Non-Linear Dynamic Movements of CNT/Graphene/Aluminum Oxide and Copper/Silver/Cobalt Ferrite Solid Particles in a Magnetized and Suction-Based Internally Heated Surface: Sensitivity and Response Surface Optimization
Abstract
:1. Introduction
2. Mathematical Formulation
3. Analysis
4. Numerical Procedure
5. Results and Discussion
6. RSM: Response Surface Methodology
6.1. RSM and Optimization Outcomes
6.2. Sensitivity Analysis
- Raising levels (from −1 to 1) results in decreased sensitivity for the Case 1 and the same sensitivity nature for Case 2.
- Raising levels (from −1 to 1) results in mixed sensitivity in both Case 1 and Case 2.
- Raising levels (from −1 to 1) results in mixed sensitivity in Case 1 and increased sensitivity in Case 2.
7. Conclusions
- When suction rises, the velocity and temperature profiles both increase.
- When the Hartmann number rises, velocity and temperature exhibit inverse behaviors: the velocity profile increases, while the temperature profile decreases.
- When the volume fraction rises, the temperature and velocity profiles both increase.
- When the Prandtl number rises, the temperature and velocity profiles both increase.
- When the heat source/sink rises, the temperature and velocity profiles both decrease.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hydon, P.E.; Hydon, P.E. Symmetry Methods for Differential Equations: A Beginner’s Guide; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Hydon, P.E. Introduction to symmetry methods in solving differential equations in chemistry and chemical biology. Int. J. Quantum Chem. 2006, 106, 266–277. [Google Scholar] [CrossRef]
- Hydon, P.E. Symmetry analysis of initial-value problems. J. Math. Anal. Appl. 2005, 309, 103–116. [Google Scholar] [CrossRef] [Green Version]
- Nagendramma, V.; Durgaprasad, P.; Sivakumar, N.; Rao, B.M.; Raju, C.S.K.; Shah, N.A.; Yook, S.-J. Dynamics of Triple Diffusive Free Convective MHD Fluid Flow: Lie Group Transformation. Mathematics 2022, 10, 2456. [Google Scholar] [CrossRef]
- Li, M.; Wu, Y.; Tian, Y.; Zhai, Y. Non-thermal equilibrium model of the coupled heat and mass transfer in strong endothermic chemical reaction system of porous media. Int. J. Heat Mass Transf. 2007, 50, 2936–2943. [Google Scholar] [CrossRef]
- Kandasamy, R.; Ismoen, M.; Saim, H.B. Lie group analysis for the effects of temperature-dependent fluid viscosity and chemical reaction on MHD free convective heat and mass transfer with variable stream conditions. Nucl. Eng. Des. 2010, 240, 39–46. [Google Scholar] [CrossRef]
- Abdul-Kahar, R.; Kandasamy, R. Scaling group transformation for boundary-layer flow of a nanofluid past a porous vertical stretching surface in the presence of chemical reaction with heat radiation. Comput. Fluids 2011, 52, 15–21. [Google Scholar] [CrossRef]
- Siva Raman, N.; Sivagnana Prabhu, K.K.; Kandasamy, R. Heat transfer effects on Hiemenz flow of nanofluid over a porous wedge sheet in the presence of suction/injection due to solar energy: Lie group transformation. J. Eng. Thermophys. 2014, 23, 66–78. [Google Scholar] [CrossRef]
