Development on a Fractional Hybrid Differential Inclusion with a Nonlinear Nonlocal Fractional-Order Integral Inclusion
Abstract
:1. Preliminaries and Introduction
2. Single-Valued Problem
- (i)
- are measurable for almost all t for every and continuous in x for every
- (ii)
- There exist two bounded measurable functions and two positive constants such that
- (iii)
- is continuous and there exists a positive constant a, such that
- (iv)
- , are continuous and .
- (v)
- There exists a real number that satisfies the quadratic algebraic equation
2.1. Existence of Solutions
2.2. Uniqueness of the Solution
2.3. Continuous Dependency
3. Multi-Valued Problem
- The set are nonempty, closed and convex for all .(I) are measurable in for every .(II) are upper semicontinuous in x for every .(III) There exist two bounded measurable functions and two positive constants such that
Existence Theorem
- The sets and are nonempty, closed, and convex for all and satisfy
4. Particular Cases and Example
- A conjugate order hybrid differential inclusion with multi-valued condition Letting , then the Problem (1)–(2) yields the following particular case,In particular, we consider the case when
- Fractional differential inclusion with multi-valued condition Letting in (1), then we have the fractional-order differential inclusion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alizadeh, S.; Baleanu, D.; Rezapour, S. Analyzing transient response of the parallel RCL circuit by using the Caputo-Fabrizio fractional derivative. Adv. Differ. Equ. 2020, 2020, 1–19. [Google Scholar] [CrossRef]
- Baleanu, D.; Etemad, S.; Pourrazi, S.; Rezapour, S. On the new fractional hybrid boundary value problems with three-point integral hybrid conditions. Adv. Differ. Equ. 2019, 2019, 473. [Google Scholar] [CrossRef]
- Baleanu, D.; Etemad, S.; Rezapour, S. On a fractional hybrid integro-differential equation with mixed hybrid integral boundary value conditions by using three operators. Alex. Eng. J. 2020, 59, 3019–3027. [Google Scholar] [CrossRef]
- El-Borai, M.M.; El-Sayed, W.G.; Badr, A.A.; Tarek, S.A. Initial value problem for stochastic hyprid Hadamard Fractional differential equation. J. Adv. Math. 2019, 16, 8288–8296. [Google Scholar] [CrossRef]
- El-Sayed, A.M.A.; El-Salam, S.A.A.; Hashem, H.H.G. Global Existence for an Implicit Hybrid Differential Equation of Arbitrary Orders with a Delay. Mathematics 2022, 10, 967. [Google Scholar] [CrossRef]
- Matar, M.M.; Abbas, M.I.; Alzabut, J.; Kaabar, M.K.A.; Etemad, S.; Rezapour, S. Investigation of the p-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives. Adv. Differ. Equ. 2021, 2021, 68. [Google Scholar] [CrossRef]
- Rida, S.Z.; El-Sayed, A.M.A.; Arafa, A.A.M. Effect of Bacterial Memory Dependent Growth by Using Fractional Derivatives Reaction-Diffusion Chemotactic Model. J. Stat. Phys. 2010, 140, 797–811. [Google Scholar] [CrossRef]
- Thabet, S.T.M.; Etemad, S.; Rezapour, S. On a coupled Caputo conformable system of pantograph problems. Turk. J. Math. 2010, 45, 496–519. [Google Scholar] [CrossRef]
- Baleanu, D.; Hedayati, V.; Rezapour, S.; Qurash, M.A. On Two Fractional Differential Inclusions; Springer: Berlin/Heidelberg, Germany, 2016; Volume 5, p. 882. [Google Scholar]
- Baleanu, D.; Rezapour, S.; Saberpour, Z. On fractional integro-differential inclusions via the extended fractional Caputo-Fabrizio derivation. Bound. Value Probl. 2019, 2019, 1–7. [Google Scholar] [CrossRef]
