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Abstract

:

In this article, we consider a Riemann–Liouville fractional-order nonlinear hybrid delay differential inclusion with a nonlinear set-valued nonlocal integral condition of fractional order. We prove some existence and uniqueness results in   C ( I , R ) .   We also study the continuous dependence of the solutions on the two sets of selections of the two set-valued functions, considered in our problem, and on some other parameters. Finally, to validate our results, we present an example and some particular cases.
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1. Preliminaries and Introduction


Great contributions dedicated to investigate the fractional-order initial and boundary value problems due to the various applications and real-world problems can be found in the literature (see [1,2,3,4,5,6,7,8]). For fractional-order differential inclusions and some existence results in particular, see [9,10,11,12] and references therein.



Dhage and Lakshmikantham [13] introduced and initiated study of a new category of nonlinear differential equation called ordinary hybrid differential equation.



Fractional hybrid differential equations can be employed in modeling and describing non-homogeneous physical phenomena that take place in their form. The importance of investigations of hybrid differential equations lies in the fact that it includes many dynamic systems as special cases. There have been many works on the theory of hybrid differential equations (see [2,3,4,13,14,15,16]).



Hybrid differential equations and inclusions with some multi-valued maps have been studied in many monographs (see [17,18]).



Kamenskii et al. [17] studied a semi-linear differential inclusion, involving a Caputo fractional derivative, in a separable Banach space. They proved the existence of a mild solution to this inclusion with a multi-valued condition by using the method of the generalized translation multi-valued operator and some fixed point theorems. Double phase implicit obstacle problems with convection and multi-valued mixed-boundary value conditions have been discussed in [18] by applying the Kakutani–Ky Fan fixed-point theorem for multi-valued operators along with the theory of nonsmooth analysis and variational methods for pseudo-monotone operators.



Motivated by the above results, we study the fractional-order hybrid delay differential inclusion


    R   D α      x ( t ) − x ( 0 )   g ( t , x  (  ϕ 2   ( t )  )  )     ∈  F  ( t , x  (  ϕ 1   ( t )  )  )  ,  t ∈ I =  [ 0 , T ]  ,  



(1)




subject to the multi-valued fractional-order nonlocal integral condition


  x  ( 0 )   −   x 0   ∈   ∫ 0 τ      ( τ − s )   β − 1    Γ ( β )    H  ( s , x  (  ϕ 3   ( s )  )  )   d s ,  β ≤ α ,  τ  ∈  I ,  



(2)




where     R   D α     is the Riemann–Liouville derivative of order    α ∈ ( 0 , 1 )  , and   F , H : I ×  R +  → P  ( R )    are two set-valued mappings where   P ( R )   denote the family of nonempty subsets of   R .  



The set-valued functions    F ( . , x ( . ) )    and   H ( . , x ( . ) )   are assumed to have Carathéodory selections, as in [19], to prove the existence of solutions    x ∈ C ( I , R )   of the Problem (1)–(2). Moreover, we discuss the continuous dependence of these solutions on the two sets of selections   S F   and    S H  ,   of the set-valued functions F and   H ,    and on the data   x 0  .



In order to achieve our task, we study first the single-valued problem corresponding to our considered Problem (1)–(2),


    R   D α      x ( t ) − x ( 0 )   g ( t , x  (  ϕ 2   ( t )  )  )     =  f  ( t , x  (  ϕ 1   ( t )  )  )  ,  



(3)




subject to the fractional-order nonlocal integral condition


  x  ( 0 )   −   x 0   =   ∫ 0 τ      ( τ − s )   β − 1    Γ ( β )    h  ( s , x  (  ϕ 3   ( s )  )  )   d s ,  



(4)




where   f ∈ F    and    h ∈ H .  



With the aim of proving the existence of the solutions    x ∈ C ( I , R )   of the Problem



The paper is organized as follows: Section 2 contains main results for the single-valued Problem (3)–(4). In Section 3, as extensions of these results, we deduce similar results for the multi-valued Problem (1)–(2). In this case, we have two sets of selections correspond to the two multivalued functions. We prove the continuous dependence of the solutions of that problem on the two sets of selections. Finally, we present some special cases as examples in Section 4.



The following theorem will be needed.



Theorem 1

(Nonlinear alternative of Leray–Schauder type [20]). Let E be a Banach space and Ω be a bounded open subset of E,   0 ∈ Ω   and   T :  Ω ¯  → E   be a completely continuous operator. Then, either there exists   u ∈ ∂ Ω , λ > 1   such that   T ( u ) = λ u  , or there exists a fixed point    u *  ∈  Ω ¯   .






2. Single-Valued Problem


Let    E  = C ( I , R )  , with supremum norm    | | x | |  =  sup  t ∈ I    | x  ( t )  |    for any   x ∈ E .    Consider now the single-valued Problem (3)–(4) with the following assumptions:




	(i)

	
  f , h : I × R ⟶ R   are measurable for almost all t for every   x ∈ R   and continuous in x for every   t ∈ I .  




	(ii)

	
There exist two bounded measurable functions    m i  ∈  L 1   ( I )    and two positive constants    b i  ,  i = 1 , 2    such that


   | f  ( t , x )  |   ≤   m 1   ( t )   +   b 1    | x | ,      and     | h  ( t , x )  |   ≤   m 2   ( t )   +   b 2    | x |  ,     t  ∈  I ,   x ∈  R  








with    M  =  m a x { sup  m 1   ( t )  ,  sup  m 2   ( t )  ,   t ∈ I  }   and    b  =  m a x {  b 1  ,   b 2   } .  




	(iii)

	
  g : I × R → R \ { 0 }   is continuous and there exists a positive constant a, such that


   | g  ( t , x )  − g  ( t , y )  |  ≤  a | x − y |     and       k 1  =  sup  t ∈ I    | g  ( t , 0 )  |  .  












	(iv)

	
   φ i  : I → I  ,   i = 1 , 2 , 3    are continuous and     φ i   ( t )  ≤ t ,   t ∈ I  .




	(v)

	
There exists a real number    r  ∈ ( 0 , 1 )    that satisfies the quadratic algebraic equation


   |   x 0   | +  A    ( M  ( 1 +  k 1  )  +  ( b  k 1  + a M + b )  r + a b  r 2  )   =  r ,  








where    A  =  m a x {   T β   Γ ( β + 1 )   ,    T α   Γ ( α + 1 )   }  .









Definition 1.

By a solution of the Problem (3)–(4), we mean a function    x ∈ E    that satisfies the Problem (3)–(4).





Now, we have the following lemma.



Lemma 1.

If the solution of the Problem (3)–(4) exists, then it is given by the fractional-orders integral equation


   x  ( t )   =   x 0  +  ∫ 0 τ      ( τ − s )   β − 1    Γ ( β )    h  ( s , x  (  ϕ 3   ( s )  )  )   d s  +  g  ( t , x  (  ϕ 2   ( t )  )  )   I α  f  ( t , x  (  ϕ 1   ( t )  )  )  .   



