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Abstract: In this paper, we develop and study a novel testing procedure that has more a powerful
ability to detect mean difference for functional data. In general, it includes two stages: first, splitting
the sample into two parts and selecting principle components adaptively based on the first half-
sample; then, constructing a test statistic based on another half-sample. An extensive simulation
study is presented, which shows that the proposed test works very well in comparison with several
other methods in a variety of alternative settings.
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1. Introduction

In the recent literature, there has been an increasing interest in functional data analysis,
with its extensive application in biometrics, chemometrics, econometrics, and medical
research, as well as other fields. Functional data have intrinsically infinite dimensions
and thus, classical methods for multivariate observations are not applicable. Therefore,
it is necessary to develop special techniques for this type of data. There has intensive
methodological and theoretical development in function data analysis; see [1–5] and so on.

In functional data analysis, a functional data set or curve can be modeled as indepen-
dent realizations of an underlying stochastic process:

xi(t) = µ(t) + αi(t) + εi(t), i = 1, 2, · · · , n, (1)

where µ(t) is the mean function of the stochastic process, αi(t) is the ith individual function
variation from µ(t), and εi(t) is the ith measurement error process. In general, we assume
αi(t) and εi(t) are independent, and i.i.d. sample from α(t) and ε(t), respectively, where,
α(t) ∼ SP(0, γ), ε(t) ∼ SP(0, γε), and SP denotes a stochastic process with mean function
µ(t) and covariance function γ(s, t).

The mean function µ(t) reflects the underlying trend and can be used as an important
index for population response, such as in drug and biomedical purposes, among other.
One important statistical inference other than estimation is related to testing of various
hypotheses about the mean function. Therefore, we focus on the problem of testing
the equality of mean functions in two random samples independently drawn from two
functional random variables. There have been some approaches proposed so far to address
this problem. For instance, Ref. [6] proposed an adaptive Neyman test, but in the case
when the sampling information is in a “discrete” format. Ref. [7] discussed two methods:
multivariate analysis-based and bootstrap-based testing.

However, these methods have only been applied in narrow fields and not available for
a global testing result. Refs. [8,9] proposed an L2-norm based statistic to test the equality of
mean functions. Ref. [10] proposed and studied a so-called Globalized Pointwise F-test,
abbreviated as GPF test. The GPF test is in general comparable with the L2-norm-based test
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and the F-type test adopted for the one-way ANOVA problem. Then, Ref. [11] proposed
the Fmax-test; via some simulation studies, it was found that in terms of both level accuracy
and power, the Fmax-test outperforms the Globalized Pointwise F (GPF) test of [10] when
the functional data are highly or moderately correlated, and its performance is comparable
with the latter otherwise. Ref. [5] proposed a statistic based on the functional principal
component emi-distances. Furthermore, they gave a normalized version of the functional
principal components that has a chi-square limit distribution. The statistic is scale-invariant.
However, this method require pre-specifying a threshold to choose the leading principal
components (PCs), where PCs are ranked based on eigenvalues. They chose the number
of PCs, for example, d, based on the percentage of variance explained for the functional
covariates. This method has two drawbacks: one is that it can only detect mean differences
in this d-dimensional subspace; the other is that different thresholds often lead to different
tests, whose power depends on the particular simple alternative hypothesis.

In this paper, we develop and study a novel testing procedure that overcomes the
drawback that many tests can only detect mean difference in the d-dimensional subspace.
Furthermore, the novel testing procedure is very powerful in the cases when there are
differences in middle part and latter part of two function sequences. Additionally, we de-
rived the asymptotic distribution of the new test statistics under the alternative hypothesis,
which is the key difficulty in the current approach. In general, the novel testing procedure
includes two stages: first, split the sample into two parts and select PCs adaptively based
on the first half-sample; then, construct the test statistic based on another half-sample.
Sample splitting is often used in high-dimension regression problems because most com-
putationally efficient selection algorithms cannot guard against inclusion of noise variables.
Asymptotically valid p-values are not available. Ref. [12] adopted this technology to reduce
the number of variables to a manageable size using the first split sample and apply classical
variable selection techniques with the remaining variables, using the data from the second
split.

In our procedure, we mainly adopt two methods to select PCs in the first stage: the
adaptive Neyman test [6] and the adaptive ordered Neyman test. At the same time, we
also consider selecting PCs based on pre-specifying a threshold; however, this threshold is
an association–projection index that combines both the variation and the projection along
each direction. The purpose of splitting the sample is two-fold: (1) to decrease the random
noise effect in the first stage; (2) to derive the asymptotic distribution of the test statistic.
From simulation results, we can see that our testing procedure asymptotically achieves the
pre-specified significance level, and enjoys certain optimality in terms of its power, even
when the population is a non-Gaussian process.

This paper is organized as follows. In Section 2, we introduce the test problem and
briefly review the existing global two-sample test methods. Section 3 proposes our testing
procedure. Simulation studies are given in Section 4. A real-data example is analyzed in
Section 5. Section 6 concludes the present work. The derivations are given in Appendix A.

