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1. Introduction

The fixed point theorems for an operator T : X → X related to altering distances
between points in complete metric space were originally achieved by Delbosco [1], Skof [2],
M.S. Khan, M. Swaleh and S. Sessa [3] by using some suitable distance control function
µ : R+ → R+, where R+ is the real interval [0, ∞), and contractive conditions of type

µ(d(T(x), T(y))) ≤ a · µ(d(x, y)) + b · µ(d(x, T(x))) + c · µ(d(y, T(y))), 0 ≤ a + b + c < 1,

or more general
µ(d(T(x), T(y))) ≤

a(d(x, y)) · µ((d(x, y)) + b(d(x, y)) · {µ(d(x, T(x))) + µ(d(y, T(y)))}+

c(d(x, y)) ·min{µ(x, T(y)), µ(y, T(x))},

for all x, y ∈ X, x 6= y and a, b, c : R+
∗ → [0, 1) being decreasing functions in order that

a(t) + 2 · b(t) + c(t) < 1 for every t > 0. Also in [4], the authors considered a contractive
condition of type

µ(d(T(x), T(y))) ≤ α(d(x, y)) · µ(d(x, y)), ∀x, y ∈ X,

where α : R+ → [0, 1) is the order that lim sups→t α(s) < 1. Further Akkouchi et al. [5],
Pant et al. [6–8] and Sastry et al. [9] have obtained common fixed point results by altering
the distance between the points of a metric space. Moreover, the fixed point results by
altering distance between the points was extended to the setup of generalized metric
spaces (fuzzy metrics spaces Masmali et al. [10], orthogonal complete metric Gungor [11],
partially ordered metric spaces Gupta et al. [12]) or to cyclic operators, see Khaleel et al. [13].
Recently, Branga and Olaru [14] extended the above results by altering the distance between
two points and considering a contractive condition of type

µ(d(T(x), T(y))) ≤ η(µ(d(x, y))), (1)
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for all x, y ∈ X, x 6= y and η : [0, ∞) → [0, ∞) is a monotone increasing, right continuous
and satisfies η(t) < t for each t > 0. A survey work on some fixed point theorems by alter-
ing distances between points on a metric space can be found on Jha et al. [15]. Some recent
applications of fixed point theory may be found on Rezapour et al. [16], Zareen et al. [17]
and Turab et al. [18]. Next, our aim is to extend the results from [14] by considering a
contractive condition of type (1), η being a right upper semi-continuous function.

2. Preliminaries

Next, we recall the definitions of the upper semi-continuous and right upper semi-
continuous functions.

Definition 1 ([19]). Let us consider A a subset of R, a ∈ A a point and f : A → R a function.
The following can be affirmed:

(1) f is upper semicontinuous at a if for every ε > 0 there is δ(ε) > 0 in order that

f (x) < f (a) + ε for all x ∈ (a− δ(ε), a + δ(ε)) ∩ A;

(2) f is upper semicontinuous if it is upper semicontinuous at every point a ∈ A;
(3) f is right upper semicontinuous at a if for each ε > 0 there is δ(ε) > 0 in order that

f (x) < f (a) + ε for all x ∈ (a, a + δ(ε)) ∩ A;

(4) f is right upper semicontinuous if it is right upper semicontinuous at every point a ∈ A.

Remark 1. Let us consider A a subset of R, a ∈ A a point and f : A → R a function. The
following can be remarked:

(1) if f is right-continuous at a, then f is right upper semi-continuous at a;
(2) if f is right upper semi-continuous at a and f is monotonically increasing, then f is right-

continuous at a;
(3) if f is upper semi-continuous at a, then f is right upper semi-continuous at a.

The following results will be used in order to proof Lemma 2:

Theorem 1 ([19]). Let A be a subset of R, a ∈ A′, (the set of accumulation points of A) and
f : A→ R a function. Then:

(1) f is upper semi-continuous at a if and only if

lim sup
x→a

f (x) ≤ f (a);

(2) f is right upper semi-continuous at a if and only if

lim sup
x↘a

f (x) ≤ f (a).

Theorem 2 ([19]). Let us consider A a subset of R, a ∈ A a point and f : A → R a function.
Then:

(1) f is upper semi-continuous at a if and only if, for each sequence (an)n∈N ⊆ A satisfying
an → a as n→ ∞, we have

lim sup
n→∞

f (an) ≤ f (a);

(2) f is right upper semicontinuous at a if and only if, for every sequence (an)n∈N ⊆ A satisfying
an → a as n→ ∞, an ≥ a for all n ∈ N, we have

lim sup
n→∞

f (an) ≤ f (a).
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Theorem 3 ([19]). If A is a subset of R and f : A→ R a function, then f is upper semi-continuous
if and only if the superlevel set Uy( f ) := {x ∈ A | f (x) ≥ y} is closed in A for every y ∈ R.

Theorem 4 ([19]). Let (an)n∈N ⊆ R be a sequence and a ∈ R. Then,

lim sup
n→∞

an ≤ a,

if and only if there is a number n0 ∈ N in order that

an ≤ a for all n ≥ n0.