(5)









Equation (5) is a quadratic integral equation. Quadratic integral equations appear in several real problems and have been studied in many articles in the literature (for more results and investigations, see [21,22,23,24,25,26,27]).



Proof. 

Let   x ∈ E    be a solution of the Problem (3)–(4). Integrating (3), then using the properties of the fractional calculus [28] and assumption (i), we obtain


  x  ( t )   =  x  ( 0 )   +  g  ( t , x  (  ϕ 2   ( t )  )  )   I α  f  ( t , x  (  ϕ 1   ( t )  )  )  ,  








and (5) can be obtained.



Secondly, let Let   x ∈ E    be a solution of the integral Equation (5). Then,


  x  ( t )  − x  ( 0 )   =  g  ( t , x  (  ϕ 2   ( t )  )  )   I α  f  ( t , x  (  ϕ 1   ( t )  )  )  ,      x ( t ) − x ( 0 )   g ( t , x  (  ϕ 2   ( t )  )  )    =   I α  f  ( t , x  (  ϕ 1   ( t )  )  )   








and


    R   D α    x ( t ) − x ( 0 )   g ( t , x  (  ϕ 2   ( t )  )  )    =   d  d t    I  1 − α     x ( t ) − x ( 0 )   g ( t , x  (  ϕ 2   ( t )  )  )    =   d  d t    I  1 − α    I α  f  ( t , x  (  ϕ 1   ( t )  )  )   =  f  ( t , x  (  ϕ 1   ( t )  )  )  .  











□





2.1. Existence of Solutions


Now, we can prove the following existence theorem.



Theorem 2.

Let the assumptions (i)–(v) be satisfied. Then the Problem (3)–(4) has a solution   x ∈ C ( I , R )  .





Proof. 

Let r be given by the assumptions (iv). Define the set  Ω  by


  Ω =  { x ∈ C ( I ,  R ) ,    | | x | | ≤ r }   








and the operator  F  by


  F x  ( t )   =   x 0  +  ∫ 0 τ      ( τ − s )   β − 1    Γ ( β )    h  ( s , x  (  ϕ 3   ( s )  )  )   d s  +  g  ( t , x  (  ϕ 2   ( t )  )  )   I α  f  ( t , x  (  ϕ 1   ( t )  )  )  .  



(6)







Let    x ∈ ∂ Ω , λ > 1    such that   F x = λ x  . Now,


  λ  r  =  λ  | | x | |  =  | | F x | | ,  








and then we have


     | F x |    =    |  x 0  +  ∫ 0 τ      ( τ − s )   β − 1    Γ ( β )    h  ( s , x  (  ϕ 3   ( s )  )  )  d s  +  g  ( t , x  (  ϕ 2   ( t )  )  )   I α  f  ( t , x  (  ϕ 1   ( t )  )  )  |            ≤     |   x 0   | +    ∫ 0 τ      ( τ − s )   β − 1    Γ ( β )    | h   ( s , x  (  ϕ 3   ( s )  )  )   | d s +  g   ( t , x  (  ϕ 2   ( t )  )  )   |  |   I α  f  ( t , x  (  ϕ 1   ( t )  )  )   |             ≤     |   x 0   | +    ∫ 0 τ      ( τ − s )   β − 1    Γ ( β )      m 2   ( s )  +  b 2   | x  (  ϕ 3   ( s )  )  |    d s            +      | g  ( t , 0 )  | + a | x (  ϕ 2   ( t )  ) |    ∫ 0 t      ( t − s )   α − 1    Γ ( α )      m 1   ( s )  +  b 1   | x  (  ϕ 1   ( s )  )  |    d s            ≤     |   x 0   | + ( M + b | | x | | )     T β   Γ ( β + 1 )              +     (   k 1  +  a | | x | | )  ( M  +  b | | x | | )    T α   Γ ( α + 1 )              ≤     |   x 0   | +  ( M + b r )      T β   Γ ( β + 1 )   +  (  k 1  + a r )    ( M + b r )    T α   Γ ( α + 1 )       










    ≤     |   x 0   | +  A    ( M + b r +  (  k 1  + a r )    ( M + b r )  )                



(7)






     =     |   x 0   | +  A    ( M  ( 1 +  k 1  )  +  ( b  k 1  + a M + b )  r + a b  r 2  )   =  r .     



(8)







Then    F : Ω → Ω    is uniformly bounded,


  i . e . ,   | | F x | | ≤ r ,       and      λ ≤ 1 .  











This contradicts that    λ > 1  .



In what follows, we show that  F  is an equicontinuous operator.



Now, let   x ∈ Ω    and define the two functions


   θ 1    ( δ )   = {   sup g   | g  ( t , x )  − g  ( s , x )  | :  t ,  s  ∈  I ,  | t − s | < δ ,  | x | ≤ r }   








and


   θ 2    ( δ )  = {   sup  x ∈ Ω    | x  ( t )  − x  ( s )  | :  t ,  s  ∈  I ,  | t − s | < δ ,  | x | ≤ r } .   











Then from the uniform continuity of the functions g on    I × [ − r , r ]   and x on I we deduce that    ∀ x ∈ Ω    and   ∀  δ > 0   there exist    ϵ 1  ,  ϵ 2  > 0  , such that


   | g  ( t , x )  − g  ( s , x )  |  ≤  θ 1   ( δ )  <  ϵ 1  ,      | x  ( t )  − x  ( s )  |  ≤  θ 2   ( δ )  <  ϵ 2   








independently of    x ∈ Ω   (see [29,30].)



Now, for any   x ∈  Ω ¯   , let    t 1  ,  t 2  ∈ I  ,    t 1  <  t 2   , then we have


