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Abstract: Variable stiffness actuators (VSA) have attracted much attention because of their potential
for human-like interaction behaviors. This paper devotes to improving the VSA’s versatility. VSA
with different characteristics can be obtained by shape reconfiguration of its internal driving cams.
The proposed VSA mainly includes a variable stiffness module and a cam-based driven module.
A common node connects the two modules. It is placed in the common grooves of the dual cams.
Kinematically, the radial position of the node can be changed for stiffness adjustment by cam
differential motion. Mechanically, the driven force on this node can be resolved into two orthogonal
directions by cam groove, one for stiffness adjustment and another for position balance., The paper
establishes the analytical relationship between the pressure angle of the cam pitch curve, stiffness
adjustment speed and accuracy, and load distribution. Furtherly, the pitch curve synthetic approach
for VSA reconfiguration is provided. A special cam shape with a favorable load distribution is
proposed to verify the method. The correctness of the design was effectively proved by experiments
in the virtual model and physical prototype.

Keywords: reconfiguration; cam pitch curve synthesis; load distribution; stiffness adjustment speed
and accuracy

MSC: 37B99

1. Introduction

A major difference between compliant actuators and classical rigid actuators is that
the former’s force-deformation properties are similar to that of human muscle [1,2]. This
makes flexible actuators show great promise in human-computer interaction sites, such as
assistive exoskeletons and rehabilitation devices [3–6]. In the early stage, Pratt intentionally
placed a linear spring in the kinematic chain [7]. It is known as a serial elastic actuator
(SEA). This enabled compliant actuators with higher torque robustness and safety, and
higher energy efficiency in a cyclic motion [8–11]. In a cyclic movement such as walking
behavior, the VSA can help to reduce the impact loss of kinetic energy in the landing process
of walking with a low stiffness. Most of the kinetic energy is converted into elastic potential
energy of the compliant element. Then the elastic potential energy is released directly to
the legs during the take-off phase. System energy flows primarily between the compliant
element and the end of the leg. Theoretically, the motors of VSA only need to make small
movements, to continuously supplement the impact energy loss and the frictional energy
loss to the robot system. This greatly improves the energy efficiency of periodic motion.
But the optimal motion frequency is limited by the actuator output stiffness. To overcome
the limitation of constant stiffness on actuator performance, the variable stiffness actuator
(VSA) introduces a new degree of freedom for stiffness adjustment [12–14].

The VSA’s key attributes include output power, stiffness range, efficiency, and ac-
curacy [15]. Unfortunately, these performance indexes are contradictory, requiring com-
promise designs based on task characteristics [16]. Research scholars have carried out a
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scientific and detailed classification of these actuators, which provides important guidance
for successors [17]. To map a different stiffness from the compliant element to the output
of VSA, the adjustment principles include the followings: moving the equilibrium point
on the torque-deflection curve of the spring (tuning single-spring preload [18], varying
antagonistic-springs preload [19–21]), changing deformation transmission ratio [22–24],
and changing the physical properties of the spring [25–27].

The diversity of principles provides a flexible choice for different design intents.
Additionally, reconfiguration design is also a frequently-used method, which has better
versatility. Its main purpose is to achieve diverse stiffness ranges and behaviors without
changing the external interface. Such as the pulley block is reconfigured to change the
spring preload for stiffness behaviors similar to human muscle [28–30]. Another popular
approach is to obtain different torque-deflection springs. Minacci enhanced the output
torque in the whole stiffness range in the agonistic-antagonistic VSA with a combination
of a linear and nonlinear spring [31]. Xu provided a symmetry variable stiffness module,
allowing convenient reconfiguration of the S-springs for different applications [32]. Qian
configures the stiffness profiles offline by changing the spring stiffness or its pre-tension
force [33]. However, the other crucial characteristics of the VSA have not been covered
enough. In the previous work [34], the two motors can share the external load with a small
difference through cam optimal design. It provides an efficient way to fully utilize the
performance of dual motors to achieve enhanced torque output capability of the actuator.
The work focus on improving the uniformity of load distribution, but the other aspects
of the VSA’s performance is not considered. Based on the previous work, this new work
aims to consider other important performance indexes, including stiffness adjustment
speed, and stiffness adjustment accuracy. The paper establishes the analytical relationship
between the cam pitch curve’s pressure angle and the above key performance indexes for
multi-objective optimization design. By an internal adjustment of the cam groove shape,
the VSA can be arbitrarily reconfigured depending on its functionality with the external
interface unchanged. The versatility of the actuator design can be greatly improved to
adapt to different application requirements, only by reconfiguring the internally driven
cam shape.

In Section 2, the reconfiguration principle for the proposed problem is present. As
well, the cam pitch curve synthetic approach for reconfiguration design was described in
Section 3. The cam curve based on a favorable load distribution is provided and verified by
virtual model simulation and physical prototype experiment in Section 4. The conclusion is
provided in Section 5.