Boyd and Wong [20] extend the contraction principle (the Picard–Banach theorem) in
complete metric spaces.

Theorem 5 ([20]). Let η : R+ → R+ be a function fulfilling the statements: η is right upper
semicontinuous and η(t) < t for all t > 0. If (X, d) is a complete metric space and T : X → X is
an operator in order that

d(T(x), T(y)) ≤ η(d(x, y)), ∀x, y ∈ X,

then T has a unique fixed point x∗ ∈ X and the sequence Tm(x0) → x∗ as m → ∞, for any
arbitrary point x0 ∈ X.

The following result will represent a generalization of the above Boyd’s result and it
will be used in order to prove Lemma 3 and Theorem 8.

Definition 2 ([21]). A function η : Rk
+ → R+, k ≥ 1 is a comparison function if:

(i) η is increasing with respect to each variable, i.e., the mapping ti → η(t1, · · · , ti, · · · , tk) is
increasing for every i ∈ {1, . . . , k};

(ii) the iterates sequence µn(t)→ 0 as n→ ∞, for every t > 0, where µ : R+ → R+ is defined
by µ(t) := η(t, t, · · · , t).

Theorem 6 ([21]). Let us consider (X, d) a complete metric space, η : R5
+ → R+ a comparison

function and T : X → X be an operator in order that

d(T(x), T(y)) ≤ η(d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)), ∀x, y ∈ X,

T has a unique fixed point x∗ ∈ X and the sequence Tm(x0) → x∗ as m → ∞, for any arbitrary
point x0 ∈ X.

3. Results

Definition 3 ([3]). A function γ : R+ → R+ belongs to the class Γ, if:

(i) γ is continuous;
(ii) γ is monotonically increasing;
(iii) γ(t) = 0 if and only if t = 0.

Let us consider (X, d) a metric space. When the metric d is changed by a function
γ ∈ Γ, it can be seen that, in the majority of cases, the application γ ◦ d does not keep the
metric properties.

Example 1. Let us consider d : R×R→ R+, d(x, y) = |x− y| and γ : R+ → R+, γ(t) = t4.
The following can be affirmed:

(1) γ ∈ Γ;
(2) γ ◦ d is not a metric on X.
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Proof.

(1) It is obvious that γ verifies the conditions from Definition 3.
(2) By taking x = 2, y = 3 and z = 2.1, we observe that the triangle inequality is not

verified for γ ◦ d, and consequently it is not a metric on R.

Lemma 1. Let η : R+ → R+ be a function, under the following hypothesis:

(1) is right upper semicontinuous;
(2) η(t) < t for all t > 0.

Then:
lim inf

s↘t
(s− η(s)) > 0 for every t > 0.

Proof. By using the hypothesis (2), it follows that lim inf
s↘t

(s− η(s)) ≥ 0 for every t > 0.

Suppose that there exists t0 > 0 such that lim inf
s↘t0

(s− η(s)) = 0. Taking into consideration

the properties of the limit inferior and limit superior of a function, the fact that η is right
upper semi-continuous, applying Theorem 1 (2) and the hypothesis (2), we obtain

t0 = lim inf
s↘t0

η(s) ≤ lim sup
s↘t0

η(s) ≤ η(t0) < t0,

which is a contradiction. Consequently, lim inf
s↘t

(s− η(s)) > 0 for every t > 0.

Lemma 2. Let be γ ∈ Γ, µ : R+ → R+ defined by:

µ(t) = sup{s ∈ R+ | γ(s) ≤ η(γ(t))}, (2)

and η : R+ → R+ a function, under the following hypothesis:

(1) η(0) = 0;
(2) η is right upper semicontinuous;
(3) η(t) < t for all t > 0.

Then:

(i) µ is well defined;
(ii) µ(0) = 0;
(iii) µ(t) ≤ t for all t ∈ R+;
(iv) γ(µ(t)) ≤ η(γ(t)) for all t ∈ R+;
(v) µ(t) < t for all t > 0;
(vi) η ◦ γ is right upper semi-continuous;
(vii) µ is right upper semi-continuous.

Proof. (i) Let us consider t ∈ R+ an arbitrary chosen number. We construct the set

At := {s ∈ R+ | γ(s) ≤ η(γ(t))}. (3)

As γ(0) = 0 (in accordance with Definition 3 (iii)) and η(γ(t)) ≥ 0 (η, γ : R+ → R+),
we obtain γ(0) ≤ η(γ(t)), therefore 0 ∈ At, so At is a non-empty set. The next cases can
be differentiated:

1. t = 0:
As γ(0) = 0 (in accordance with Definition 3 (iii)) and η(0) = 0 (by the hypothesis (1))
we obtain η(γ(0)) = 0, therefore A0 = {s ∈ R+ | γ(s) ≤ 0}. Taking into account
Definition 3 (iii), it is obtained that A0 = {0}. It results in µ(0) = sup A0 = sup{0} = 0.