2. The Testing Problem for Functional Data
2.1. Preliminary

Let SP(µ, Γ) denote a stochastic process with mean function µ(t), t ∈ T and covariance
function Γ(s, t), s, t ∈ T, where T ∈ [0, 1]. Suppose we have the following two independent
function samples:

X1(t), · · · , Xn1(t) ∼ SP(µ1, Γ1(s, t)), (2)

Y1(t), · · · , Yn2(t) ∼ SP(µ2, Γ2(s, t)), (3)

where Γ1(s, t) denotes the covariance function of the function data X(t) and Γ2(s, t) denotes
the covariance function of the function data Y(t). However, we do not know if Γ1(s, t) and
Γ2(s, t) are equal. We want to test whether the two mean functions are equal:

H0 : µ1(t) = µ2(t) vs. H1 : µ1(t) 6= µ2(t). (4)
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Let X̄(t), Ȳ(t) denote the sample mean functions of the two samples, respectively.
First, we have

µ̂1(t) = X̄(t), µ̂2(t) = Ȳ(t), (5)

and √
n(µ̂1(t)− µ̂2(t)) ∼ SP

(√
n(µ1(t)− µ2(t)), Γ12(s, t)

)
, (6)

where Γ12(s, t) = Γ1(s,t)
n1/n + Γ2(s,t)

n2/n , n = n1 + n2. Γ12(s, t) can be written as Γ12(s, t) =
∞
∑

k=1
λk ϕk(s)ϕk(t), where λ1 ≥ λ2 · · · ≥ 0 are the eigenvalues and ϕk(t), k = 1, · · · , ∞

are eigenfunctions satisfying
∫

T ϕk(t)2dt = 1 and
∫

T ϕk(t)ϕl(t)dt = 0, k 6= l.

It is easy to see that Γ̂1(s, t) = 1
n1

n1
∑

i=1
(Xi(t)− µ̂1(t))(Xi(s)− µ̂1(s)), Γ̂2(s, t) = 1

n2

n2
∑

i=1

(Yi(t)− µ̂2(t))(Yi(s)− µ̂2(s)) and Γ̂12(s, t) = Γ̂1(s,t)
n1/n + Γ̂2(s,t)

n2/n .
Γ̂12(s, t) can also be written in as an eigen-decomposition

Γ̂12(s, t) =
∞

∑
k=1

λ̂k ϕ̂k(s)ϕ̂k(t), (7)

where the nonincreasing sequence (λ̂k : k ≥ 1) is the sample eigenvalues and (ϕ̂k : k ≥ 1)
are the corresponding eigenfunctions forming an orthonormal basis of L2[0, 1].

To simplify notation, we use the symbol Γ for both the kernel and the operator. Now,
the functional Mahalanobis semi-distance between µ̂1(t) and µ̂2(t) is defined as :

d2
FM(µ̂1, µ̂2) = 〈Γ̂

− 1
2

12,pn

√
n(µ̂1 − µ̂2), Γ̂−

1
2

12,pn

√
n(µ̂1 − µ̂2)〉. (8)

Plugging (6) into (7), we have

d2
FM(µ̂1, µ̂2) =

pn

∑
k=1

n〈µ̂1 − µ̂2, ϕ̂k〉2

λ̂k
. (9)

2.2. Existing Global Testing Methods

Although there is significant literature discussing the equality of means for two
functional data sets, they can be roughly grouped into a few broad categories, as follows .

(1) L2-norm-based test

The test is based on the L2-norm of the difference between µ̂1(t) and µ̂2(t):

TL = n‖µ̂1(t)− µ̂2(t)‖2 = n
∫
(µ̂1(t)− µ̂2(t))2dt. (10)

Ref. [8] proved that TL = n
∫
(µ̂1(t)− µ̂2(t))2dt d

=
∞
∑

k=1
λk Ak + op(1), Ak ∼ χ2

1(
nu2

k
λk

),

where X d
= Y denotes that X and Y have the same distribution, and uk =

∫ 1
0 (µ1(t) −

µ2(t))ϕk(t)dt, k = 1, 2, · · · . Furthermore, they use the two-cumulant matched χ2 approxi-
mation method and obtained an approximate distribution of TL, which is, αχ2

d + β, where

α =

∞
∑

k=1
λ̂3

k

∞
∑

k=1
λ̂2

k

, d =

{
∞
∑

k=1
λ̂2

k

}3

{
∞
∑

k=1
λ̂3

k

}2 , β =
∞

∑
k=1

λ̂k −

{
∞
∑

k=1
λ̂2

k

}2

∞
∑

k=1
λ̂3

k

.

Then, they have P(TL > K) ≈ P(χ2
d > (K− β)/α).

(2) Projection-based Test
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Ref. [5] considered projecting the observed mean difference onto the space spanned
by ϕ̂1, · · · , ϕ̂d, where d is determined based on the percentage of eigenvalues, constructed
the following test statistic:

TH =
d

∑
k=1
〈
√

n(µ̂1 − µ̂2), ϕ̂k〉2. (11)

Given d, the asymptotic distribution of TH under the null hypothesis is the distribution

of
d
∑

k=1
λkZ2

k , where Zk, k = 1, · · · , d are independent standard normal random variables.

Alternately, they proposed a normalized version of TH which is given by

NTH =
d

∑
k=1
〈
√

n(µ̂1 − µ̂2), ϕ̂k〉2/λ̂k, (12)

Then, under the null hypothesis, NTH has an asymptotic χ2
d distribution.

(3) F-test

Finally, we describe the testing procedure proposed by [13]. Although they proposed
a functional F test in a functional linear regression setting, the method can be specified for
our two sample test as follows.

The F-test statistic for our setting is

TF =
RSS0 − RSS1

RSS1/(n− 1)
, (13)

where

RSS1 =
n1

∑
i=1

∫ 1

0
(Xi(t)− X̄(t))2dt +

n2

∑
i=1

∫ 1

0
(Yi(t)− Ȳ(t))2dt,

RSS0 =
n1

∑
i=1

∫ 1

0
(Xi(t)− Z̄(t))2dt +

n2

∑
i=1

∫ 1

0
(Yi(t)− Z̄(t))2dt,

Z̄(t) =
n1X̄(t) + n2Ȳ(t)

n1 + n2
.