2. Reconfiguration Method of the Cam-Based VSA
2.1. Problem Description

The existing reconfigurability design of the adjustable stiffness actuator takes the
stiffness range as the design optimization objective, and the optimization objective is single,
which limits the versatility of the actuator. In a robot system, there are usually many
degrees of freedom. For example, the Tesla humanoid robot has 28 degrees of freedom.
Improving the versatility of the structural design of the actuator is the key to reducing
costs. In fact, in addition to the stiffness adjustment range, the key performance indicators
of the adjustable stiffness actuator also include output torque, stiffness adjustment time,
and stiffness adjustment accuracy. At present, limited by the structural design, there is
no model that can cover all the above key performance indicators, and it is impossible to
carry out multi-objective design optimization under a unified mathematical model, and the
versatile design of the actuator is limited.

2.2. Reconfiguration Method of the Cam-Based VSA for High Versatility

In this paper, a pitch curve synthetic approach for VSA reconfiguration design with
the following advantages is provided as follows:
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(1) Cam-based VSA with a common driven node. The radial position of the common
node can be changed for stiffness adjustment by cam differential motion and its tangential
position can be changed for output position control by cam synchronized movement.
The cam groove can resolve the driven force into two orthogonal directions: one for
stiffness adjustment and another for position balance. Obviously, this common node makes
the stiffness adjustment time, accuracy and output torque of the actuator have common
structural constraints. Therefore, the system model established in this paper can cover the
above key performance indicators.

(2) Feasible solution space of pressure angle, considering the mechanical constraint of
the variable stiffness module. The solution space is decided by two solution boundaries:
the upper one generated by the stiffness adjustment force and the lower one by the position
balance force. The cam can be shaped in a polar coordinate system with the pressure angle
function, based on the approximation functions of the two boundaries.

(3) Synthetic approach of pitch curve for reconfiguration design. The paper establishes
analytic relationships among the cam pressure angle, stiffness adjustment speed and
accuracy, and load distribution. Three cam configurations with different characteristics
are given: a bigger pressure angle is helpful to improve the stiffness adjustment speed; a
smaller one is beneficial to obtain a more even load on the dual motors; a tradeoff between
the above two cases can result in a uniform stiffness adjustment accuracy. By an internal
adjustment of the cam groove shape, the VSA can be arbitrarily reconfigured depending on
its functionality with the external interface unchanged. This greatly increases the versatility
of the actuator design.

The principle of the proposed VSA is illustrated in Figure 1. It is mainly composed of
a stiffness adjustment module (VSM) and the cooperative cam-based driving module. In
the VSM, the coupler AC and the output link OA are connected by a spring, as shown in
Figure 1. Then the rigid guide rod mechanism is transformed into a compliant mechanism.
In this mechanism, the spring’s torsion angle is just the transmission angle between AC
and OA (α in Figure 1). The difference between the input link OB and the output link OA is
defined as the deformation angle of the VSA (θ in Figure 1).
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Figure 1. Principle of the cam-based VSA.

τe is the load exerted on the output link of the VSA, and can be obtained as

τe = τs(α)
dα

dθ
(1)

where τs(α) is the elastic torque of the spring with respect to deflection α. Thus, the output
stiffness K can be

K =
dτe

dθ
= ks

(
dα

dθ

)2
+ τs(α)

d2α

d2θ
(2)
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where ks is the spring stiffness. dα/dθ indicates the deformation transmission ratio and can
be expressed as

dα/dθ = ρ cos(θ − α)/(a cos α + ρ cos(θ − α)) (3)

where a and ρ are the length of link OA and link OB. By changing ρ, dα/dθ can be regulated,
and so the stiffness K.

The VSM is driven by two motors through two symmetrical cams (cams C1, C2 in
Figure 1). Joint B is arranged at the intersection of the symmetrical cam pitch curve, which
can realize the adjustment of position and stiffness at the same time. To reduce the internal
friction, joint B is composed of two bearing for the two cams, called cam followers. As well,
they are placed in the cams’ common groove. The stiffness K can be changed with a tunable
node B implemented by cams’ differential rotation. The speed and accuracy of the stiffness
adjustment are decided by the shape of the cam. Furthermore, there is: τe = TM1 + TM2. At
the same time, the cam acts as a force resolver for stiffness adjustment and position balance,
and decides the load distribution feature (the ratio of TM1/TM2). The output power of the
VSA can be enhanced with optimal load distribution.

So, VSA with different characteristics can be obtained by reconfiguring the cam pitch
curve. As well, the cam shape reconfiguration is closely related to the stiffness adjustment
module, whose specifications are defined in the previous research work [34].