2. t > 0:
Select s ∈ At is an arbitrary chosen element. One has s ∈ R+ and γ(s) ≤ η(γ(t)). On
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the opposite side, as t > 0, considering Definition 3 (iii), we obtain γ(t) > 0. Applying
hypothesis (3), we obtain η(γ(t)) < γ(t). It results that γ(s) < γ(t). Taking into
account that γ is monotonically increasing (using Definition 3 (ii)), it is found that
s < t. Hence, s ∈ [0, t). Considering that we have arbitrary selected s ∈ At, it follows
that At ⊆ [0, t). As a result, the set At is bounded from above by t. We conclude that,
there is sup At ≤ t. Therefore, µ(t) := sup At ≤ t is well defined and we get µ(t) ≤ t.

(ii), (iii) follows from (i).
(iv) Let us consider t ∈ R+ an arbitrary selected element. In accordance with (i), the

set At is bounded from above by t and µ(t) := sup At. It results that, there is a sequence
(sn)n∈N ⊆ At in order that sn → µ(t) as n → ∞ and sn ≤ µ(t) for all n ∈ N. Considering
that sn ∈ At for all n ∈ N, it is concluded that

γ(sn) ≤ η(γ(t)) for all n ∈ N.

On the opposite side, as γ is continuous (using Definition 3 (i)), we obtain γ(sn) →
γ(µ(t)) as n → ∞. Hence, from the previous inequality, we conclude that γ(µ(t)) ≤
η(γ(t)).

Specifically, µ(t) ∈ At and At ⊆ [0, µ(t)]. Select s ∈ [0, µ(t)]. We obtain s ≤ µ(t), and
taking into account that γ is monotonically increasing (in accordance with Definition 3 (ii)),
it follows that γ(s) ≤ γ(µ(t)). Hence, γ(s) ≤ η(γ(t)), i.e., s ∈ At. As a result, At = [0, µ(t)].

(v) From (iii), we obtain µ(t) ≤ t for all t ∈ R+. Assume that there is t > 0 in
order that µ(t) = t. Applying (iv) we obtain γ(t) ≤ η(γ(t)). On the other side, t > 0
implies γ(t) > 0 (in accordance with to Definition 3 (iii)) and applying hypothesis (3) we
obtain η(γ(t)) < γ(t). It results that γ(t) < γ(t), which contradicts the initial assumption.
Therefore, µ(t) < t for all t > 0.

(vi) As η, γ : R+ → R+ we deduce η ◦ γ : R+ → R+. Let t ∈ R+ be an arbitrary
point. We consider an arbitrary sequence (tn)n∈N ⊆ R+ satisfying tn → t as n → ∞,
tn ≥ t for all n ∈ N. Since γ is continuous (in accordance with Definition 3 (i)), we obtain
γ(tn) → γ(t) as n → ∞. Because γ is monotonically increasing (by Definition 3 (ii)),
we find that γ(tn) ≥ γ(t) for all n ∈ N. Therefore, the sequence (γ(tn))n∈N ⊆ R+ has
the following properties: γ(tn) → γ(t) as n → ∞, γ(tn) ≥ γ(t) for all n ∈ N. On the
other hand, η is right upper semi-continuous, hence it is right upper semi-continuous at
γ(t) ∈ R+. Applying Theorem 2 (2), it follows that lim sup

n→∞
η(γ(tn)) ≤ η(γ(t)), i.e.,

lim sup
n→∞

(η ◦ γ)(tn) ≤ (η ◦ γ)(t). (4)

Since the sequence (tn)n∈N ⊆ R+ satisfying tn → t as n→ ∞, tn ≥ t for all n ∈ N, was
chosen arbitrarily, from the inequality (4), by using Theorem 2 (2), it results that η ◦ γ is
right upper semi-continuous at t ∈ R+. Because the point t ∈ R+ was arbitrarily selected,
we deduce that η ◦ γ is right upper semi-continuous.

(vii) Let t ∈ R+ be an arbitrary point. We consider an arbitrary sequence (tn)n∈N ⊆ R+

satisfying tn → t as n→ ∞, tn ≥ t for all n ∈ N. Since γ is continuous (in accordance with
Definition 3 (i)), we obtain γ(tn)→ γ(t) as n→ ∞. Because γ is monotonically increasing
(by Definition 3 (ii)), we find that γ(tn) ≥ γ(t) for all n ∈ N. Therefore, the sequence
(γ(tn))n∈N ⊆ R+ has the following properties: γ(tn) → γ(t) as n → ∞, γ(tn) ≥ γ(t) for
all n ∈ N. On the other hand, η is right upper semi-continuous, hence it is right upper
semi-continuous at γ(t) ∈ R+. Applying Theorem 2 (2), it follows that

lim sup
n→∞

η(γ(tn)) ≤ η(γ(t)). (5)

Taking into account Theorem 4, from the relation (5) we deduce that there exists a
number n0 ∈ N such that

η(γ(tn)) ≤ η(γ(t)) for all n ≥ n0. (6)
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From the relation (6) we obtain

{s ∈ R+ | γ(s) ≤ η(γ(tn))} ⊆ {s ∈ R+ | γ(s) ≤ η(γ(t))} for all n ≥ n0,

hence

sup{s ∈ R+ | γ(s) ≤ η(γ(tn))} ≤ sup{s ∈ R+ | γ(s) ≤ η(γ(t))} for all n ≥ n0,

and considering the definition of the function µ (the relation (2)) we find

µ(tn) ≤ µ(t) for all n ≥ n0. (7)

Using Theorem 4, the inequality (7) implies

lim sup
n→∞

µ(tn) ≤ µ(t). (8)

Since the sequence (tn)n∈N ⊆ R+ satisfying tn → t as n→ ∞, tn ≥ t for all n ∈ N, was
chosen arbitrarily, from the inequality (8), by using Theorem 2 (2), it results that µ is right
upper semi-continuous at t ∈ R+. Because the point t ∈ R+ was arbitrarily selected, we
deduce that µ is right upper semi-continuous.