- Kandasamy, R.; Vignesh, V.; Kumar, A.; Hasan, S.H.; Isa, N.M. Thermal radiation energy due to SWCNTs on MHD nanofluid flow in the presence of seawater/water: Lie group transformation. Ain Shams Eng. J. 2018, 9, 953–963. [Google Scholar] [CrossRef] [Green Version]
- Alessa, N. Transformation Magnetohydrodynamics in the presence of a Channel Filled with Porous Medium and Heat Transfer of Non-Newtonian Fluid by Using Lie Group Transformations. J. Funct. Spaces 2020, 2020, 8840287. [Google Scholar] [CrossRef]
- Timofeeva, E.V.; Routbort, J.L.; Singh, D. Particle shape effects on thermophysical properties of alumina nanofluids. J. Appl. Phys. 2009, 106, 014304. [Google Scholar] [CrossRef]
- Sahu, M.; Sarkar, J. Steady-state energetic and energetic performances of single-phase natural circulation loop with hybrid nanofluids. J. Heat Transf. 2019, 141, 082401. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhou, X.; Wang, Y. Effects of Nanoparticle Shapes on Heat and Mass Transfer of Nanofluid Thermocapillary Convection around a Gas Bubble. Microgravity Sci. Technol. 2020, 32, 167–177. [Google Scholar] [CrossRef]
- Izadi, M.; Mohebbi, R.; Karimi, D.; Sheremet, M.A. Numerical simulation of natural convection heat transfer inside a ┴ shaped cavity filled by a MWCNT-Fe3O4/water hybrid nanofluids using LBM. Chem. Eng. Process-Process Intensif. 2018, 125, 56–66. [Google Scholar] [CrossRef]
- Nayak, M. MHD 3D flow and heat transfer analysis of nanofluid by shrinking surface inspired by thermal radiation and viscous dissipation. Int. J. Mech. Sci. 2017, 124–125, 185–193. [Google Scholar] [CrossRef]
- Rasool, G.; Shah, N.A.; El-Zahar, E.R.; Wakif, A. Numerical investigation of EMHD nanofluid flows over a convectively heated riga pattern positioned horizontally in a Darcy-Forchheimer porous medium: Application of passive control strategy and generalized transfer laws. In Waves Random Complex Media; Taylor & Francis: Abingdon, UK, 2022; pp. 1–20. [Google Scholar]
- Waqas, H.; Khan, S.U.; Imran, M.; Bhatti, M.M. Thermally developed Falkner–Skan bioconvection flow of a magnetized nanofluid in the presence of a motile gyrotactic microorganism: Buongiorno’s nanofluid model. Phys. Scr. 2019, 94, 115304. [Google Scholar] [CrossRef]
- Shah, N.A.; Wakif, A.; El-Zahar, E.R.; Ahmad, S.; Yook, S.-J. Numerical simulation of a thermally enhanced EMHD flow of a heterogeneous micropolar mixture comprising (60%)-ethylene glycol (EG), (40%)-water (W), and copper oxide nanomaterials (CuO). Case Stud. Therm. Eng. 2022, 35, 102046. [Google Scholar] [CrossRef]
- Singh, K.; Pandey, A.K.; Kumar, M. Analytical approach to stagnation-point flow and heat transfer of a micropolar fluid via a permeable shrinking sheet with slip and convective boundary conditions. Heat Transf. Res. 2019, 50, 739–756. [Google Scholar] [CrossRef]
- Soumya, D.O.; Gireesha, B.J.; Venkatesh, P.; Alsulami, M.D. Effect of NP shapes on Fe3O4–Ag/kerosene and Fe3O4–Ag/water hybrid nanofluid flow in suction/injection process with nonlinear-thermal-radiation and slip condition; Hamilton and Crosser’s model. Waves Random Complex Media 2022, 3, 1–22. [Google Scholar] [CrossRef]