      | F x   (  t 2  )  − F x  (  t 1  )   |     =    | g  (  t 2  , x  (  ϕ 2   (  t 2  )  )  )   I α  f  (  t 2  , x  (  ϕ 1   (  t 2  )  )  )  − g  (  t 1  , x  (  ϕ 2   (  t 1  )  )  )   I α  f  (  t 1  , x  (  ϕ 1   (  t 1  )  )  )  |       =    | g  (  t 2  , x  (  ϕ 2   (  t 2  )  )  )   I α  f  (  t 2  , x  (  ϕ 1   (  t 2  )  )  )  − g  (  t 1  , x  (  ϕ 2   (  t 1  )  )  )   I α  f  (  t 1  , x  (  ϕ 1   (  t 1  )  )  )        −    g  (  t 1  , x  (  ϕ 2   (  t 1  )  )  )   I α  f  (  t 2  , x  (  ϕ 1   (  t 2  )  )  )  + g  (  t 1  , x  (  ϕ 2   (  t 1  )  )  )   I α  f  (  t 2  , x  (  ϕ 1   (  t 2  )  )  )  |       ≤    | g  (  t 2  , x  (  ϕ 2   (  t 2  )  )  )  − g  (  t 1  , x  (  ϕ 2   (  t 1  )  )  )  |   |  I α  f  (  t 2  , x  (  ϕ 1   (  t 2  )  )  )  |        +     | g   (  t 1  , x  (  ϕ 2   (  t 1  )  )  )   |  |   I α  f  (  t 2  , x  (  ϕ 1   (  t 2  )  )  )  −  I α  f  (  t 1  , x  (  ϕ 1   (  t 1  )  )  )  |       =    | g  (  t 2  , x  (  ϕ 2   (  t 2  )  )  )  − g  (  t 1  , x  (  ϕ 2   (  t 1  )  )  )  − g  (  t 1  , x  (  ϕ 2   (  t 2  )  )  )        +    g  (  t 1  , x  (  ϕ 2   (  t 2  )  )  )  |   |  I α  f  (  t 2  , x  (  ϕ 1   (  t 2  )  )  )  |        +     | g   (  t 1  , x  (  ϕ 2   (  t 1  )  )  )   |  |   I α  f  (  t 2  , x  (  ϕ 1   (  t 2  )  )  )  −  I α  f  (  t 1  , x  (  ϕ 1   (  t 1  )  )  )  |       ≤    | g  (  t 2  , x  (  ϕ 2   (  t 2  )  )  )  − g  (  t 1  , x  (  ϕ 2   (  t 2  )  )  )  |   |  I α  f  (  t 2  , x  (  ϕ 1   (  t 2  )  )  )  |        +    | g  (  t 1  , x  (  ϕ 2   (  t 2  )  )  )  − g  (  t 1  , x  (  ϕ 2   (  t 1  )  )  )  |   |  I α  f  (  t 2  , x  (  ϕ 1   (  t 2  )  )  )  |        +     | g   (  t 1  , x  (  ϕ 2   (  t 1  )  )  )   |  |   I α  f  (  t 2  , x  (  ϕ 1   (  t 2  )  )  )  −  I α  f  (  t 1  , x  (  ϕ 1   (  t 1  )  )  )  |       ≤     θ 1    ( δ )   |   I α  f  (  t 2  , x  (  ϕ 1   (  t 2  )  )  )   | + a | x   (  ϕ 2   (  t 2  )  )  − x  (  ϕ 2   (  t 1  )  )   |  |   I α  f  (  t 2  , x  (  ϕ 1   (  t 2  )  )  )   |        +     | g   (  t 1  , x  (  ϕ 2   (  t 1  )  )  )   |  |   I α  f  (  t 2  , x  (  ϕ 1   (  t 2  )  )  )  −  I α  f  (  t 1  , x  (  ϕ 1   (  t 1  )  )  )  |       ≤      θ 1   ( δ )  + a  | x  (  ϕ 2   (  t 2  )  )  − x  (  ϕ 2   (  t 1  )  )  |     I α    m 1   (  t 2  )  +  b 1   | x  (  ϕ 1   (  t 2  )  )  |         +      | g   (  t 1  , 0 )   | + a | x   (  ϕ 2   (  t 1  )  )   |    |  I α  f  (  t 2  , x  (  ϕ 1   (  t 2  )  )  )  −  I α  f  (  t 1  , x  (  ϕ 1   (  t 1  )  )  )  |       ≤      θ 1   ( δ )  + a  sup  x ∈ Ω    | x  (  ϕ 2   (  t 2  )  )  − x  (  ϕ 2   (  t 1  )  )  |     M   T α   Γ ( α + 1 )   +  b | | x | |    T α   Γ ( 1 + α )          +     (   k 1  +  a | | x | | )  |   I α  f  (  t 2  , x  (  ϕ 1   (  t 2  )  )  )  −  I α  f  (  t 1  , x  (  ϕ 1   (  t 1  )  )  )  |       ≤      θ 1   ( δ )  + a   θ 2   ( δ )     M   T α   Γ ( α + 1 )   +  b | | x | |    T α   Γ ( 1 + α )          +     (   k 1  +  a | | x | | ) |   I α  f  (  t 2  , x  (  ϕ 1   (  t 2  )  )  )  −  I α  f  (  t 1  , x  (  ϕ 1   (  t 1  )  )  )  | .     











However, we have


     |  I α  f  (  t 2  , x  (  ϕ 1   (  t 2  )  )  )  −  I α  f  (  t 1  , x  (  ϕ 1   (  t 1  )  )  )  |    =    |  ∫  0   t 2      (  t 2  − s )   α − 1    Γ ( α )   f  ( s , x  (  ϕ 1   ( s )  )  )   d s            −     ∫  0   t 1      (  t 1  − s )   α − 1    Γ ( α )   f  ( s , x  (  ϕ 1   ( s )  )  )   d s |            ≤    |  ∫  0   t 1      (  t 2  − s )   α − 1    Γ ( α )   f  ( s , x  (  ϕ 1   ( s )  )  )   d s            +     ∫   t 1    t 2      (  t 2  − s )   α − 1    Γ ( α )   f  ( s , x  (  ϕ 1   ( s )  )  )   d s            −     ∫  0   t 1      (  t 1  − s )   α − 1    Γ ( α )   f  ( s , x  (  ϕ 1   ( s )  )  )   d s |            ≤    |  ∫  0   t 1      (  t 1  − s )   α − 1    Γ ( α )   f  ( s , x  (  ϕ 1   ( s )  )  )   d s            +     ∫   t 1    t 2      (  t 2  − s )   α − 1    Γ ( α )   f  ( s , x  (  ϕ 1   ( s )  )  )   d s            −     ∫  0   t 1      (  t 1  − s )   α − 1    Γ ( α )   f  ( s , x  (  ϕ 1   ( s )  )  )   d s |            =    |  ∫   t 1    t 2      (  t 2  − s )   α − 1    Γ ( α )   f  ( s , x  (  ϕ 1   ( s )  )  )   d s |            ≤     ∫   t 1    t 2      (  t 2  − s )   α − 1    Γ ( α )   | f  ( s , x  (  ϕ 1   ( s )  )  )  |  d s            ≤     ( M + b r )   ∫   t 1    t 2      (  t 2  − s )   α − 1    Γ ( α )    d s .     











Consequently,


      | F x   (  t 2  )   −  F x  (  t 1  )   |     ≤      θ 1   ( δ )  + a   θ 2   ( δ )     M   T α   Γ ( α + 1 )   +  b | | x | |    T α   Γ ( 1 + α )          +     ( M + b r )   ∫   t 1    t 2      (  t 2  − s )   α − 1    Γ ( α )    d s .     











Then,   F :  Ω ¯  → E   is a completely continuous. Then, by Theorem 1.1 there exists a solution   x ∈ C ( I , R )   of the Problem (3)–(4).



Thus   F :  Ω ¯  → E   is compact and has a fixed point    x ∈ E .   This proves the existence of solution    x ∈ E   of the Problem (3)–(4). □





Remark 1.

Several fixed-point problems involving product of operators have been investigated in many literature and monographs (for example, [21,23,27,31]). We can use a fixed-point theorem for the product of operators to prove Theorem 2.