Ref. [13] also presented the distribution of the F-test as

∞
∑

k=1
λkχ2

1

∞
∑

k=1
λkχ2

n−2

. In practice, they also

applied the idea of [14] approximation to derive approximate distribution of F-statistic,
that is, (χ2

f1
/ f1)/(χ2

f2
/ f2), which is an ordinary F distribution with degrees of freedom f1

and f2, where f1 = (
∞
∑

k=1
λ̂k)

2/
∞
∑

k=1
λ̂2

k , f2 = (n− 2)(
∞
∑

k=1
λ̂k)

2/
∞
∑

k=1
λ̂2

k .

3. Our Testing Procedure

In order to determine the number of PCs pn adaptively and find significant parts
to construct a more powerful test statistic, we propose a two-stage procedure via a data-
splitting technique. With the help of this technique, we can derive the distribution of the
test statistic.

First, we assume that the sample size is even for simplicity and randomly split samples
into two groups: (X(1), Y(1)) and (X(2), Y(2)). In the first stage, we choose pn based on the
adaptively truncated Hotelling T2 order statistic via the first group sample (X(1), Y(1)). In
the second stage, we construct the test statistic via the second group sample (X(2), Y(2))
and pn.

Next, we show three methods of choosing pn in a general case.
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Denote V̂(1)
k = 〈

√
n/2(µ̂(1)

1 − µ̂
(1)
2 ), ϕ̂

(1)
k 〉

2/λ̂
(1)
k , k = 1, · · · , d, · · · . In practice, since

many of the trailing eigenvalues are close to zero and V̂k will be very large for a large
k. Hence, we generally give the cutoff dn a high threshold, for example, dn = max{k :

λ̂k/
k
∑

t=1
λ̂t > 0.001}. For most inference problems, there is no optimal test, but the adap-

tive Neyman tests have been shown to work well against a broad range of alternatives.
Therefore, we choose pn adaptively based on the following adaptive Neyman test methods.
One method is maximizing normalized (8) (in the Appendix A we have proven V̂k has an
approximate χ2

1 distribution), that is,

p1n = argmax1≤d≤dn

d
∑

k=1
V̂(1)

k − d
√

2d
.

Considering some possible nonsignificant V̂(1)
k terms, we propose another method

that maximizes the sun of normalized order statistic V(k), that is,

p2n = argmax1≤d≤dn

d
∑

k=1
V̂(1)
(k) − E(

d
∑

k=1
V̂(1)
(k) )√

var(
d
∑

k=1
V̂(1)
(k) )

,

where V̂(1)
(k) is the k-th order statistic of V̂(1)

k , k = 1, · · · , d in decreasing order. Unfortunately,
there is no closed form since it involves order statistics. However, empirical approxima-
tions of this maximum value can be conducted by very fast Monte Carlo approximations.
The third method is a hard threshold truncation method, but we truncate at the d-th term
based on the percentage of V̂k, which combines both the variation and the projection along
each direction. In our simulation, we set a truncation threshold as [5] projection-based test
for comparison.

Remark 1. p1n and p2n are chosen adaptively based on the first group data. For the convenience of
follow-up theoretical analysis, we denote them as pn uniformly.

After we derive pn in the first stage, we construct the following statistic based on the
second group sample as follows:

T1A =
pn

∑
k=1

V̂(2)
k ,

T2A =
pn

∑
k=1

V̂(2)
(k) ,

NT1A =

pn

∑
k=1

V̂(2)
k − pn√
2pn

,

NT2A =

pn

∑
k=1

V̂(2)
(k) − E(

pn

∑
k=1

V̂2
(k))√

var(
pn

∑
k=1

V̂2
(k))

,

where
V̂(2)

k = 〈
√

n/2(µ̂(2)
1 − µ̂

(2)
2 ), ϕ̂

(2)
k 〉

2/λ̂
(2)
k
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To derive the asymptotic distribution of T1A, T2A, NT1A, and NT2A , we make the
following assumptions:

Assumption 1. There exist constants a > 1 and C such that λk − λk+1 ≥ Ck−a−1 for k ≥ 1 and
C−1k−a ≤ λk ≤ Ck−a.

Assumption 2.
∫

l EX4 < ∞,
∫

l EY4 < ∞.

Assumption 3. τ = lim
n→∞

n1
n , 0 < τ < 1.

Assumption 4. p2a+3
n m−1 = op(1), where m = min(n1, n2).

Assumptions 1 and 2 are regular in functional principle component analysis (FPCA).
Assumption 1 implies that λk ≥ Ck−a. Because the covariance functions are bounded, one
has a > 1. Assumption 1 essentially assumes that all the eigenvalues are positive, but
decay exponentially. Assumption 3 requires that the two sample sizes n1, n2 tend to ∞
proportionally. Assumption 4 specifies the growing rate of pn. In related literature e.g., [15],
to guarantee estimation consistency, pn is usually assumed to satisfy pa+1

n n−1 = op(1).

Theorem 1. Under H0,
√

n(X̄− Ȳ) d−→ G, where G is a Gaussian process with mean zero and
covariance function Γ, where Γ(s, t) = Γ1(s,t)

τ + Γ2(s,t)
1−τ .

The proof of Theorem 1 follows the trivial central limit of the stochastic process and
we omit it.

Remark 2. We can write G as G =
∞
∑

j=1
ηj

√
λj ϕj, where ηj, j ≥ 1 are i.i.d centered real Gaussian

random variables with variance 1.