- Lou, Q.; Ali, B.; Rehman, S.U.; Habib, D.; Abdal, S.; Shah, N.A.; Chung, J.D. Micropolar dusty fluid: Coriolis force effects on dynamics of MHD rotating fluid when lorentz force is significant. Mathematics 2022, 10, 2630. [Google Scholar] [CrossRef]
- Ullah, Z.; Zaman, G. Lie group analysis of magnetohydrodynamic tangent hyperbolic fluid flow towards a stretching sheet with slip conditions. Heliyon 2017, 3, e00443. [Google Scholar] [CrossRef]
- Upadhya, M.S.; Raju, C.S.K. Implementation of boundary value problems in using MATLAB®. In Micro and Nanofluid Convection with Magnetic Field Effects for Heat and Mass Transfer Applications Using MATLAB; Elsevier: Amsterdam, The Netherlands, 2022; pp. 169–238. [Google Scholar]
- Box, G.E.; Wilson, K.B. On the experimental attainment of optimum conditions. In Breakthroughs in Statistics; Springer: New York, NY, USA, 1992; pp. 270–310. [Google Scholar]
- Montgomery, D.C. Design and Analysis of Experiments; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Mackolil, J.; Mahanthesh, B. Heat transfer enhancement using temperature-dependent effective properties of alumina-water nanoliquid with thermo-solutal Marangoni convection: A sensitivity analysis. Appl. Nanosci. 2021, 18, 1–12. [Google Scholar] [CrossRef]
- Asiltürk, I.; Neşeli, S. Multi response optimisation of CNC turning parameters via Taguchi method-based response surface analysis. Measurement 2012, 45, 785–794. [Google Scholar] [CrossRef]
Nomenclature of Solid Particles and Base Fluid | ρ (kg/m3) | Cp (J/kgK) | K (W/mK) | Nanoparticle Shapes | |
---|---|---|---|---|---|
Base fluid | Water H2O | 997.1 | 4.179 | 0.623 | |
Ternary hybrid nanofluid 1 | Graphene (1%) | 2200 | 5000 | 790 | Platelet |
Carbon nanotubes (1%) | 5100 | 410 | 3007 | Cylindrical | |
Aluminum oxide (Al2O3) (1%) | 3970 | 765 | 40 | Spherical | |
Ternary hybrid nanofluid 2 | Copper (1%) | 10,500 | 235 | 429 | Spherical |
Silver (1%) | 8933 | 385 | 400 | Cylindrical | |
Cobalt ferrite (1%) | 4907 | 700 | 3.7 | Platelet |
Skin Friction | Nusselt Number | |||||||
---|---|---|---|---|---|---|---|---|
Q | M | Pr | fw | Case-1 | Case-2 | Case-1 | Case-2 | |
0.2 | 2.402399 | 2.540362 | 3.314880 | 3.292131 | ||||
0.4 | 2.402398 | 2.540362 | 2.613102 | 2.575383 | ||||
0.6 | 2.402399 | 2.540362 | 1.709249 | 1.639159 | ||||
0.8 | 2.402399 | 2.540362 | 0.366501 | 0.198966 | ||||
0.6 | 2.489423 | 2.633932 | 2.160871 | 2.106608 | ||||
1.2 | 3.239851 | 3.436586 | 1.827122 | 1.732227 | ||||
1.8 | 4.220439 | 4.478802 | 1.252630 | 1.070368 | ||||
2.4 | 5.297751 | 5.621093 | 0.303402 | 0.084177 | ||||
0.002 | 6.215759 | 6.569464 | 3.003631 | 2.818563 | ||||
0.004 | 4.367599 | 4.631485 | 2.512344 | 2.370365 | ||||
0.006 | 3.578756 | 3.798511 | 2.284544 | 2.174230 | ||||
0.008 | 3.112536 | 3.305193 | 2.142240 | 2.052131 | ||||
0.7 | 2.797875 | 2.971118 | 0.184786 | 0.159446 | ||||
1.4 | 2.797877 | 2.971122 | 0.025169 | 0.117266 | ||||
2.1 | 2.797877 | 2.971122 | 0.094425 | 0.065792 | ||||
2.8 | 2.797877 | 2.971122 | 0.456514 | 0.289438 | ||||
1 | 3.295625 | 3.466278 | 2.173269 | 2.172145 | ||||
2 | 3.959843 | 4.225607 | 4.089725 | 4.095232 | ||||