- El-Sayed, A.M.A.; Ibrahim G, A. Set-valued integral equation of fractional orders. Appl. Math. Comput. 2001, 118, 113–121. [Google Scholar] [CrossRef]
- Srivastava, H.M.; El-Sayed, A.M.A.; Hashem, H.H.G.; Al-Issa, S.M. Analytical investigation of nonlinear hybrid implicit functional differential inclusions of arbitrary fractional orders. RACSAM 2022, 116, 26. [Google Scholar] [CrossRef]
- Dhage, B.C.; Lakshmikantham, V. Basic results on hybrid differential equation. Nonlinear Anal. Hybrid Syst. 2010, 4, 414–424. [Google Scholar] [CrossRef]
- Baitiche, Z.; Guerbati, K.; Benchohra, M.; Zhou, Y. Boundary value problems for hybrid Caputo fractional differential equations. Mathematics 2019, 7, 282. [Google Scholar] [CrossRef] [Green Version]
- Derbazi, C.; Hammouche, H.; Benchohra, M.; Zhou, Y. Fractional hybrid differential equations with three-point boundary hybrid conditions. Adv. Differ. Equ. 2019, 2019, 125. [Google Scholar] [CrossRef] [Green Version]
- Hilal, K.; Kajouni, A. Boundary value problems for hybrid differential equations with fractional order. Adv. Differ. Equ. 2015, 183, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Kamenskii, M.; Obukhovskii, V.; Petrosyan, G.; Yao, J. Existence and approximation of solutions to nonlocal boundary value problems for fractional differential inclusions. Fixed Point Theory Appl. 2019, 2019, 2. [Google Scholar] [CrossRef] [Green Version]
- Zeng, S.; Rǎdulescu, V.D.; Winkert, P. Double Phase Implicit Obstacle Problems with Convection and Multivalued Mixed Boundary Value Conditions. SIAM J. Math. Anal. 2022, 54, 1–25. [Google Scholar] [CrossRef]
- Cichoń, M. Multivalued perturbations of m-accretive differential inclusions in a non seprable Banach space. Comment. Math. 1992, 32, 11–1017. [Google Scholar]
- Deimling, K. Nonlinear Multi-Valued Differential Equations; De. Gruyter: Berlin, Germany, 1992. [Google Scholar]
- Banas, J.; Lecko, M. Fixed points of the product of operators in Banach algebra. PanAm. Math. J. 2002, 12, 101–109. [Google Scholar]
- Banaś, J.; Rzepka, B. Monotonic solutions of a quadratic integral equations of fractional order. J. Math. Anal. Appl. 2007, 332, 1370–11378. [Google Scholar] [CrossRef] [Green Version]
- Bényi, Á.; Torres, R.H. Compact bilinear operators and commutators. Proc. Am. Math. Soc. 2013, 141, 3609–3621. [Google Scholar] [CrossRef] [Green Version]
- Brestovanská, E.; Medved, M. Fixed point theorems of the Banach and Krasnosel’s type for mappings on m-tuple Cartesian product of Banach algebras and systems of generalized Gripenberg’s equations. Acta Univ. Palacki. Olomuc. Math. 2012, 51, 27–39. [Google Scholar]
- Caballero, J.; Mingarelli, A.B.; Sadarangani, K. Existence of solutions of an integral equation of Chandrasekhar type in the theory of radiative transfer. Electr. J. Differ. Equ. 2006, 57, 1–11. [Google Scholar]
- Chandrasekhar, S. Radiative Transfer; Oxford University Press: London, UK, 1950; Dover Publications: New York, NY, USA, 1960. [Google Scholar]
- Cichoń, M.; Metwali, M.M.A. On a fixed point theorem for the product of operators. J. Fixed Point Theory Appl. 2016, 18, 753–770. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Abbas, S.; Benchohra, M. On the Existence and Local Asymptotic Stability of Solutions of Fractional Order Integral Equations. Comment. Math. 2012, 52, 91–100. [Google Scholar]