Theorem 2. Under Assumptions 1–4, there exist some increasing sequences (pn)n such that
under H0

lim
pn→∞

P(NT1A ≤ x) = Φ(x), (14)

where Φ(x) denotes the cumulative distribution function (cdf) of standard normal distribution.

Theorem 3. Under Assumptions 1–4, the test statistic T2A is approximately equivalent to
pn

∑
k=1

χ2
(k)

(1) under H0, where χ2
(1)(1), · · · , χ2

(pn)
(1) are order statistics (in a decreasing order) of pn χ2(1)

random variables.

Remark 3. The asymptotic null distribution of T2A is affected not only by the values of V̂(2)
k , but

also by the order of them. In practice, empirical approximations of quantiles and tail probability of
the null distribution of T2A can be deduced by very fast Monte Carlo approximations.

Theorem 4. Under Assumptions 1–4 and H0,

lim
(m,pn)→∞

P(NT2A ≤ x) = Φ(x), (15)

where Φ(x) denotes the cdf of the standard normal distribution.

To obtain the asymptotic distribution of NT1A under the alternative in (3), we choose
the local alternative, as defined in the following assumption:
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Assumption 5.
H1n : µ1(t)− µ2(t) = n−

1
2 u(t), (16)

where u(t) is any fixed real function such that 0 <‖ u ‖< ∞.

Then, we have the following asymptotic power of NT1A:

Theorem 5. Under Assumptions 1–6, the asymptotic distribution of the NT1A is given by

lim
(m,pn)→∞

P(NT1A > z1−α) = Φ(−z1−α + ‖Γ−1
12 u(t)‖2),

where P denotes that the distribution have been obtained under the alternative, and z1−α is the
upper (1− α)100% point of the standard normal distribution.

Theorem 6. Under Assumptions 1–5, the distribution of the T2A is approximately equivalent to a
noncentral χ2 distribution χ2∗

pn(ζ0), where

ζ0 =
pn

∑
k=1

V2
(k),

and V2
k =

〈
√

n/2(µ1−µ2),ϕ
(2)
k 〉

2

λ
(2)
k

=
〈u(t),ϕ(2)

k 〉
2

λ
(2)
k

.

4. Simulations

In this section, we report some Monte Carlo simulation results to compare the finite
samples performance of the classical and proposed methods on the two sample mean
testing problem under different settings, including a fixed simple alternative and sparse
signals with varying locations.

4.1. Fixed Simple Alternative

In this subsection, we first look at a simple setting where the alternatives are fixed. We
generate curves from two populations that are generated by 40 Fourier bases as

X(t) =
40

∑
k=1

(θ1/2
k z1k + µ1k)φk(t), Y(t) =

40

∑
k=1

(θ1/2
k z2k + µ2k)φk(t).

Here, z1k, z2k are independent standard normal random variables. In each case, we
take φk(t) =

√
2sin((k − 0.5)πt), t ∈ [0, 1] for k = 1, 2, · · · and generate the data on a

discrete grid of 100 equispaced points in [0, 1]. We took θk = 1/(π(k− 0.5))2. We choose
µ1ks and µ2ks depending on the property that we want to illustrate (see below). We compare
power and size under three different methods: Ref. [8] L2-norm based test (TL); Ref. [13]’s
F-test TF; Ref. [5]’s projection-based test (TH) with fixed truncation and our two methods.
We choose the commonly used threshold 99% to determine the truncated term in [5]’s
projection-based test (TH). The results are based on 1000 Monte Carlo replications. In all
scenarios, we set the nominal size α = 0.05.

To cover as many different scenes as possible, we set five different settings refer-
ring to the mean difference: (1) the mean differences arise early in the sequence µ1ks
and µ2ks, that is, (µ11, µ12, µ13, µ14, µ15, µ16) = (0.5,−0.5, 1.5,−0.5, 1.5,−0.5) and µ1k = 0
for k > 6, µ2k = µ1k + δ for k ≤ 6, µ2k = 0 for k > 6; (2) the mean differences arise
in the middle of the sequence µ1ks and µ2ks, that is, (µ1,11, µ1,12, µ1,13, µ1,14, µ1,15, µ1,16) =
(0.5,−0.5, 1.5,−0.5, 1.5,−0.5) and µ1k = 0 for other k, µ2k = µ1k + δ for 11 ≤ k ≤ 16,
µ2k = 0 for other k; (3) the mean differences arise in the latter part of the sequence µ1ks
and µ2ks, that is, (µ1,21, µ1,22, µ1,23, µ1,24, µ1,25, µ1,26) = (0.5,−0.5, 1.5,−0.5, 1.5,−0.5) and
µ1k = 0 for other k, µ2k = µ1k + δ for 21 ≤ k ≤ 26, µ2k = 0 for other k; (4) the mean differ-
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ences are scattered in the first, middle and latter part, that is, (µ1,11, µ1,12, µ1,13, µ1,21, µ1,22, µ1,23) =
(0.5,−0.5, 1.5,−0.5, 1.5,−0.5) and µ1k = 0 for other k, µ2k = µ1k + δ for k ∈ {1, 2, 11, 12, 21, 22},
µ2k = 0 for other k; (5) the tiny differences appear in all the principal components. In this case, we
set µ1k as independent N(0, 1) random variables, and µ2k = µ1k + δ, 1 ≤ k ≤ 40.