Lemma 3. Let η : R5
+ → R+ be a function under the following hypothesis:

(1) t→ η(t, t, t, t, t) ∈ R+ is increasing and right upper semi-continuous;
(2) η(t1, t2, t3, t4, t5) < max{t1, t2, t3, t4, t5}, for all (t1, t2, t3, t4, t5) ∈ R5

+ \ {(0, 0, 0, 0, 0)};
(3) η is increasing with respect to each variable

and a function γ ∈ γ. We define the functions µ : R5
+ → R+ and α : R+ → R+ by

µ(t1, t2, t3, t4, t5) = sup{s ∈ R+ | γ(s) ≤ η(γ(t1), γ(t2), γ(t3), γ(t4), γ(t5))} (9)

and
α(t) := µ(t, t, t, t, t). (10)

Then, the following statements are true:

(i) µ is well defined and increasing with respect to each variable;
(ii) α is well defined and increasing;
(iii) α(t) < t for all t > 0;
(iv) α is right upper semicontinuous;
(v) for every t > 0, the iterates sequence {αn(t)}n∈N converges to zero as n→ ∞;
(vi) µ is a comparison function.

Proof.

(i) For every (t1, t2, t3, t4, t5) ∈ R5
+ we define the set

A(t1,t2,t3,t4,t5)
:= {s ∈ R+ | γ(s) ≤ η(γ(t1), γ(t2), γ(t3), γ(t4), γ(t5))}. (11)

Since γ(0) = 0 and η(γ(t1), γ(t2), γ(t3), γ(t4), γ(t5)) ∈ R+, we obtain that

γ(0) ≤ η(γ(t1), γ(t2), γ(t3), γ(t4), γ(t5)),

hence 0 ∈ A(t1,t2,t3,t4,t5)
and thus A(t1,t2,t3,t4,t5)

is a non-empty set. On the other hand
the hypothesis (1) leads us to the fact that α is increasing on R+ and taking into
account that α(R+) ⊆ R+ one has α(0) = µ(0, 0, 0, 0, 0) = 0. Further, let us consider
(t1, t2, t3, t4, t5) ∈ R5

+. Then, for every s ∈ A(t1,t2,t3,t4,t5)
, we have

γ(s) ≤ η(γ(t1), γ(t2), γ(t3), γ(t4), γ(t5)) ≤ max{γ(t1), γ(t2), γ(t3), γ(t4), γ(t5)}.
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Therefore, there exists i0 ∈ {1, 2, 3, 4, 5} such that s ≤ ti0 ≤ max{t1, t2, t3, t4, t5}. Thus,

A(t1,t2,t3,t4,t5)
⊆ [0, max{t1, t2, t3, t4, t5})

and consequently
µ(t1, t2, t3, t4, t5) ≤ max{t1, t2, t3, t4, t5}.

From here, we find that α(t) ≤ t for each t ≥ 0. Finally, by using the hypothesis (3) and
definition of A(t1,t2,t3,t4,t5)

, we find that µ is increasing with respect to each variable.
(ii) It follows from (i).
(iii) Let us assume that there is t0 > 0 in order that

t0 = α(t0) = µ(t0, t0, t0, t0, t0) = sup A(t0,t0,t0,t0,t0)
.

Then, there exists a sequence {sn}n∈N ⊆ A(t0,t0,t0,t0,t0)
such that sn ↗ α(t0) as n→ ∞.

Therefore, for all n ∈ N, we have that γ(sn) ≤ η(γ(t0), γ(t0), γ(t0), γ(t0), γ(t0)) and
taking into consideration that γ is continuous, we find that

γ(t0) = γ(α(t0)) ≤ η(γ(t0), γ(t0), γ(t0), γ(t0), γ(t0)) < γ(t0),

which is a contradiction.
(iv) Let us consider t ∈ R+ and {tn}n∈N ⊆ R+ such that tn ↘ t as n → ∞. Then

γ(tn)↘ γ(t) as n→ ∞ and by considering the hypothesis (1) we find that

lim sup
n→∞

η(γ(tn), γ(tn), γ(tn), γ(tn), γ(tn)) ≤ η(γ(t), γ(t), γ(t), γ(t), γ(t)).