2.2. Uniqueness of the Solution


Consider the following assumption:



  ( i  i *  )   there exist two positive constants    b i  ,  i = 1 , 2    such that


   | f  ( t , x )  − f  ( t , y )  |  ≤  b 1   | x − y | ,       | h  ( t , x )  − h  ( t , y )  |  ≤  b 2   | x − y |  ,  











     m 1   ( t )  =  | f  ( t , 0 )  | ,        m 2   ( t )  =  | h  ( t , 0 )  |    



with    M  =  m a x { sup  m 1   ( t )  ,  sup  m 2   ( t )  ,   t ∈ I  }   and    b  =  m a x {  b 1  ,   b 2   } .  



Theorem 3.

Let the assumptions of Theorem 2 be satisfied and replace condition (ii) by   ( i  i *  )  .



If


   A  2 a b r + a M + b  k 1   < 1 ,   








then the Problem (3)–(4) has a unique solution   x ∈ C ( I , R ) .  





Proof. 

Let    x 1  ,   x 2    be solutions of Equation (5), then


      |   x 1   ( t )  −  x 2    ( t )  |     =    |  x 0  +  ∫ 0 τ      ( τ − s )   β − 1    Γ ( β )    h  ( s ,  x 1   (  ϕ 3   ( s )  )  )   d s  +  g  ( t ,  x 1   (  ϕ 2   ( t )  )  )   I α  f  ( t ,  x 1   (  ϕ 1   ( t )  )  )        −     x 0  −  ∫ 0 τ      ( τ − s )   β − 1    Γ ( β )    h  ( s ,  x 2   (  ϕ 3   ( s )  )  )   d s  −  g  ( t ,  x 2   (  ϕ 2   ( t )  )  )   I α  f  ( t ,  x 2   (  ϕ 1   ( t )  )  )  |       ≤     ∫ 0 τ      ( τ − s )   β − 1    Γ ( β )    | h  ( s ,  x 1   (  ϕ 3   ( s )  )  )  − h  ( s ,  x 2   (  ϕ 3   ( s )  )  )  |  d s       +    | g  ( t ,  x 1   (  ϕ 2   ( t )  )  )   I α  f  ( t ,  x 1   (  ϕ 1   ( t )  )  )  − g  ( t ,  x 2   (  ϕ 2   ( t )  )  )   I α  f  ( t ,  x 2   (  ϕ 1   ( t )  )  )  |       ≤    b   ∫ 0 τ      ( τ − s )   β − 1    Γ ( β )     |  x 1   (  ϕ 3   ( s )  )  −  x 2   (  ϕ 3   ( s )  )  |   d s       +    | g  ( t ,  x 1   (  ϕ 2   ( t )  )  )   I α  f  ( t ,  x 1   (  ϕ 1   ( t )  )  )  − g  ( t ,  x 2   (  ϕ 2   ( t )  )  )   I α  f  ( t ,  x 2   (  ϕ 1   ( t )  )  )  | ,     








but


     | g  ( t ,  x 1   (  ϕ 2   ( t )  )  )   I α  f  ( t ,  x 1   (  ϕ 1   ( t )  )  )  − g  ( t ,  x 2   (  ϕ 2   ( t )  )  )   I α  f  ( t ,  x 2   (  ϕ 1   ( t )  )  )  |     










     =    | g  ( t ,  x 1   (  ϕ 2   ( t )  )  )   I α  f  ( t ,  x 1   (  ϕ 1   ( t )  )  )  − g  ( t ,  x 2   (  ϕ 2   ( t )  )  )   I α  f  ( t ,  x 2   (  ϕ 1   ( t )  )  )        +    g  ( t ,  x 2   (  ϕ 2   ( t )  )  )   I α  f  ( t ,  x 1   (  ϕ 1   ( t )  )  )  − g  ( t ,  x 2   (  ϕ 2   ( t )  )  )   I α  f  ( t ,  x 1   (  ϕ 1   ( t )  )  )  |       ≤    | g  ( t ,  x 1   (  ϕ 2   ( t )  )  )   I α  f  ( t ,  x 1   (  ϕ 1   ( t )  )  )  − g  ( t ,  x 2   (  ϕ 2   ( t )  )  )   I α  f  ( t ,  x 1   (  ϕ 1   ( t )  )  )  |       +    | g  ( t ,  x 2   (  ϕ 2   ( t )  )  )   I α  f  ( t ,  x 1   (  ϕ 1   ( t )  )  )  − g  ( t ,  x 2   (  ϕ 2   ( t )  )  )   I α  f  ( t ,  x 2   (  ϕ 1   ( t )  )  )  |       ≤    | g  ( t ,  x 1   (  ϕ 2   ( t )  )  )  − g  ( t ,  x 2   (  ϕ 2   ( t )  )  )  |  |  I α  f  ( t ,  x 1   (  ϕ 1   ( t )  )  )  |       +    | g  ( t ,  x 2   (  ϕ 2   ( t )  )  )  |  |  I α  f  ( t ,  x 1   (  ϕ 1   ( t )  )  )  −  I α  f  ( t ,  x 2   (  ϕ 1   ( t )  )  )  |       ≤    a |  x 1   (  ϕ 2   ( t )  )  −  x 2   (  ϕ 2   ( t )  )  |    b |   x 1   (  ϕ 1   ( t )  )   | + | f  ( t , 0 )  |     T α   Γ ( 1 + α )         +      a |   x 2   (  ϕ 2   ( t )  )   | + | g  ( t , 0 )  |   b |  x 1   (  ϕ 1   ( t )  )  −  x 2   (  ϕ 1   ( t )  )  |   T α   Γ ( 1 + α )         ≤     a | |   x 1  −  x 2   | |    b r + M    T α   Γ ( 1 + α )         +     a r +  k 1    b | |   x 1  −  x 2   | |    T α   Γ ( 1 + α )   .     











Then,


      | |   x 1  −  x 2   | |     ≤      b   T β    Γ ( 1 + β )    | |   x 1  −  x 2   | |  +   a   T α    Γ ( 1 + α )    | |   x 1  −  x 2   | |    b r + M        +     a r +  k 1     b   T α    Γ ( 1 + α )    | |   x 1  −  x 2   | |  ,     








and then


   | |   x 1  −  x 2   | |  ≤ A  2 a b r + a M + b  k 1    | |   x 1  −  x 2   | |  ,  










   1 − A  2 a b r + a M + b  k 1     | |   x 1  −  x 2   | |  ≤ 0 .  











This implies that     x 1   ( t )  =  x 2   ( t )  .   Hence, the solution of Problem (3)–(4) is unique. □






2.3. Continuous Dependency


In this subsection, we shall investigate the continuous dependence of the solution of the Problem (3)–(4) on     x 0     and on the two functions    f    and    h .   



Definition 2.