From Tables 1–5, we can see that these are obvious different performances in different
settings. From Table 1, we can see that when the mean difference lies in early part in the
sequence, Ref. [5]’s projection-based test (TH) has most powerful performance. This should
not be surprising, because their method just chooses projection space spanned by the first
few eigenfunctions, where the mean difference lies. From Table 2 we observe that when
mean difference lies in the middle part in the sequence, our method has very high power
compared to TH , TF and TL. Particularly, we notice that Ref. [5]’s projection-based test (TH)
has a dramatic power loss. From Table 3, we can see that when the mean difference lies
in the latter part of the sequence, our method still has the best performance. At the same
time, we can find that TF and TL have higher power then TH in this case. This illustrates
that TF and TL are sensitive to divergence degree and TH is more sensitive to location of
mean difference. Furthermore, we notice that the power of TL and TF outperform our
method only on large sample sizes and large discrepancies between the null hypothesis
and alternative hypothesis. This is understandable, because our method also depends
on mean difference projection on space spanned by the eigenfunction, excluding last few
eigenfunctions. Tables 4 and 5 illustrate more general cases. Table 4 demonstrates that
when there are tiny differences in all directions, our method is still the most powerful, while
TL and TF are useless. Table 5 demonstrates the performance of each method when there
are differences in the early part, middle part, and latter part. From the simulation results,
we can see that in this general case, our method has the most satisfactory performance.

Table 1. Size and power of five methods in Setting 1 (mean difference lies in early part µ2[1 : 6] =
µ1[1 : 6] + δ).

n2 = n1 δ TL TF TH NT1A NT2A

n1 = 120 0.00 0.067 0.065 0.068 0.045 0.055
0.10 0.151 0.105 0.461 0.357 0.365
0.20 0.245 0.258 0.786 0.483 0.471
0.30 0.405 0.413 0.998 0.872 0.805

n1 = 220 0.00 0.045 0.053 0.066 0.051 0.065
0.10 0.265 0.253 0.643 0.482 0.471
0.20 0.385 0.393 0.881 0.564 0.585
0.30 0.553 0.512 0.999 0.976 0.918

Table 2. Size and power of five methods in Setting 2 (mean difference lies in middle part µ2[11 :
16] = µ1[11 : 16] + δ).

n2 = n1 δ TL TF TH NT1A NT2A

n1 = 120 0.00 0.052 0.063 0.055 0.067 0.066
0.10 0.352 0.355 0.384 0.876 0.923
0.20 0.445 0.466 0.448 0.998 0.999
0.30 0.581 0.592 0.544 0.999 0.999

n1 = 220 0.00 0.034 0.045 0.066 0.068 0.063
0.10 0.442 0.461 0.583 0.975 0.923
0.20 0.565 0.543 0.654 0.999 0.999
0.30 0.675 0.691 0.685 0.999 0.999
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Table 3. Size and power of five methods in Setting 3 (mean difference lies in latter part µ2[21 : 26] =
µ1[21 : 26] + δ).

n2 = n1 δ TL TF TH NT1A NT2A

n1 = 120 0.00 0.035 0.052 0.054 0.055 0.042
0.10 0.342 0.355 0.372 0.486 0.497
0.20 0.565 0.552 0.593 0.744 0.795
0.30 0.725 0.753 0.765 0.996 0.985

n1 = 220 0.00 0.065 0.061 0.045 0.052 0.055
0.10 0.431 0.425 0.456 0.527 0.588
0.20 0.628 0.635 0.681 0.823 0.885
0.30 0.864 0.875 0.824 0.999 0.999

Table 4. Size and power of five methods in Setting 4 (mean difference lies in separable part µ2[1 :
2] = µ1[1 : 2] + δ, µ2[11 : 12] = µ1[11 : 12] + δ, µ2[21 : 22] = µ1[21 : 22] + δ).

n2 = n1 δ TL TF TH NT1A NT2A

n1 = 120 0.00 0.045 0.053 0.067 0.068 0.062
0.10 0.162 0.165 0.326 0.463 0.554
0.20 0.205 0.272 0.466 0.963 0.955
0.30 0.361 0.32 0.565 0.999 0.999

n1 = 220 0.00 0.045 0.038 0.067 0.045 0.068
0.10 0.192 0.215 0.393 0.497 0.605
0.20 0.282 0.314 0.516 0.999 0.999
0.30 0.461 0.465 0.689 1.000 1.000

Table 5. Size and power of five methods in Setting 5 (difference averaged in total vector µ2 =

µ1 + δ140).

n2 = n1 δ TL TF TH NT1A NT2A

n1 = 120 0.00 0.045 0.052 0.068 0.065 0.053
0.10 0.182 0.179 0.366 0.794 0.836
0.20 0.372 0.364 0.854 0.999 0.999
0.30 0.577 0.564 0.896 1.000 1.000

n1 = 220 0.00 0.036 0.045 0.062 0.063 0.065
0.10 0.212 0.249 0.905 0.826 0.887
0.20 0.413 0.424 0.935 0.999 0.999
0.30 0.625 0.636 0.943 1.000 1.000

We also conducted simulation studies under other similar scenarios. As they demon-
strated similar patterns to those discussed above, we omit them here to save space.

It is worth noting that the proposed method has a first stage with randomly split
data. There could be a potential limitation with large randomness. In order to understand
the robustness for this splitting, we perform some supporting simulation studies, again
considering multi-fold cross validation (CV), including two-fold CV, five-fold CV, and
ten-fold CV. For convenience, we use the same data setting of Table 5. The results are
shown in Table 6. From Table 6, we can see that in most cases, the hypothesis is robust for
this splitting.

Table 6. Size and power of NT2A in Setting 5 (difference averaged in total vector µ2 = µ1 + δ140).