From here, by using Theorem 4, we deduce that there exists a number n0 ∈ N such that

η(γ(tn), γ(tn), γ(tn), γ(tn), γ(tn)) ≤ η(γ(t), γ(t), γ(t), γ(t), γ(t))

for all n ≥ n0. Hence,
A(tn ,tn ,tn ,tn ,tn) ⊆ A(t,t,t,t,t),

which implies that

α(tn) = µ(tn, tn, tn, tn, tn) ≤ µ(t, t, t, t, t) = α(t),

for all n ≥ n0. By passing to the limit as n→ ∞ one has that

lim sup
n→∞

α(tn) ≤ α(t),

i.e., that α is right upper semi-continuous on R+.
(v) From (ii) and (iii), we obtain

0 ≤ αn+1(t) ≤ αn(t) ≤ α(t),

for all t > 0. Then, there is l ≥ 0 in order that αn(t)↘ l as n→ ∞. If l > 0, then from
(iii) and (iv), we find that l = α(l) < l, which is a contradiction. Thus, l = 0.

(vi) By taking into consideration (i) and (v), we find that the function µ fulfills the Defini-
tion 2 i.e., it is a comparison function.

Example 2. Let us consider η : R+ → R+ defined:

η(t) =
{ t

t+1 , t ∈ [0, 1]
t

2·t+1 , t ∈ (1, ∞).

Then,
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(i) η verifies the condition of Lemma 2;
(ii) η is not right continuous at t = 1;
(iii) for every α ∈ (0, 1) there exists t0 > 0 such that α · t0 < η(t0).

Proof.
(i) It is obvious that η(0) = 0 and η(t) < t for each t > 0. On the other hand, we observe

that for every ε > 0 we have η(t) ≤ η(1) + ε for each t ∈ (1, ∞). Thus, η is right
upper semicontinuous.

(ii) Since lim
t↘1

η(t) = 1
3 6=

1
2 = η(1), it follows that η is not right continuous at t = 1.

(iii) Let us consider α ∈ (0, 1). We distinguish the following cases:
Case 1: α ≥ 1

2 . Then, there exists 0 < t0 < 1−α
α ≤ 1 such that α · t0 < η(t0).

Case 2: α < 1
3 . Then, there exists 1 < t0 < 1−α

2·α such that α · t0 < η(t0).
Case 3: 1

3 ≤ α < 1
2 . Then, there exists 1 < t0 such that α · t0 < η(t0).

We aim to analyze the existence and uniqueness of fixed points for operators described
on spaces endowed with such altering metrics. In the following part, we set up some fixed
point results on spaces with altering metrics.

Theorem 7. Let γ ∈ Γ and η : R+ → R+ be such that:

(1) η(0) = 0;
(2) η is right upper semi-continuous;
(3) η(t) < t for all t > 0.

If (X, d) is a complete metric space and T : X → X is an operator such that:

γ(d(T(x), T(y))) ≤ η(γ(d(x, y))), ∀x, y ∈ X, (12)

then the following statements are true:

(i) µ(0) = 0, µ is right upper semi-continuous and µ(t) < t for all t > 0, where the function
µ : R+ → R+ is defined by the relation (2);

(ii) T verifies the inequality

d(T(x), T(y)) ≤ µ(d(x, y)), ∀x, y ∈ X. (13)

(iii) T has a unique fixed point x∗ ∈ X and the sequence Tm(x0) → x∗ as m → ∞, for any
arbitrary point x0 ∈ X.

Proof.
(i) We notice that the functions η, γ satisfy the hypotheses of Lemma 2. It results that,

we can take into consideration the function µ : R+ → R+ defined by the relation (2),
which has the properties: µ(0) = 0 (by Lemma 2 (ii)), µ is right upper semicontinuous
(in accordance with Lemma 2 (vii)) and µ(t) < t for all t > 0 (by Lemma 2 (v)).

(ii) Let x, y ∈ X be arbitrary elements. Considering that the operator T : X → X fulfills
the inequality (12), we obtain

d(T(x), T(y)) ∈ {s ∈ R+ | γ(s) ≤ η(γ(d(x, y)))},

hence,

d(T(x), T(y)) ≤ sup{s ∈ R+ | γ(s) ≤ η(γ(d(x, y)))} = µ(d(x, y)).

As the elements x, y ∈ X are chosen arbitrarily, from the previous relation we deduce
that T verifies the inequality (13).

(iii) µ : R+ → R+ is right upper semi-continuous (by (i)), µ(t) < t for all t > 0 (from (i)),
(X, d) is a complete metric space (in accordance with the hypothesis) and T : X → X
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is an operator verifying the inequality (13) (by (ii)). Applying Theorem 5, we find that
T has a unique fixed point x∗ ∈ X and the sequence Tm(x0)→ x∗ as m→ ∞, for any
arbitrary point x0 ∈ X.