The solution of the Problem (3)–(4) depends continuously on   x 0   and on the two functions    f    and    h ,   if    ∀ ϵ > 0 ,      ∃  δ 1  ,   δ 2  ,   δ 3  > 0   be given such that



   |   x 0  −   x ˜  0   | ≤   δ 1  ,   | f  ( t , x )  −  f ˜   ( t ,  x ˜  )  |  ≤  δ 2     and     | h  ( t , x )  −   h ˜   ( t ,  x ˜  )   | ≤   δ 3   .    Then     | x −   x ˜   | ≤ ϵ ,     where   x ˜   be a solution of the quadratic integral equation


    x ˜   ( t )   =    x ˜  0  +  ∫ 0 τ      ( τ − s )   β − 1    Γ ( β )     h ˜   ( s ,  x ˜   (  ϕ 3   ( s )  )  )   d s  +  g  ( t ,  x ˜   (  ϕ 2   ( t )  )  )   I α   f ˜   ( t ,  x ˜   (  ϕ 1   ( t )  )  )  .   



(9)









Theorem 4.

Let the assumptions of Theorem 3 be satisfied, and then the solution of the integral Equation (5) (consequently the the Problem (3)–(4)) depends continuously on    x 0  ,  f   , and on    h  .





Proof. 

Let    δ 1  ,   δ 2  ,   δ 3  > 0   be given such that    |   x 0  −   x ˜  0   | ≤   δ 1  ,   | f  ( t , x )  −  f ˜   ( t ,  x ˜  )  |  ≤  δ 2     and     | h  ( t , x )  −   h ˜   ( t ,  x ˜  )   | ≤   δ 3  .    Let   x ˜   be a solution of the following integral Equation (9) Then,


      | x  ( t )  −   x ˜    ( t )  |     =    |  x 0  +  ∫ 0 τ      ( τ − s )   β − 1    Γ ( β )    h  ( s , x  (  ϕ 3   ( s )  )  )   d s  +  g  ( t , x  (  ϕ 2   ( t )  )  )   I α  f  ( t , x  (  ϕ 1   ( t )  )  )        −      x ˜  0  −  ∫ 0 τ      ( τ − s )   β − 1    Γ ( β )     h ˜   ( s ,  x ˜   (  ϕ 3   ( s )  )  )   d s  −  g  ( t ,  x ˜   (  ϕ 2   ( t )  )  )   I α   f ˜   ( t ,  x ˜   (  ϕ 1   ( t )  )  )  |       ≤     |   x 0  −   x ˜  0   | +   ∫ 0 τ      ( τ − s )   β − 1    Γ ( β )    | h  ( s , x  (  ϕ 3   ( s )  )  )  −  h ˜   ( s ,  x ˜   (  ϕ 3   ( s )  )  )  |  d s       +    | g  ( t , x  (  ϕ 2   ( t )  )  )   I α  f  ( t , x  (  ϕ 1   ( t )  )  )  − g  ( t ,  x ˜   (  ϕ 2   ( t )  )  )   I α   f ˜   ( t ,  x ˜   (  ϕ 1   ( t )  )  )  |       ≤     |   x 0  −   x ˜  0   | +   ∫ 0 τ      ( τ − s )   β − 1    Γ ( β )     δ 3   d s       +    | g  ( t , x  (  ϕ 2   ( t )  )  )   I α  f  ( t , x  (  ϕ 1   ( t )  )  )  − g  ( t ,  x ˜   (  ϕ 2   ( t )  )  )   I α  f  ( t ,  x ˜   (  ϕ 1   ( t )  )  )  |       +    | g  ( t ,  x ˜   (  ϕ 2   ( t )  )  )   I α  f  ( t ,  x ˜   (  ϕ 1   ( t )  )  )  − g  ( t ,  x ˜   (  ϕ 2   ( t )  )  )   I α   f ˜   ( t ,  x ˜   (  ϕ 1   ( t )  )  )  |       ≤     δ 1  +  δ 3    τ β   Γ ( β + 1 )         +    | g  ( t , x  (  ϕ 2   ( t )  )  )   I α  f  ( t , x  (  ϕ 1   ( t )  )  )  − g  ( t , x  (  ϕ 2   ( t )  )  )   I α  f  ( t ,  x ˜   (  ϕ 1   ( t )  )  )  |       +    | g  ( t , x  (  ϕ 2   ( t )  )  )   I α  f  ( t ,  x ˜   (  ϕ 1   ( t )  )  )  − g  ( t ,  x ˜   (  ϕ 2   ( t )  )  )   I α  f  ( t ,  x ˜   (  ϕ 1   ( t )  )  )  |       +    | g  ( t ,  x ˜   (  ϕ 2   ( t )  )  )  |  I α  | f  ( t ,  x ˜   (  ϕ 1   ( t )  )  )  −  f ˜   ( t ,  x ˜   (  ϕ 1   ( t )  )  )  |       ≤     δ 1  +  δ 3    τ β   Γ ( β + 1 )   + | g  ( t , x  (  ϕ 2   ( t )  )  )  |  I α  | f  ( t , x  (  ϕ 1   ( t )  )  )  − f  ( t ,  x ˜   (  ϕ 1   ( t )  )  )  |       +    | g  ( t , x  (  ϕ 2   ( t )  )  )  − g  ( t ,  x ˜   (  ϕ 2   ( t )  )  )  |  I α  f  ( t ,  x ˜   (  ϕ 1   ( t )  )  )  |       +    | g  ( t ,  x ˜   (  ϕ 2   ( t )  )  )  |  I α  | f  ( t , x  (  ϕ 1   ( t )  )  )  −  f ˜   ( t ,  x ˜   (  ϕ 1   ( t )  )  )  |       ≤     δ 1  +  δ 3    T β   Γ ( β + 1 )   +   k 1  + a  | x  (  ϕ 2   ( t )  )  |     b  T α    Γ ( α + 1 )    | | x  −  x ˜   | |        +     a | | x  −  x ˜   | |   ( M + b r )    T α   Γ ( α + 1 )   +  (  k 1  + a r )     δ 2    T α    Γ ( α + 1 )         ≤     δ 1  +  δ 3  A +  (  k 1  + a r )  A  δ 2   +    k 1  + a r  b A + a A  M + b r    | | x  −  x ˜   | |        ≤     δ 1  +  δ 3  A +  (  k 1  + a r )  A  δ 2   +  b  k 1  A + 2 b a r A + a A M   | | x  −  x ˜   | |        ≤     δ 1  +  δ 3  A +  (  k 1  + a r )  A  δ 2   + A  b  k 1  + 2 b a r + a M   | | x  −  x ˜   | |  .     











Then,


   | | x  −  x ˜   | |  ≤   δ 1  +  δ 3  A +  (  k 1  + a r )  A  δ 2      1 − A  b  k 1  + 2 b a r + a M    − 1   ≤ ϵ .  











□







3. Multi-Valued Problem


Now, consider the assumption:




	  (  H 1  )  

	
The set   F ( t , x ) , H ( t , x )   are nonempty, closed and convex for all   ( t , x ) ∈ I × R  .



(I)   F ( t , x ) , H ( t , x )   are measurable in   t ∈ I   for every   x ∈ R  .



(II)   F ( t , x ) , H ( t , x )   are upper semicontinuous in x for every   t ∈ I  .