δ

n2 = n1 = 120 0.00 0.1 0.2 0.3

two-fold CV 0.058 0.468 0.786 0.947
five-fold CV 0.056 0.459 0.772 0.943
ten-fold CV 0.053 0.465 0.765 0.978
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4.2. Sparse Signals with Varying Locations

In this section, we demonstrate the performance of different tests under signals with
varying locations. We set µ1k(1 ≤ k ≤ 40) as independent U(0, 1) random variables,
and µ2k = µ1k + δ, where k is six random locations out of 40. In Setting 1, the signal of
difference appears randomly in six of the first twenty principal components; we denote
M(20, 6). In Setting 2, the signal of difference appears in six of forty principal components;
we denote M(40, 6). The simulation results are illustrated in Tables 7 and 8. From the
simulation results, we can see that in these cases, our method also have the most satisfac-
tory performance.

We also compare our method with the full-sample adaptive methods, including the
adaptive Neyman–Pearson test (TA) and the ordered adaptive test TOA. In the full sample,
the distribution of adaptive Neyman–Pearson test (TA) and ordered adaptive test TOA is
notable, that is,

TA = max
1≤d≤pn

d
∑

k=1
V̂(1)

k − d
√

2d
,

TOA = max
1≤d≤pn

d
∑

k=1
V̂(1)
(k) − E(

d
∑

k=1
V̂(1)
(k) )√

var(
d
∑

k=1
V̂(1)
(k) )

.

We use permutation method to calculate size and power. Table 9 illustrates the
simulation results, where Time1 is the time of running once TA and TOA and Time2 is the
time to run NT1A and NT2A once. The unit is seconds. From Table 9, we can see that our
splitting sample methods have a slight power loss compared to the adaptive Neyman–
Pearson test TA and the ordered adaptive test TOA. However, we can save significant time
in real computing.

Table 7. Size and power of five methods under randomized signal in Setting 1 M(20, 6).

n2 = n1 δ TL TF TH NT1A NT2A

n1 = 120 0.00 0.034 0.035 0.046 0.057 0.065
0.10 0.262 0.275 0.366 0.594 0.606
0.20 0.375 0.384 0.589 0.926 0.935
0.30 0.534 0.548 0.825 0.999 0.999

n1 = 220 0.00 0.067 0.056 0.063 0.066 0.068
0.10 0.309 0.315 0.417 0.628 0.733
0.20 0.423 0.439 0.615 0.986 0.995
0.30 0.674 0.695 0.923 0.999 0.999

Table 8. Size and power of five methods under randomized signal in Setting 2 M(40, 6).

n2 = n1 δ TL TF TH NT1A NT2A

n1 = 120 0.000 0.063 0.038 0.067 0.065 0.063
0.1 0.275 0.286 0.447 0.457 0.478
0.2 0.355 0.372 0.743 0.785 0.799
0.3 0.426 0.465 0.878 0.943 0.966

n1 = 220 0.00 0.042 0.053 0.064 0.066 0.065
0.1 0.323 0.376 0.524 0.539 0.567
0.2 0.465 0.486 0.874 0.923 0.995
0.3 0.549 0.563 0.925 0.999 0.999
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Table 9. Size and power of seven methods under randomized signal in Setting 2 M(40, 6).

n2 = n1 δ TL TF TH TA TOA NT1A NT2A Time1 Time2

120 0.00 0.045 0.052 0.045 0.063 0.065 0.064 0.061 41.4575 1.1953
0.10 0.221 0.236 0.252 0.315 0.403 0.224 0.367 41.6208 1.1964
0.20 0.415 0.454 0.621 0.883 0.966 0.749 0.851 37.4070 1.0789
0.30 0.626 0.684 0.827 0.994 0.975 0.891 0.896 36.4592 1.0681

180 0.00 0.051 0.062 0.054 0.057 0.054 0.063 0.067 34.6782 1.4470
0.10 0.293 0.296 0.305 0.483 0.491 0.317 0.428 41.6208 1.1964
0.20 0.495 0.521 0.715 0.936 0.995 0.836 0.922 37.4070 1.0789
0.30 0.721 0.784 0.935 0.999 0.999 9.966 0.975 36.4592 1.0681

5. Application

In this section, we apply our proposed hypothesis testing procedures to a real PM 2.5
dataset in Beijing, Tianjin, and Shijiazhuang between January 2017 and December 2019.
The dataset was downloaded from the website http://www.tianqihoubao.com/aqi/, ac-
cessed on 10 June 2021. The data readings were taken every day, so the total data size
is 1085 for every city. Beijing is surrounded by Tianjin and Shijiazhuang. Therefore, we
want to know more about the average PM 2.5 difference in these three areas. The following
Figures 1 and 2 show the mean PM 2.5 (µg/m3) in Beijing, Tianjin, and Hebei Province in
different time periods. There are some missing days in some cycles. Note that Figure 1
shows negative values at the beginning for a measure that is always greater than zero
because of B-spline approximation.

Figure 1. The mean PM 2.5 (µg/m3) of Beijing, Tianjin, and Shijiazhuang from December 2019 to
January 2019. The black line stands for Beijing. The red dasehed line stands for Tianjin. The green
dotted line stands for Shijiazhuang.