Theorem 8. Let us consider η : R5
+ → R+, γ ∈ Γ under hypothesis of Lemma 3, (X, d) a complete

metric space and T : X → X an operator such that:

γ(d(T(x), T(y))) ≤ η(γ(d(x, y)), γ(d(x, T(x))), γ(d(y, T(y))), γ(d(x, T(y))), γ(d(y, T(x)))),

∀x, y ∈ X. Then:

(i) T verifies the inequality

d(T(x), T(y)) ≤ µ(d(x, y), d(x, T(x)), d(y, T(y)), d(x, T(y)), d(y, T(x))), ∀x, y ∈ X,

where the function µ : R+ → R+ is defined by the relation (9) from Lemma 3.
(ii) T has a unique fixed point x∗ ∈ X and the sequence Tm(x0) → x∗ as m → ∞, for any

arbitrary point x0 ∈ X.

Proof.

(i) Let x, y ∈ X be arbitrary elements. Then, for all x, y ∈ X we have that

d(T(x), T(y)) ∈

{s ∈ R+ | γ(s) ≤ η(γ(d(x, y)), γ(d(x, T(x))), γ(d(y, T(y))), γ(d(x, T(y))), γ(d(y, T(x))))},

hence,
d(T(x), T(y)) ≤

sup{s ∈ R+ | γ(s) ≤ η(γ(d(x, y)), γ(d(x, T(x))), γ(d(y, T(y))), γ(d(x, T(y))), γ(d(y, T(x))))}

= µ(d(x, y), d(x, T(x)), d(y, T(y)), d(x, T(y)), d(y, T(x))).

(ii) From Lemma 3 (vi), we have that µ defined by Equation (9) is a comparison function.
Now, the conclusion follows by taking into account (i) and by applying Theorem 6 to
operator T.

Corollary 1. Let (X, d) be a complete metric space γ ∈ Γ, a, b, c ∈ R+, a + b + c < 1 and
T : X → X be an operator such that:

γ(d(T(x), T(y))) ≤ a · γ(d(x, y)) + b · γ(d(x, T(x))) + c · γ(d(y, T(y))),

for all x, y ∈ X. Then, T has a unique fixed point x∗ ∈ X and the sequence Tm(x0) → x∗ as
m→ ∞, for any arbitrary point x0 ∈ X.

Proof. Let us consider η : R+
5 → R+ defined by

η(t1, t2, t3, t4, t5) = a · t1 + b · t2 + c · t3.

We remark that η fulfills the conditions from Theorem 8 and the conclusion follows
from it.

Corollary 2. Let (X, d) be a complete metric space, γ ∈ Γ, a, b, c : R+ \ {0} → R+ and
T : X → X be an operator such that:

(1) a, b, c are increasing;
(2) a(t) + 2 · b(t) + c(t) < 1 for every t > 0;
(3) the function t→ a(t) + 2 · b(t) + c(t) ∈ R+ is right upper semi-continuous;
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(4) for all x, y ∈ X, x 6= y we have:

γ(d(T(x), T(y))) ≤

a(d(x, y)) · γ((d(x, y)) + b(d(x, y)) · {γ(d(x, T(x))) + γ(d(y, T(y)))}+

c(d(x, y)) ·min{γ(d(x, T(y))), γ(d(y, T(x)))}.

Then, T has a unique fixed point x∗ ∈ X and the sequence Tm(x0)→ x∗ as m→ ∞, for any
arbitrary point x0 ∈ X.

Proof. Let us consider η : R+
5 → R+ described by:

η(t1, t2, t3, t4, t5) = a(t1) · t1 + b(t1) · (t2 + t3) + c(t1) ·min{t4, t5}.

We remark that η fulfills the conditions from Theorem 8 and the conclusion follows
from it.

Further, Theorem 7 will be applied to continuous data dependence of the fixed points
of Picard operators defined on spaces with altering metrics.

Let us consider a function µ : R+ → R+ satisfying the conditions: µ(0) = 0, µ is right
upper semi-continuous and µ(t) < t for all t > 0. According with [21], if

s− µ(s)→ ∞ as s→ ∞, (14)

we can define the function

θµ : R+ → R+, θµ(t) = sup{s ∈ R+ | s− µ(s) ≤ t}. (15)

We notice that θµ is monotonically increasing and θµ(t)→ 0 as t→ 0. The function θµ

appears when we analyze the data dependence of the fixed points.

Theorem 9. Let γ ∈ Γ and η : R+ → R+ under the following hypothesis:

(1) η(0) = 0;
(2) η is right upper semi-continuous;
(3) η(t) < t for all t > 0.

If (X, d) is a complete metric space and T : X → X is an operator such that:

γ(d(T(x), T(y))) ≤ η(γ(d(x, y))), ∀x, y ∈ X, (16)

then the statements are true:

(i) T has a unique fixed point x∗ ∈ X;
(ii) d(x, x∗) ≤ θµ(d(x, T(x))), ∀x ∈ X;
(iii) if {yn}n∈N is a sequence in X such that d(yn, T(yn)) → 0 as n → ∞ then yn → x∗ as

n→ ∞, i.e., T has the Ostrowski property;
(iv) if the function µ : R+ → R+ described by the relation (2) satisfies the hypothesis (14) and

U : X → X is an operator verifying the conditions:

(a) FU , the fixed point set of operator U is not empty,
(b) there is η > 0 in order that d(U(x), T(x)) ≤ η, ∀x ∈ X,

then d(y∗, x∗) ≤ θµ(η), ∀y∗ ∈ FU .