(III) There exist two bounded measurable functions    m i  ∈  L 1   ( I )    and two positive constants    b i  ,  i = 1 , 2    such that


     | | F ( t , x ) | |    =    s u p { | f | : f ∈ F ( t , x ) }       ≤     |   m 1    ( t )  |  +    b 1    | x |  ,  ∀  t  ∈  I ,  x  ∈  R ;       | | H ( t , x ) | |    =    s u p { | h | : h ∈ F ( t , x ) }         ≤      |   m 2    ( t )  |  +    b 2    | x |  ,  ∀  t  ∈  I ,  x  ∈  R .     

















Remark 2.

From the assumptions   (  H 1  )   (which guarantee the existence of Carathéodory selections [32]) we can deduce that (see [11,19,33,34,35]) there exists   f ∈ F ( t , x ) , h ∈ H ( t , x )  , such that   f , h : I × R ⟶ R   are measurable for almost all t for every   x ∈ R   and continuous in x for every   t ∈ I   and there exist    m 1  ∈  L 1   ( I )   , a bounded measurable function   m 2   and    b i  ≥ 0 , i = 1 , 2  , such that


    | f  ( t , x )  |   ≤   m 1   ( t )   +   b 1    | x | ,    | h  ( t , x )  |   ≤   m 2   ( t )   +   b 2    | x |  ,     t  ∈  I ,   x ∈  R ,   








which satisfies the fractional-order hybrid differential Problem (3)–(4) which is equivalent to (5). Therefore, any solution of the nonlocal problem of the hybrid differential Equation (3) with any of the nonlocal boundary condition (4) is a solution of the nonlocal problem of the hybrid nonlinear differential inclusion with any one of the nonlocal conditions (1)–(2).





Existence Theorem


Now, from the main results obtained in Section 2, we deduce the following results for the fractional-order hybrid delay differential (1) inclusion with the multi-valued fractional-order nonlocal integral condition (2).



Theorem 5.

Let the assumptions   (  H 1  )   and (iii)–(v) be satisfied. Then the Problem (1)–(2) has a solution   x ∈ C ( I , R )  .





To present the continuous dependency of the unique solution on   x 0   and on the two sets of selections   S F   and   S H  , replace the assumption   (  H 1  )   instead of   (  H 1 *  ) .  



	
The sets    F   and   H    are nonempty, closed, and convex for all   ( t , x ) ∈ I × R   and satisfy


  H  ( F  ( t ,  x 1  )  , F  ( t ,  x 2  )  )   ≤  b 1    |  x 1   −   x 2  |  ,  ∀  x 1  ,  x 2  ∈ R ,  










  H  ( H  ( t ,  x 1  )  , H  ( t ,  x 2  )  )   ≤  b 2    |  x 1   −   x 2  |  ,  ∀  x 1  ,  x 2  ∈ R ,  








where    H ( D , B )   is the Hausdorff metric [36] between the two subsets    D , B  ∈ I × R .  






Remark 3.

From assumption   (  H 1 *  )   we can deduce that (see [34]) there exist functions   f ∈ F   and   h ∈ H   such that



  f ,  h : I × R → R   are measurable for almost all   t ∈ I   for every   x ∈ R   and satisfy the Lipschitz condition with a positive constants   b 1   and   b 2  , such that


    | f   ( t ,  u 1  )  − f  ( t ,  u 2  )   | ≤   b 1   |  u 1  −  u 2  |  ,   ∀   u 1  ,  u 2  ∈ R    a n d    t ∈ I ,   










    | h   ( t ,  u 1  )  − h  ( t ,  u 2  )   | ≤   b 2   |  u 1  −  u 2  |  ,   ∀   u 1  ,  u 2  ∈ R    a n d    t ∈ I .   













Theorem 6.

Let the assumptions of Theorem 5 be satisfied and replace condition   (  H 1  )   by   (  H 1 *  )  . If   A  b  k 1  + 2 b a r + a M  < 1  , then   ∀ f ∈ F   and    h ∈ H   the Problem (1)–(2) has a unique solution   x ∈ C ( I , R )  .





Remark 4.

From Theorem 4, we can deduce some results for the continuous dependence of the solution of the Problem (1)–(2) on     x 0     and on the sets of selections   S F   and   S H  .




	
The solutions of Problems (1)–(2) depend continuously on    x 0  ,   if    ∀ f ∈ F    and    ∀ h ∈ H ,    and the solution of Problems (3)–(4) depends continuously on     x 0  .  



	
The solutions of the Problem (1)–(2) depend continuously on the two sets   S F   and   S H  , if    ∀ f ∈ F    and    ∀ h ∈ H ,    and the solution of Problems (3)–(4) depends continuously on the functions    f    and    h .  










Theorem 7.

Let the assumptions of Theorem 4 be satisfied, then the solutions of the Problem (1)–(2) depends continuously on the two sets of selections   S F   and   S H   (on the two functions f and h) and on data   x 0  .





Remark 5.

The proofs of Theorems 5–7 can be deduced directly by the Kuratowski Selection Theorem (see [19,37]) and as done in [11,34].







4. Particular Cases and Example


	
Phanograph fractional differential inclusion with multi-valued condition Letting    ϕ i   ( t )  =  η i  t , t ∈ I   and    η i  ∈  ( 0 , 1 )  , i = 1 , 2 , 3  , then the Problem (1)–(2) can be reduced to the fractional-order pantograph differential inclusion


    R   D α      x ( t ) − x ( 0 )   g ( t , x  (  η 2  t )  )     ∈  F  ( t , x  (  η 1  t )  )  ,  α  ∈   ( 0 , 1 )  ,  t  ∈  I ,  








subject to the multi-valued fractional-order nonlocal integral condition


  x  ( 0 )   −   x 0   ∈   ∫ 0 τ      ( τ − s )   β − 1    Γ ( β )    H  ( s , x  (  η 3  s )  )   d s ,  β  ≤  α ,  τ  ∈  I .  











	
Retarded fractional differential inclusion Letting    ϕ i   ( t )  = t −  r i  ,  t ≥  r i  > 0 ,  i = 1 , 2    and    ϕ i   ( t )  = 0 ,  t <  r i  ,  i = 1 , 2 .   Then, in case    h = 0 ,    the Problem (1)–(2) has the form


    R   D α      x ( t ) − x ( 0 )   g ( t , x  ( t −  r 2  )  )     ∈  F  ( t , x  ( t −  r 1  )  )  ,  α  ∈   ( 0 , 1 )  ,  t ≥  r i  > 0 ,  i = 1 , 2 ,  








subject to


  x  ( 0 )   =   x 0  ,  t ≤  r i  ,  i = 1 , 2 ,  








which may be called a fractional-order retarded differential inclusion.