Figure 2. The mean PM 2.5 (µg/m3) of Beijing, Tianjin, and Shijiazhuang from December 2019 to
January 2017. The black line stands for Beijing. The red asehed line stands for Tianjin. The green
dotted line stands for Shijiazhuang.

http://www.tianqihoubao.com/aqi/
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It is obvious that PM 2.5 changes over individual periods. Here, we test whether there
is a significant difference in PM 2.5 among the three cities using the method we proposed.
First, the sample is divided into two data sets: the training sample is the dataset in 2017;
the test sample is the dataset in 2018–2019. The principle components are adaptively
based on the training sample. Then, the test statistic is constructed via the test sample
and the principle components are selected by the training sample. To test whether there is
significant difference in PM 2.5 between the three cities, we carry out permutations 1000
times within each group to calculate the rejection proportions; then, we obtain the p-value
of the test. The results are shown in Table 10.

Table 10. p-value of two tests.

Beijing vs. Tianjin Beijing vs. Shijiazhuang Tianjin vs. Shijiazhuang

Test NT1A NT2A NT1A NT2A NT1A NT2A
p-value 0.035 0.034 0.025 0.032 0.039 0.045

From Table 10, we can see that all p-values are less than 0.05. The tests are statistically
significant and suggest that the average PM 2.5 in these three areas are different from each
other at a 0.05 level of significance.

6. Conclusions and Discussions

In this paper, we consider the problem of testing the equality of mean functions in
two random samples independently drawn from two functional random variables. We
develop and study a novel testing procedure that has a more powerful ability to detect
mean difference. In general, it includes two stages: first, splitting the sample into two
parts and selecting principle components adaptively based on the first half-sample; then,
constructing the test statistic based on another half-sample. An extensive simulation study
is presented, which shows that the proposed test works very well in comparison with
several other methods in a variety of settings. Our future project is to detect differences in
the covariance functions of independent sample curves. There have been some approaches
proposed so far to address this problem, for instance, the factor-based test proposed by [4]
and the regularized M-test introduced by [16].
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Appendix A. Proofs of the Main Results

Before proving the main results, we introduce the following useful lemmas. Further-
more, for the convenience of notation, we give proofs in the full sample.

Lemma A1. Under Assumptions 1–4, we have

1√
2pn

pn

∑
k=1

n〈µ̂1 − µ̂2, ϕ̂k〉2

λ̂k
=

1√
2pn

pn

∑
k=1

n〈µ̂1 − µ̂2, ϕ̂k〉2
λk

+ op(1). (A1)
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Proof. Denote εp(n) = {∆̂ = |||Γ12 − Γ̂12||| ≤ 1
2 λpn}; note that provided εp(n) holds, we

have

1√
2pn

pn

∑
k=1

n〈µ̂1 − µ̂2, ϕ̂k〉2

λ̂k
− 1√

2pn

pn

∑
k=1

n〈µ̂1 − µ̂2, ϕ̂k〉2
λk

=
1√
2pn

pn

∑
k=1

n(λk − λ̂k)

λ̂kλk
〈 f̄ − ḡ, ϕ̂k〉2

≤ 1√
2pn

pn

∑
k=1

n〈X̄− Ȳ, ϕ̂k〉2

λ̂kλk
sup | λ̂k − λk |

≤ 1√
2pn

pn

∑
k=1

n〈X̄− Ȳ, ϕ̂k〉2

λ̂2
k

|||Γ12 − Γ̂12|||.

It can be proven easily that E|||Γ1 − Γ̂1|||2 = O(n−1
1 ), E|||Γ2 − Γ̂2|||2 = O(n−1

2 ); then,
|||Γ12 − Γ̂12||| = Op(m−1/2).

According to central limit theory, we have

n〈X̄− Ȳ, ϕ̂k〉√
λ̂k

d−→ N(0, 1), (A2)

Then, n〈X̄−Ȳ,ϕ̂k〉2
λ̂k

d−→ χ2
1, which means n〈X̄−Ȳ,ϕ̂k〉2

λ̂k
is bounded in probability.

Notice that | λ̂k − λk |= Op(m−1/2); therefore

1√
2pn

pn

∑
k=1

n〈µ̂1 − µ̂2, ϕ̂k〉2

λ̂k
− 1√

2pn

pn

∑
k=1

n〈µ̂1 − µ̂2, ϕ̂k〉2
λk

≤ Op(
1√
2pn

m−1/2 pa+1
n ) = op(1).

Ref. [15] has proven that P(εp)→ 1 as m→ ∞; thus, Lemma A1 holds.

Lemma A2. Under Assumptions 1–4, we have

1√
2pn

pn

∑
k=1

n〈µ̂1 − µ̂2, ϕ̂k〉2
λk

=
1√
2pn

pn

∑
k=1

n〈µ̂1 − µ̂2, ϕk〉2
λk

+ op(1). (A3)

Proof. First,

1√
2pn

pn

∑
k=1

n〈µ̂1 − µ̂2, ϕ̂k〉2
λk

=
1√
2pn

pn

∑
k=1

n〈µ̂1 − µ̂2, ϕ̂k − ϕk + ϕk〉2
λk

=
1√
2pn

pn

∑
k=1

{
n〈µ̂1 − µ̂2, ϕ̂k − ϕk〉2

λk

}
+

1√
2pn

pn

∑
k=1

{
n〈µ̂1 − µ̂2, ϕk〉2

λk

}

+
1√
2pn

pn

∑
k=1

{
2

n〈µ̂1 − µ̂2, ϕ̂k − ϕk〉〈µ̂1 − µ̂2, ϕk〉
λk

}
.
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Then,

1√
2pn

pn

∑
k=1

n〈µ̂1 − µ̂2, ϕ̂k〉2
λk

− 1√
2pn

pn

∑
k=1

n〈µ̂1 − µ̂2, ϕk〉2
λk

=
1√
2pn

pn

∑
k=1

{
n〈µ̂1 − µ̂2, ϕ̂k − ϕk〉2

λk

}
+

1√
2pn

pn

∑
k=1

{
2

n〈µ̂1 − µ̂2, ϕ̂k − ϕk〉〈µ̂1 − µ̂2, ϕk〉
λk

}
= I1 + I2.

where

I1 =
1√
2pn

pn

∑
k=1

{
n〈µ̂1 − µ̂2, ϕ̂k − ϕk〉2

λk

}
,

I2 =
1√
2pn

pn

∑
k=1

{
2

n〈µ̂1 − µ̂2, ϕ̂k − ϕk〉〈µ̂1 − µ̂2, ϕk〉
λk

}
.