- Bachir, F.S.; Abbas, S.; Benbachir, M.; Benchohra, M.; N’Guérxexekata, G.M. Existence and attractivity results for ψ-Hilfer hybrid fractional differential equations. CUBO Math. J. 2021, 23, 145–159. [Google Scholar] [CrossRef]
- Kuczumow, T. Fixed point theorems in product spaces. Proc. Am. Math. Soc. 1990, 108, 727–729. [Google Scholar] [CrossRef]
- Artstein, Z. Carathéodory selections and the Scorza Dragoni Property. J. Math. Anal. Appl. 1987, 127, 540–547. [Google Scholar] [CrossRef] [Green Version]
- JAubin, P.; Cellina, A. Differential Inclusions: Set-Valued Maps and Viability Theory; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Cichoń, M.; El-Sayed, A.M.A.; Salem, H.A.H. Existence theorem for nonlinear functional integral equations of fractional orders. Commentationes 2001, 41, 59–67. [Google Scholar]
- Fierro, R.C.; Martines, R.C.; Morales, C.H. Carathéodory selections for multi-valued mappings. Nonlinear Anal. 2006, 64, 1229–1235. [Google Scholar] [CrossRef]
- Yu, A. Neretin, Hausdorff Metric, the Construction of a Hausdorff Quotient Space, and Boundaries of Symmetric Spaces. Funct. Anal. Appl. 1997, 31, 1997. [Google Scholar]
- Bressan, A.; Colombo, G. Extenstions and selections of mapswith decomposable values. Studia Math. 1988, 90, 69–86. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, E.; El-Sayed, A.M.A.; El-Mesiry, A.E.M.; El-Saka, H.A.A. Numerical solution for the fractional replicator equation. Int. J. Mod. Phys. C 2005, 16, 1017–1025. [Google Scholar] [CrossRef]
- Failla, G.; Zingales, M. Advanced materials modelling via fractional calculus: Challenges and perspectives. Phil. Trans. R. Soc. 2020, 378, 20200050. [Google Scholar] [CrossRef]
- Patnaik, S.; Jokar, M.; Ding, W.; Semperlotti, F. On the role of the microstructure in the deformation of porous solids. NPJ Comput. Mater. 2022, 8, 152. [Google Scholar] [CrossRef]
- Sumelka, W. Fractional viscoplasticity. Mech. Res. Commun. 2014, 56, 31–36. [Google Scholar] [CrossRef]
- El-Sayed, A.M.A.; Gaafar, F.M. Fractional calculus and some intermediate physical processes. Appl. Math. Comput. 2003, 144, 117–126. [Google Scholar] [CrossRef]
- El-Sayed, A.M.A.; Gaafar, F.M. Fractional-order differential equations with memory and fractional-order relaxation-oscillation model. Pure Math. Appl. 2001, 12, 296–310. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Sayed, A.M.A.; El-Salam, S.A.A.; Hashem, H.H.G. Development on a Fractional Hybrid Differential Inclusion with a Nonlinear Nonlocal Fractional-Order Integral Inclusion. Mathematics 2022, 10, 4068. https://doi.org/10.3390/math10214068
El-Sayed AMA, El-Salam SAA, Hashem HHG. Development on a Fractional Hybrid Differential Inclusion with a Nonlinear Nonlocal Fractional-Order Integral Inclusion. Mathematics. 2022; 10(21):4068. https://doi.org/10.3390/math10214068
Chicago/Turabian StyleEl-Sayed, Ahmed M. A., Sheren A. Abd El-Salam, and Hind H. G. Hashem. 2022. "Development on a Fractional Hybrid Differential Inclusion with a Nonlinear Nonlocal Fractional-Order Integral Inclusion" Mathematics 10, no. 21: 4068. https://doi.org/10.3390/math10214068
APA StyleEl-Sayed, A. M. A., El-Salam, S. A. A., & Hashem, H. H. G. (2022). Development on a Fractional Hybrid Differential Inclusion with a Nonlinear Nonlocal Fractional-Order Integral Inclusion. Mathematics, 10(21), 4068. https://doi.org/10.3390/math10214068