Proof. We notice that the hypotheses of Theorem 7 are satisfied.

(i) Applying Theorem 7 (iii), we obtain that T has a unique fixed point x∗ ∈ X.
(ii) By using Theorem 7 (ii), we obtain that T verifies the inequality

d(T(x), T(y)) ≤ µ(d(x, y)), ∀x, y ∈ X.
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Let us consider x ∈ X an arbitrary selected element. Taking into account the properties
of the metric d and the previous inequality we obtain

d(x, x∗) ≤ d(x, T(x)) + d(T(x), x∗)

= d(x, T(x)) + d(T(x), T(x∗)) ≤ d(x, T(x)) + µ(d(x, x∗)),

hence,
d(x, x∗)− µ(d(x, x∗)) ≤ d(x, T(x)),

thus,
d(x, x∗) ∈ {s ∈ R+ | s− µ(s) ≤ d(x, T(x))}.

Considering the definition of the function θµ (by relation (15)), from the previous
relation we deduce

d(x, x∗) ≤ sup{s ∈ R+ | s− µ(s) ≤ d(x, T(x))} = θµ(d(x, T(x))).

(iii) Let us consider {yn}n∈N a sequence in X such that d(yn, f (yn))→ 0 as n→ ∞. Taking
into account (ii) one has d(yn, x∗) ≤ θµ(d(yn, f (yn)))→ 0 as n→ ∞ and thus yn → x∗

as n→ ∞.
(iv) Let us consider y∗ ∈ FU an arbitrary-selected fixed point of the operator U. From (ii),

using the condition (b) and the fact that θµ is monotonically increasing, it results that

d(y∗, x∗) ≤ θµ(d(y∗, T(y∗))) = θµ(d(U(y∗), T(y∗))) ≤ θµ(η).

The following examples represent applications of our main results (Theorems 7 and 8)
to the existence and uniqueness of fixed point for certain operators.

Example 3. Let us consider γ, η : R+ → R+ defined as in Example 1, respectively, Example 2
and the integral equation

x(t) =
t∫

0

K(t, s, x(s))ds + g(t), t ∈ [0, 1], (17)

under the following conditions:

(H0)K ∈ C([0, 1]× [0, 1]×R,R), g ∈ C([0, 1],R);
(H1) |K(t, s, u)− K(t, s, v)|4 ≤ η(|u− v|4) for all t, s ∈ [0, 1] and u, v ∈ R.

Then, the Equation (17) has a unique solution in C([0, 1],R) (the class of continuous functions
x : [0, 1]→ R).

Proof. Let us consider C([0, 1],R) endowed with ‖x‖∞ = sup
t∈[0,1]

|x(t)|, and let

T : C([0, 1],R)→ C([0, 1],R),

defined by

Tx(t) =
t∫

0

K(t, s, x(s))ds + g(t).

Then, for each x, y ∈ C([0, 1],R) and t ∈ [0, 1], we have

γ(|Tx(t)− Ty(t)|) = |Tx(t)− Ty(t)|4 ≤
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( t∫
0

|K(t, s.x(s))− K(t, s, y(s))|ds
)4
≤

t∫
0

|K(t, s.x(s))− K(t, s, y(s))|4ds ≤

t∫
0

η(|x(s)− y(s)|4)ds ≤ η(‖x− y‖4
∞) = η(γ(‖x− y‖∞)).

Since γ is increasing, we find that γ(‖Tx− Ty‖∞) ≤ η(γ(‖x− y‖∞)) for each x, y ∈
C([0, 1],R) The conclusion now follows from Theorem 7 applied to operator T.

Example 4. Let us consider

(a) X = {1, 2, 3, 4} and d : X× X → R+ described by:

d(1, 1) = d(2, 2) = d(3, 3) = d(4, 4) = 0,

d(1, 2) = d(2, 1) =
2
6

, d(1, 3) = d(3, 1) =
1
6

, d(1, 4) = d(4, 1) =
4
6

,

d(2, 3) = d(3, 2) =
2
6

, d(2, 4) = d(4, 2) = 1, d(3, 4) = d(4, 3) =

√
2

2
;

(b) T : X → X described by:

T(1) = T(3) = T(4) = 1, T(2) = 4.

Then, T has a unique fixed point.

Proof. It results from Corollary 1 applied for γ : R+ → R+, γ(t) = t2 and η : R+
5 → R+,

η(t1, t2, t3, t4, t5) =
1

36 · t1 +
1
2 · t2 +

4
9 · t3.

4. Conclusions

In this paper, we have extended the results from [14] by considering for an operator
T : X → X a general contractive condition. First, we proved that for a given control
function γ : R+ → R+ and a contractive condition of type

γ(d(T(x), T(y))) ≤ η(γ(d(x, y))), ∀x, y ∈ X,

we can build a function µ : R+ → R+ such that

d(T(x), T(y)) ≤ µ(d(x, y)), ∀x, y ∈ X.