	
A conjugate order hybrid differential inclusion with multi-valued condition Letting   β = 1 − α , α ≥  1 2   , then the Problem (1)–(2) yields the following particular case,


    R   D α      x ( t ) − x ( 0 )   g ( t , x  (  ϕ 2   ( t )  )  )     ∈  F  ( t , x  (  ϕ 1   ( t )  )  )  ,  α ≥  1 2  ,  t  ∈  I ,  








subject to the multi-valued fractional-order nonlocal integral condition


  x  ( 0 )   −   x 0   ∈   ∫ 0 τ      ( τ − s )   − α    Γ ( 1 − α )    H  ( s , x  (  ϕ 3   ( s )  )  )   d s ,  α ≥  1 2  ,  τ  ∈  I .  











In particular, we consider the case when   α =  1 2  :  


    R   D  1 2       x ( t ) − x ( 0 )   g ( t , x  (  ϕ 2   ( t )  )  )     ∈  F  ( t , x  (  ϕ 1   ( t )  )  )  ,  t  ∈  I ,  








subject to the multi-valued fractional-order nonlocal integral condition


  x  ( 0 )   −   x 0   ∈   ∫ 0 τ      ( τ − s )   −  1 2     Γ (  1 2  )    H  ( s , x  (  ϕ 3   ( s )  )  )   d s ,  τ  ∈  I .  











	
Fractional differential inclusion with multi-valued condition Letting   g ( t , x ) = 1   in (1), then we have the fractional-order differential inclusion


    R   D α    x ( t ) − x ( 0 )   ∈  F  ( t , x  (  ϕ 1   ( t )  )  )  ,  t ∈ I ,  








subject to the multi-valued fractional-order nonlocal integral condition


  x  ( 0 )   −   x 0   ∈   ∫ 0 τ      ( τ − s )   β − 1    Γ ( β )    H  ( s , x  (  ϕ 3   ( s )  )  )   d s ,  β ≤ α ,  τ  ∈  I .  














Example:



Consider the the fractional-order hybrid differential inclusion


    R   D  1 2       x ( t )    s i n ( t ) x ( t )   1 + t      ∈   0 ,  1 8  c o s  (  t 2  + 2 )  +  1  1 + t   x  ( t )   ,  t  ∈   [ 0 , 1 ]  ,  



(10)




subject to the multi-valued fractional-order nonlocal integral condition


  x  ( 0 )   ∈   ∫ 0 τ      ( τ − s )    1 3  − 1    Γ (  1 3  )     0 ,  1 4  s +  1  3 + s   x  ( s )    d s ,  τ  ∈   [ 0 , 1 ]  ,  



(11)




where     S F  =  { f : f  ( t , x )  =  1 8  c o s  (  t 2  + 2 )  +  1  1 + t   x  ( t )  }     and     S H  =  { h : h  ( t , x )  =  1 4  t +  1  3 + t   x  ( t )  }  .   



Then we have     x 0  = 0 ,  b =  1 4  ,   k 1  = 0 ,  M =  1 4  ,  a =  1 2     and   A =  2  π   .   



Therefore, we can calculate   r = 0.5678685902417353 ∈ ( 0 , 1 )    from the quadratic algebraic equation in assumption (v).



Moreover, we can verify the sufficient condition for the uniqueness of the solution of Problems (10)–(11),


  A  2 a b r + a M + b  k 1   = 0.30124 < 1 .  












5. Conclusions


Many recent studies concerning the application of fractional differential equations to structural problems, including for example the modeling of spatial inclusions which lead to a spatial decay in delayed spatial long-range correlations, otherwise called nonlocal effects [7,38,39,40,41,42,43] have been conducted. Inspired by those results and other results of fractional delay differential inclusions (see references therein), we have acquainted a qualitative investigation for a hybrid differential inclusion with multivalued nonlocal integral condition of fractional order. Our analysis is located in the Banach space    C ( I , R )    and based on the Leray–Schauder nonlinear alternative fixed point theorem. We have discussed some characteristics for the solution of that inclusion problem, such that the uniqueness of the solution and the continuous dependency on the initial data and the two sets of selections   S F   and   S H   of the set valued function    F    and    H   , respectively. In particular, taking   β = 1 − α ,  α ≥  1 2   , we have a hybrid differential inclusion with multivalued nonlocal integral condition of conjugate order. Moreover, we have considered other special cases.







Author Contributions


These authors contributed equally to this work. All authors have read and agreed to the published version of the manuscript.




Funding


This research received no external funding.




Data Availability Statement


Not applicable.




Acknowledgments


The authors are thankful to the referees for remarks and suggestions for the improvement of this paper.




Conflicts of Interest


The authors declare no conflict of interest.




References


	



Alizadeh, S.; Baleanu, D.; Rezapour, S. Analyzing transient response of the parallel RCL circuit by using the Caputo-Fabrizio fractional derivative. Adv. Differ. Equ. 2020, 2020, 1–19. [Google Scholar] [CrossRef]

	



Baleanu, D.; Etemad, S.; Pourrazi, S.; Rezapour, S. On the new fractional hybrid boundary value problems with three-point integral hybrid conditions. Adv. Differ. Equ. 2019, 2019, 473. [Google Scholar] [CrossRef]

	



Baleanu, D.; Etemad, S.; Rezapour, S. On a fractional hybrid integro-differential equation with mixed hybrid integral boundary value conditions by using three operators. Alex. Eng. J. 2020, 59, 3019–3027. [Google Scholar] [CrossRef]

	



El-Borai, M.M.; El-Sayed, W.G.; Badr, A.A.; Tarek, S.A. Initial value problem for stochastic hyprid Hadamard Fractional differential equation. J. Adv. Math. 2019, 16, 8288–8296. [Google Scholar] [CrossRef]

	



El-Sayed, A.M.A.; El-Salam, S.A.A.; Hashem, H.H.G. Global Existence for an Implicit Hybrid Differential Equation of Arbitrary Orders with a Delay. Mathematics 2022, 10, 967. [Google Scholar] [CrossRef]

	



Matar, M.M.; Abbas, M.I.; Alzabut, J.; Kaabar, M.K.A.; Etemad, S.; Rezapour, S. Investigation of the p-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives. Adv. Differ. Equ. 2021, 2021, 68. [Google Scholar] [CrossRef]

	



Rida, S.Z.; El-Sayed, A.M.A.; Arafa, A.A.M. Effect of Bacterial Memory Dependent Growth by Using Fractional Derivatives Reaction-Diffusion Chemotactic Model. J. Stat. Phys. 2010, 140, 797–811. [Google Scholar] [CrossRef]

	



Thabet, S.T.M.; Etemad, S.; Rezapour, S. On a coupled Caputo conformable system of pantograph problems. Turk. J. Math. 2010, 45, 496–519. [Google Scholar] [CrossRef]

	



Baleanu, D.; Hedayati, V.; Rezapour, S.; Qurash, M.A. On Two Fractional Differential Inclusions; Springer: Berlin/Heidelberg, Germany, 2016; Volume 5, p. 882. [Google Scholar]

	



Baleanu, D.; Rezapour, S.; Saberpour, Z. On fractional integro-differential inclusions via the extended fractional Caputo-Fabrizio derivation. Bound. Value Probl. 2019, 2019, 1–7. [Google Scholar] [CrossRef]

	