3 | 4.702199 | 5.079428 | 6.032918 | 6.044240 | ||||
4 | 5.513988 | 6.015086 | 7.987920 | 8.004670 |
Key Factors | Symbols | Levels | ||
---|---|---|---|---|
−1 (Low) | 0 (Medium) | 1 (High) | ||
1.2 | 1.8 | 2.4 | ||
1.4 | 2.1 | 2.8 | ||
2 | 3 | 4 |
Runs | Coded Values | Real Values | Response | |||||
---|---|---|---|---|---|---|---|---|
Nus-1 | Nus-2 | |||||||
1 | −1 | −1 | −1 | 1.2 | 1.4 | 2 | 2.516313 | 2.716616 |
2 | 1 | −1 | −1 | 2.4 | 1.4 | 2 | 2.701862 | 2.534297 |
3 | −1 | 1 | −1 | 1.2 | 2.8 | 2 | 5.711829 | 5.744885 |
4 | 1 | 1 | −1 | 2.4 | 2.8 | 2 | 5.567382 | 5.602613 |
5 | −1 | −1 | 1 | 1.2 | 1.4 | 4 | 5.550822 | 5.586327 |
6 | 1 | −1 | 1 | 2.4 | 1.4 | 4 | 5.495897 | 5.532817 |
7 | −1 | 1 | 1 | 1.2 | 2.8 | 4 | 11.197125 | 11.270286 |
8 | 1 | 1 | 1 | 2.4 | 2.8 | 4 | 11.15152 | 11.225642 |
9 | −1 | 0 | 0 | 1.2 | 2.1 | 3 | 6.321479 | 6.360699 |
10 | 1 | 0 | 0 | 2.4 | 2.1 | 3 | 6.238506 | 6.279378 |
11 | 0 | −1 | 0 | 1.8 | 1.4 | 3 | 4.103701 | 4.130272 |
12 | 0 | 1 | 0 | 1.8 | 2.8 | 3 | 8.420175 | 8.474129 |
13 | 0 | 0 | −1 | 1.8 | 2.1 | 2 | 5.639609 | 5.673726 |
14 | 0 | 0 | 1 | 1.8 | 2.1 | 4 | 11.175048 | 11.248695 |
15 | 0 | 0 | 0 | 1.8 | 2.1 | 3 | 8.420175 | 8.474129 |
16 | 0 | 0 | 0 | 1.8 | 2.1 | 3 | 8.420175 | 8.474129 |
17 | 0 | 0 | 0 | 1.8 | 2.1 | 3 | 8.420175 | 8.474129 |
18 | 0 | 0 | 0 | 1.8 | 2.1 | 3 | 8.420175 | 8.474129 |
19 | 0 | 0 | 0 | 1.8 | 2.1 | 3 | 8.420175 | 8.474129 |
20 | 0 | 0 | 0 | 1.8 | 2.1 | 3 | 8.420175 | 8.474129 |
Source | Degrees of Freedom | Adjusted Sum of Squares | Adjusted Mean Square | F-Value | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|
Case-1 | Case-2 | Case-1 | Case-2 | Case-1 | Case-2 | Case-1 | Case-2 | ||
Model | 9 | 121.385 | 123.026 | 13.4872 | 13.6695 | 50.34 | 50.64 | 0 | 0 |
Linear | 3 | 12.507 | 11.961 | 4.169 | 3.9869 | 15.56 | 14.77 | 0 | 0 |
1 | 4.524 | 4.248 | 4.5241 | 4.2476 | 16.89 | 15.73 | 0.002 | 0.003 | |
1 | 4.823 | 4.726 | 4.8234 | 4.7261 | 18 | 17.51 | 0.002 | 0.002 | |
1 | 1.161 | 1.254 | 1.161 | 1.2542 | 4.33 | 4.65 | 0.064 | 0.057 | |
Square | 3 | 20.608 | 20.871 | 6.8695 | 6.9571 | 25.64 | 25.77 | 0 | 0 |
1 | 5.135 | 5.202 | 5.135 | 5.202 | 19.17 | 19.27 | 0.001 | 0.001 | |
1 | 5.272 | 5.338 | 5.2716 | 5.3378 | 19.67 | 19.77 | 0.001 | 0.001 | |
1 | 1.592 | 1.613 | 1.592 | 1.6128 | 5.94 | 5.97 | 0.035 | 0.035 | |
2-Way Interaction | 3 | 3.449 | 3.492 | 1.1496 | 1.1639 | 4.29 | 4.31 | 0.034 | 0.034 |
1 | 0.013 | 0 | 0.0129 | 0.0003 | 0.05 | 0 | 0.831 | 0.974 | |
1 | 0.003 | 0.006 | 0.0025 | 0.0064 | 0.01 | 0.002 | 0.925 | 0.881 | |
1 | 3.433 | 3.485 | 3.4334 | 3.4851 | 12.81 | 12.91 | 0.005 | 0.005 | |
Error | 10 | 2.679 | 2.7 | 0.2679 | 0.27 | ||||
Lack of Fit | 5 | 2.679 | 2.7 | 0.5359 | 0.5399 | ||||
Pure Error | 5 | 0 | 0 | 0 | 0 | ||||
Total | 19 | 124.064 | 125.725 | ||||||
97.85% |
Case-1 | Case-2 | Case-1 | Case-2 | Case-1 | Case-2 | |||
---|---|---|---|---|---|---|---|---|
−1 | −1 | −1 | 4.6266 | 4.447 | 6.1752 | 6.1436 | 0.0884 | 0.0406 |
−1 | −1 | 0 | 4.5966 | 4.494 | 7.1112 | 7.0866 | 1.6104 | 1.5726 |
−1 | −1 | 1 | 4.5666 | 4.541 | 8.0742 | 8.0296 | 3.1324 | 3.1046 |