Further, we built Example 2, where we gave an example of function η : R+ → R+,
which satisfies Lemma 2, but does not satisfy the setup from [14]. Next, we provided an
existence and uniqueness result and a data dependence result for fixed point of operator T
and we showed additionally that it has the Ostrowski property. The paper is completed by
Example 3 as an application of Theorem 7 to an integral equation. Next, we considered a
more general contractive condition of type

γ(d(T(x), T(y))) ≤ η(γ(d(x, y)), γ(d(x, T(x))), γ(d(y, T(y))), γ(d(x, T(y))), γ(d(y, T(x)))),

∀x, y ∈ X. Corollary 1 showed us that Theorem 1 from [3] is obtained as a particular
case of Theorem 8, and additionally we obtained in Corollary 2 a similar result as in
Theorem 2 from [3], but imposing different condition to the functions a, b, c. Moreover, for
γ(t) = t in Theorem 7 we get Theorem 5. As future research direction we would like to
point the following ones:

• To extend the main results to common fixed point theory;
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• To generalize the above results to the setup of general metric spaces, e.g., fuzzy,
orthogonal or partially ordered metric spaces.

Author Contributions: Conceptualization, I.M.O. and A.N.B.; methodology, I.M.O. and A.N.B.;
formal analysis, I.M.O. and A.N.B.; writing—original draft preparation, I.M.O. and A.N.B.; writing—
review and editing, I.M.O. and A.N.B.; funding acquisition, I.M.O. and A.N.B. All authors have read
and agreed to the published version of the manuscript.

Funding: Project financed by Lucian Blaga University of Sibiu through the research grant LBUS-IRG-2022-08.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank the anonymous reviewers for their valuable comments and
suggestions which helped us to improve the content of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Delbosco, D. Un’estensione di un teorema sul punto fisso di S. Reich. Rend. Sem. Mat. Univers. Politean. Torino 1977, 35, 233–238.
2. Skof, F. Teorema di punti fisso per applicazioni negli spazi metrici. Atti. Accad. Aci. Torino 1977, 111, 323–329.
3. Khan, M.S.; Swalesh, M.; Sessa, S. Fixed point theorems by altering distances between the points. Bull. Aust. Math. Soc. 1984, 30,

323–326. [CrossRef]
4. Morales, J.R.; Rojas, E. Some fixed point theorems by altering distance functions. Palest. J. Math. 2012, 1, 110–116.
5. Akkouchi, M. Common fixed point theorems by altering the distances between the points in bounded complete metric spaces.

Demonstr. Math. 2000, 33, 843–850. [CrossRef]
6. Pant, R.P.; Jha, K.; Lohani, A.B. A note on common fixed points by altering distances. Tamkang J. Math. 2003, 34, 59–62. [CrossRef]
7. Pant, R.P.; Jha, K.; Pande, V.P. Common fixed point for by altering distances between points. Bull. Cal. Math. Soc. 2003, 95,

421–428. [CrossRef]
8. Pant, R.P.; Jha, K.; Padaliya, S. On common fixed point by altering distances between the points. Tamkang J. Math. 2003, 34,

239–243. [CrossRef]
9. Sastry, K.P.R.; Naidu, S.V.R.; Babu, G.V.R.; Naidu, G.A. Generalization of common fixed point theorems for weakly commuting

maps by altering distances. Tamkang J. Math. 2000, 31, 243–250. [CrossRef]
10. Masmali, I.; Dalal, S.; Rehman, N. Fixed Point Results by Altering Distances in Fuzzy Metric Spaces. Adv. Pure Math. 2015, 5,

377–382. [CrossRef]
11. Gungor, N.B. Some Fixed Point Theorems on Orthogonal Metric Spaces via Extensions of Orthogonal Contractions. Commun. Fac.

Sci. Univ. Ank. Ser. A1 Math. Stat. 2022, 71, 481–489. [CrossRef]
12. Gupta, V.; Jungck, G.; Mani, N. Some novel fixed point theorems in partially ordered metric spaces. AIMS Math. 2020, 5,

4444–4452. [CrossRef]
13. Al-Khaleel, M.; Al-Sharif, S. Cyclical Nonlinear Contractive Mappings Fixed Point Theorems with Application to Integral

Equations. TWMS J. App. Eng. Math. 2022, 12, 224–234.
14. Branga, A.N.; Olaru, I.M. Some Fixed Point Results in Spaces with Perturbed Metrics. Carpathian J. Math. 2022, 38, 641–654.

[CrossRef]
15. Jha, K.; Pant, R.P.; Thapa, P. Some fixed points results by altering distances between points. Kathmandu Univ. J. Sci. Eng. Technol.

2010, 6, 123–134. [CrossRef]
16. Rezapour, S.; Deressa, C.T.; Hussain, A.; Etemad, S.; George, R.; Ahmad, B. A Theoretical Analysis of a Fractional Multi-

Dimensional System of Boundary Value Problems on the Methylpropane Graph via Fixed Point Technique. Mathematics 2022,
10, 568. [CrossRef]

17. Khan, Z.A.; Ahmad, I.; Shah, K. Applications of Fixed Point Theory to Investigate a System of Fractional Order Differential
Equations. J. Funct. Spaces 2021, 2021, 1399764. [CrossRef]
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