Figure 3 it can be seen the amplitude of the forced vibrations
at different excitation frequencies.
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Table 1. The frequencies at which absorption occurs to flywheel 6.

Frequency ω1 ω2 ω3 ω4 ω5

[Hz] 344 702 1089 1243 2157
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If one refer to flywheel 5, then the condition that it absorbs vibrations gives us the five
frequencies that will be absorbed, presented in the Table 2.

Table 2. The frequencies at which absorption occurs to flywheel 5.

Frequency ω1 ω2 ω3 ω4 ω5

[Hz] 626 707 752 1128 1329

In Figure 4 it can be seen the amplitude of the forced vibrations at different pulsa-
tions/excitation frequencies of the flywheel 5.
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In a similar way the Figures 5–8 presents us the absorbtion of the flywheel 4, 3, 2 and 1.
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The eigenpulsations of the system are presented in the Table 3.
In Figure 9 are presented the amplitude of the all six flywheel overlapped.
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Table 3. The eigenpulsations of the system.

Frequency p1 p2 p3 p4 p5 p6

[Hz] 198.5 671.2 729.7 1094 1248 2172

Figure 10 shows the interval of pulsations that ensure the rest of the flywheel six. For
each value of the moment of inertia for flywheel two, five pulsations are obtained for which
the total vibration absorption of this flywheel takes place.
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A comparison with a system with a simplified system having four flywheels (Figure 11)
is presented in Figure 12. In Figure 13 are presented the behavior of all flywheels. The
number of the DOF in this case is four.
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Consider now a damping introduce in the system in the form: [C] = α[K]. In Figure 14
are presented the amplitude of forced vibration considering different damping coefficient.
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4. Conclusions

Dynamic absorbers represent one of the most spectacular methods of reducing vi-
brations. The main advantage is its simplicity and the low price with which vibration
absorption can be ensured. In the work, the authors wanted to show that, in the case of
complex elastic systems, with several vibrating masses, dynamic absorption can be ensured
without introducing additional systems, by properly designing the system, so that certain
parts of it are dynamic absorbers for other parties. The more complex the system, the more
possibilities for dynamic absorption there are. Moreover, for complex systems, the number
of exciting frequencies for which dynamic absorption can be achieved is more numerous.
So for a judiciously dimensioned system, dynamic absorption can be achieved, so without
major expenses, for frequency intervals, useful in practice.

In other words, a judicious design of an elastic system allows managing the problem
of resonance frequencies without using special devices, such as DVA, an operation that
requires a redesign and the attachment of an expensive device. In this way, the price
of realizing a dynamic absorption drops a lot. Also, the installation of an absorber in
the system leads to the modification, which in certain cases can become important, of
the vibration response of the entire system. By the method described in the paper, the
modification of the system’s behavior is avoided due to the addition of some DVA.

An example shows these properties that complex dynamic systems can provide. A
possibility of development of the subject is the construction of algorithms that offer the
optimal solution for different practical applications.
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