−1 | 0 | −1 | 4.5601 | 4.4575 | 2.2188 | 2.1634 | 0.7436 | 0.7707 |
−1 | 0 | 0 | 4.5301 | 4.5045 | 3.1548 | 3.1064 | 2.2656 | 2.2327 |
−1 | 0 | 1 | 4.5001 | 4.5515 | 4.0908 | 4.0494 | 3.7876 | 3.7647 |
−1 | 1 | −1 | 4.4936 | 4.468 | −1.7376 | −1.8168 | 1.3988 | 1.0608 |
−1 | 1 | 0 | 4.4636 | 4.515 | −0.8016 | −0.8738 | 2.9208 | 2.8928 |
−1 | 1 | 1 | 4.4336 | 4.562 | 0.1344 | 6.822 | 4.4428 | 4.4248 |
0 | −1 | −1 | 0.0714 | −0.137 | 6.1182 | 6.1526 | 0.0704 | 0.0688 |
0 | −1 | 0 | 0.0414 | −0.09 | 7.0542 | 7.0956 | 1.5924 | 1.6008 |
0 | −1 | 1 | 0.0114 | −0.043 | 7.9902 | 8.0386 | 3.1144 | 3.1328 |
0 | 0 | −1 | 0.0049 | −0.1265 | 2.1618 | 2.1724 | 0.7256 | 0.7289 |
0 | 0 | 0 | −0.0251 | −0.0795 | 3.0978 | 3.1154 | 2.2476 | 2.2609 |
0 | 0 | 1 | −0.0551 | −0.0325 | 4.0338 | 4.0584 | 3.7696 | 3.7929 |
0 | 1 | −1 | −0.0616 | −0.116 | −1.7946 | −1.8078 | 1.3808 | 1.389 |
0 | 1 | 0 | −0.0916 | −0.069 | −0.8586 | −0.8648 | 0.9028 | 2.921 |
0 | 1 | 1 | −0.1216 | −0.022 | 0.0774 | 0.0782 | 4.4248 | 4.453 |
1 | −1 | −1 | −4.4838 | −4.721 | 6.0612 | 6.1616 | 0.0524 | 0.097 |
1 | −1 | 0 | −4.5138 | −4.674 | 6.9972 | 7.1046 | 1.5744 | 1.629 |
1 | −1 | 1 | −4.5438 | −4.627 | 7.9332 | 8.0476 | 3.0964 | 3.161 |
1 | 0 | −1 | −4.5503 | −4.7105 | 2.1048 | 2.1814 | 0.7076 | 0.7571 |
1 | 0 | 0 | −4.5803 | −4.6635 | 3.0408 | 3.1244 | 2.2296 | 2.2891 |
1 | 0 | 1 | −4.6103 | −4.6165 | 3.9768 | 4.0674 | 3.7516 | 3.8211 |
1 | 1 | −1 | −4.6168 | −4.7 | −1.8516 | −1.7988 | 1.3628 | 1.4172 |
1 | 1 | 0 | −4.6468 | −4.653 | −0.9516 | −0.8558 | 2.8848 | 2.9492 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raju, C.S.K.; Kumar, M.D.; Ahammad, N.A.; El-Deeb, A.A.; Almarri, B.; Shah, N.A. Non-Linear Dynamic Movements of CNT/Graphene/Aluminum Oxide and Copper/Silver/Cobalt Ferrite Solid Particles in a Magnetized and Suction-Based Internally Heated Surface: Sensitivity and Response Surface Optimization. Mathematics 2022, 10, 4066. https://doi.org/10.3390/math10214066
Raju CSK, Kumar MD, Ahammad NA, El-Deeb AA, Almarri B, Shah NA. Non-Linear Dynamic Movements of CNT/Graphene/Aluminum Oxide and Copper/Silver/Cobalt Ferrite Solid Particles in a Magnetized and Suction-Based Internally Heated Surface: Sensitivity and Response Surface Optimization. Mathematics. 2022; 10(21):4066. https://doi.org/10.3390/math10214066
Chicago/Turabian StyleRaju, C. S. K., M. Dinesh Kumar, N. Ameer Ahammad, Ahmed A. El-Deeb, Barakah Almarri, and Nehad Ali Shah. 2022. "Non-Linear Dynamic Movements of CNT/Graphene/Aluminum Oxide and Copper/Silver/Cobalt Ferrite Solid Particles in a Magnetized and Suction-Based Internally Heated Surface: Sensitivity and Response Surface Optimization" Mathematics 10, no. 21: 4066. https://doi.org/10.3390/math10214066
APA StyleRaju, C. S. K., Kumar, M. D., Ahammad, N. A., El-Deeb, A. A., Almarri, B., & Shah, N. A. (2022). Non-Linear Dynamic Movements of CNT/Graphene/Aluminum Oxide and Copper/Silver/Cobalt Ferrite Solid Particles in a Magnetized and Suction-Based Internally Heated Surface: Sensitivity and Response Surface Optimization. Mathematics, 10(21), 4066. https://doi.org/10.3390/math10214066