It is obvious that

pn

∑
k=1
〈
√

n(X̄− Ȳ), ϕ̂k − ϕk〉2λ−1
k ≤

pn

∑
k=1
‖
√

n( f̄ − ḡ)‖2· ‖ ϕ̂k − ϕk‖2λ−1
k .

It can also be easily proven that ‖
√

n(X̄ − Ȳ)‖2 = Op(1). According to the result
of [17], we have ‖ϕ̂k − ϕk‖ = Op(km−1/2) under corresponding conditions. Then, we have

I1 = Op(
1√
2pn

pn

∑
k=1

k2m−1ka) = Op(
1√
2pn

p3
nm−1) = op(1).

Similarly, we can prove I2 = op(1).

Lemma A3. Under Assumptions 1–4, we have

T∗ =
1√
2pn

pn

∑
k=1

[
n〈µ̂1 − µ̂2, ϕk〉2

λk
− 1
]

which converges in distribution to a centered Gaussian random variable g with variance 1.

The proof of Lemma A3 is similar to the techniques used by [18], so we omit it here.

Proof of Theorem 2. Combine Lemmas A1 and A2 with Lemma A3; then, can proof Theo-
rem 2.

Proof of Theorem 3. According to Theorem 1, Lemmas A1 and A2, we have V̂k ∼ N(0, 1)
and V̂2

k ∼ χ2(1). Then, the conclusion is obvious.

Proof of Theorem 5. We note that

n〈µ̂1 − µ̂2, ϕk〉2 = n〈µ̂1 − µ̂2 − µ1 + µ2, ϕk〉2

+2n〈µ̂1 − µ̂2, ϕk〉〈µ1 − µ2, ϕk〉 − n〈µ1 − µ2, ϕk〉2,

= Jk1 + 2Jk2 − Jk3.

where Jk1 = n〈µ̂1 − µ̂2 − µ1 + µ2, ϕk〉2, Jk2 = n〈µ̂1 − µ̂2, ϕk〉〈µ1 − µ2, ϕk〉, Jk3 = n〈µ1 −
µ2, ϕk〉2. Then

1√
2pn

pn

∑
k=1

V̂k =
1√
2pn

pn

∑
k=1

(Jk1 + 2Jk2 − Jk3)/λ̂k.
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Observe that

1√
2pn

pn

∑
k=1

(Jk2 − Jk3)/λ̂k =
1√
2pn

pn

∑
k=1

n〈µ1 − µ2, ϕk〉〈µ̂1 − µ̂2 − µ1 + µ2, ϕk〉/λ̂k.

According to (A2), we have

n〈µ̂1 − µ̂2 − µ1 + µ2, ϕk〉/
√

λ̂k = Op(1).

By Assumptions 1–5 and Lemma A1, we have that

1√
2pn

pn

∑
k=1
〈µ1 − µ2, ϕk〉/λ̂k

≤ 1√
2pn

pn

∑
k=1

n−
1
2 ‖u(t)‖/λk = Op


n−

1
2+b

pn

∑
k=1

ka√
2pn


= Op

(
n−

1
2 pa+1

n

)
= op(1).

Under Assumptions 4 and 5, we have

lim
pn→∞

1√
2pn

pn

∑
k=1

Jk2/λ̂k = lim
pn→∞

1√
2pn

pn

∑
k=1

n〈µ̂1 − µ̂2, ϕ̂k〉〈µ1 − µ2, ϕ̂k〉/λ̂k

= lim
pn→∞

1√
2pn

pn

∑
k=1

n〈µ1 − µ2, ϕk〉2
λk

(A4)

= lim
pn→∞

pn

∑
k=1
〈u(t), ϕk〉2/λk

= ‖Γ−1
12 u(t)‖2.

From Theorem 2 and the above results, we have

P(NT1A ≥ z1−α) = P


pn

∑
k=1

V̂k − pn√
2pn

≥ z1−α



= P


pn

∑
k=1

Jk1/λ̂k − pn√
2pn

≥ z1−α −

pn

∑
k=1

Jk2/λ̂k√
2pn


From (A2) we can obtain Jk1

λ̂k

d−→ χ2
1; then,

lim
(m,pn)→∞

P


pn

∑
k=1

Jk1/λ̂k − pn√
2pn

≤ x

 = Φ(x), (A5)
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Combined with (A4), we have

lim
(m,pn)→∞

P(NT1A > z1−α) = Φ(−z1−α + ‖Γ−1
12 u(t)‖2).

Proof of Theorem 6. By Lemma A2, we have (
pn

∑
k=1

V̂k −
pn

∑
k=1

Vk)
P−→ 0 as n → ∞. Define

(k∗1, · · · , k∗pn) as decreasing orders of V1, · · · , Vpn and (k1, · · · , kpn) as decreasing orders
of V̂1, · · · , V̂pn . Ref. [19] have proven that the random orders in the selection procedure
V̂(1), · · · , V̂(pn) are asymptotically equivalent to fixed orders V(1), · · · , V(pn).
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