El-Sayed, A.M.A.; Ibrahim G, A. Set-valued integral equation of fractional orders. Appl. Math. Comput. 2001, 118, 113–121. [Google Scholar] [CrossRef]

	



Srivastava, H.M.; El-Sayed, A.M.A.; Hashem, H.H.G.; Al-Issa, S.M. Analytical investigation of nonlinear hybrid implicit functional differential inclusions of arbitrary fractional orders. RACSAM 2022, 116, 26. [Google Scholar] [CrossRef]

	



Dhage, B.C.; Lakshmikantham, V. Basic results on hybrid differential equation. Nonlinear Anal. Hybrid Syst. 2010, 4, 414–424. [Google Scholar] [CrossRef]

	



Baitiche, Z.; Guerbati, K.; Benchohra, M.; Zhou, Y. Boundary value problems for hybrid Caputo fractional differential equations. Mathematics 2019, 7, 282. [Google Scholar] [CrossRef]

	



Derbazi, C.; Hammouche, H.; Benchohra, M.; Zhou, Y. Fractional hybrid differential equations with three-point boundary hybrid conditions. Adv. Differ. Equ. 2019, 2019, 125. [Google Scholar] [CrossRef]

	



Hilal, K.; Kajouni, A. Boundary value problems for hybrid differential equations with fractional order. Adv. Differ. Equ. 2015, 183, 1–19. [Google Scholar] [CrossRef]

	



Kamenskii, M.; Obukhovskii, V.; Petrosyan, G.; Yao, J. Existence and approximation of solutions to nonlocal boundary value problems for fractional differential inclusions. Fixed Point Theory Appl. 2019, 2019, 2. [Google Scholar] [CrossRef]

	



Zeng, S.; Rǎdulescu, V.D.; Winkert, P. Double Phase Implicit Obstacle Problems with Convection and Multivalued Mixed Boundary Value Conditions. SIAM J. Math. Anal. 2022, 54, 1–25. [Google Scholar] [CrossRef]

	



Cichoń, M. Multivalued perturbations of m-accretive differential inclusions in a non seprable Banach space. Comment. Math. 1992, 32, 11–1017. [Google Scholar]

	



Deimling, K. Nonlinear Multi-Valued Differential Equations; De. Gruyter: Berlin, Germany, 1992. [Google Scholar]

	



Banas, J.; Lecko, M. Fixed points of the product of operators in Banach algebra. PanAm. Math. J. 2002, 12, 101–109. [Google Scholar]

	



Banaś, J.; Rzepka, B. Monotonic solutions of a quadratic integral equations of fractional order. J. Math. Anal. Appl. 2007, 332, 1370–11378. [Google Scholar] [CrossRef]

	



Bényi, Á.; Torres, R.H. Compact bilinear operators and commutators. Proc. Am. Math. Soc. 2013, 141, 3609–3621. [Google Scholar] [CrossRef]

	



Brestovanská, E.; Medved, M. Fixed point theorems of the Banach and Krasnosel’s type for mappings on m-tuple Cartesian product of Banach algebras and systems of generalized Gripenberg’s equations. Acta Univ. Palacki. Olomuc. Math. 2012, 51, 27–39. [Google Scholar]

	



Caballero, J.; Mingarelli, A.B.; Sadarangani, K. Existence of solutions of an integral equation of Chandrasekhar type in the theory of radiative transfer. Electr. J. Differ. Equ. 2006, 57, 1–11. [Google Scholar]

	



Chandrasekhar, S. Radiative Transfer; Oxford University Press: London, UK, 1950; Dover Publications: New York, NY, USA, 1960. [Google Scholar]

	



Cichoń, M.; Metwali, M.M.A. On a fixed point theorem for the product of operators. J. Fixed Point Theory Appl. 2016, 18, 753–770. [Google Scholar] [CrossRef]

	



Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]

	



Abbas, S.; Benchohra, M. On the Existence and Local Asymptotic Stability of Solutions of Fractional Order Integral Equations. Comment. Math. 2012, 52, 91–100. [Google Scholar]

	



Bachir, F.S.; Abbas, S.; Benbachir, M.; Benchohra, M.; N’Guérxexekata, G.M. Existence and attractivity results for ψ-Hilfer hybrid fractional differential equations. CUBO Math. J. 2021, 23, 145–159. [Google Scholar] [CrossRef]

	



Kuczumow, T. Fixed point theorems in product spaces. Proc. Am. Math. Soc. 1990, 108, 727–729. [Google Scholar] [CrossRef]

	



Artstein, Z. Carathéodory selections and the Scorza Dragoni Property. J. Math. Anal. Appl. 1987, 127, 540–547. [Google Scholar] [CrossRef]

	



JAubin, P.; Cellina, A. Differential Inclusions: Set-Valued Maps and Viability Theory; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]

	



Cichoń, M.; El-Sayed, A.M.A.; Salem, H.A.H. Existence theorem for nonlinear functional integral equations of fractional orders. Commentationes 2001, 41, 59–67. [Google Scholar]

	



Fierro, R.C.; Martines, R.C.; Morales, C.H. Carathéodory selections for multi-valued mappings. Nonlinear Anal. 2006, 64, 1229–1235. [Google Scholar] [CrossRef]

	



Yu, A. Neretin, Hausdorff Metric, the Construction of a Hausdorff Quotient Space, and Boundaries of Symmetric Spaces. Funct. Anal. Appl. 1997, 31, 1997. [Google Scholar]

	



Bressan, A.; Colombo, G. Extenstions and selections of mapswith decomposable values. Studia Math. 1988, 90, 69–86. [Google Scholar] [CrossRef]

	



Ahmed, E.; El-Sayed, A.M.A.; El-Mesiry, A.E.M.; El-Saka, H.A.A. Numerical solution for the fractional replicator equation. Int. J. Mod. Phys. C 2005, 16, 1017–1025. [Google Scholar] [CrossRef]

	



Failla, G.; Zingales, M. Advanced materials modelling via fractional calculus: Challenges and perspectives. Phil. Trans. R. Soc. 2020, 378, 20200050. [Google Scholar] [CrossRef]

	



Patnaik, S.; Jokar, M.; Ding, W.; Semperlotti, F. On the role of the microstructure in the deformation of porous solids. NPJ Comput. Mater. 2022, 8, 152. [Google Scholar] [CrossRef]

	



Sumelka, W. Fractional viscoplasticity. Mech. Res. Commun. 2014, 56, 31–36. [Google Scholar] [CrossRef]

	



El-Sayed, A.M.A.; Gaafar, F.M. Fractional calculus and some intermediate physical processes. Appl. Math. Comput. 2003, 144, 117–126. [Google Scholar] [CrossRef]

	



El-Sayed, A.M.A.; Gaafar, F.M. Fractional-order differential equations with memory and fractional-order relaxation-oscillation model. Pure Math. Appl. 2001, 12, 296–310. [Google Scholar]












	
	
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.











© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).






nav.xhtml


  mathematics-10-04068


  
    		
      mathematics-10-04068
    


  




  





media/file0.png