3. The Cam Pitch Curve Synthetic Approach for Reconfiguration Design
3.1. Cam Pitch Curve Modeling

In this paper, the cam pitch curves are described in a polar coordinate system (Figure 2).
The intersection node B is represented by polar coordinate B(ρ,κ(ρ)). ρ is the radial distance
corresponding to certain stiffness (ρ = OB) and κ(ρ) is the angle mapped to ρ in the polar
coordinate system. On node B, the stiffness adjustment pressure angle is defined as the
cam curve pressure angle. (γ(ρ) in Figure 2). In the part polar coordinate systems, γ(ρ) is
the key for cam reconfiguration design. It establishes direct mathematical relationships
among cam shape, the feasible solution space of cam reconfiguration, and the VSA’s
primary characteristics.
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Figure 2. Cam curve described in the polar coordinate system.

The pitch curve can be shaped by the relationship among ρ, γ(ρ) and κ(ρ) as

κ(ρ) =

ρ∫
ρmin

[ρ tan(γ(ρ))]−1dρ (4)

where ρmin is the minimal length of link OB.

3.2. Feasible Solution Space of Cam Reconfiguration under the Basic Constraints

Benefiting from the symmetry of the structure, only the deformed configuration with
a positive direction is discussed. Corresponding to Figures 1 and 2, the balanced forces on
node B are shown in Figure 3.
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Figure 3. Static forces at the common node B.

The force on the followers is resolved into two orthogonal directions (Fd, Fa, red
highlight in Figure 3). Fd is called the counter-force for position control and Fa is called the
counter-force for stiffness adjustment. The ratio of Fa over Fd can be expressed as

Fa/Fd = tan β = a sin θ/(ρ + a cos θ) (5)

where β indicates the angular displacement of the slider relative to OB.
FM1, FM2 are the normal force exerted on the common node by cams C1 and C2, and

there is {
(FM1 + FM2) sin γ(ρ) = Fd
(FM2 − FM1) cos γ(ρ) = Fa

(6)

Solution space of cam pitch curve. To ensure the bearing followers not be overloaded,
γ(ρ) should meet the following constraint equation:

FM2 = τe(1 + tan β tan γ(ρ))ρ−1/2 sin γ(ρ) ≤ [Fb] (7)

Considering the specification constraints in [35], the maximum value of the β, θ, α,
τe in Equation (7) is obtained according to Equations (1) and (3), and graphed in Figure 4.
Correspondingly, the feasible solution space of γ(ρ) is calculated numerically and shown
by the area enclosed by the solid red line and the dashed red line in Figure 5. The dashed
red line and solid red line indicate its lower and upper solution boundary respectively.
The former represents the allowable minimum γ(ρ) for Fd and the latter represents the
allowable maximum γ(ρ) for Fa. Beyond this boundary, the overload problem appears on
the bearings.
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Figure 5. Solution space constrained by bearing’s rated load.

There appears a local shrinkage phenomenon near ρ = 0.014 m on the solution space.
This is caused by the change of the main factors determining γ(ρ). When (ρ < 0.014 m), a
small γ(ρ) is allowed with low stiffness. Afterward, the stiffness increases quickly and leads
to a sharp increase of γ(ρ). After the shrinkage point, the decreasing ρ−1 and β become the
dominant factors and the γ(ρ) decreases slowly. The upper boundary curve exhibits an
antisymmetric feature as the second solution for Equation (7). The two together generate
the shrinkage phenomenon. The degree of the shrinkage is decided by the bearing’s rated
load. The feasible solution space would broaden outward slightly with a larger bearing
([Fb] = 950 N), indicated by the grey area in Figure 5. But it would shrink inward seriously
with a smaller bearing ([Fb] = 750 N), as indicated by the yellow area in Figure 5. The
difference is caused by the nonlinearity of the FM1 over γ(ρ) in Equation (6). This trend is
more significant near shrinkage point as the β in this interval is larger, as shown in Figure 4.
So, a favorable choice of the cam follower bearing should be based on the mechanical
property of the variable stiffness module. Bearing a too small rated load would limit the
solution space for the cam reconstruction design and too large one does not help much but
increases the curvature radius.

Pressure angle constrained by undercutting. The minimum curvature radius should
be large than the radius of the cam followers. So, any feasible γ(ρ) in Figure 5 should meet
the following undercutting constrained equation:

ρpitch =
ρ
[
1 + tan2 γ(ρ)

]3/2∣∣tan2 γ− ργ′(ρ) tan γ(ρ) sec2 γ(ρ) + 1
∣∣ ≥ D/2 (8)

where D indicates the diameter of the cam followers, γ’(ρ) is the derivative of γ(ρ) over ρ.
Expression of the feasible pressure curve in the solution space. The upper solution

boundary can be approximately approached by the superposition of the following two
pressure angle functions: the main function γfit(ρ) in Equation (9) and the correction
function γc(ρ) in Equation (10). γfit(ρ) devotes to fitting the pressure angle data after the
shrinkage point in Figure 5 (ρ = 0.014 m), and γc(ρ) to compensate for its value in the range
before the shrinkage point.

γ f it(ρ)= 144101ρ4+28797ρ3−2183ρ2+77.1ρ + 0.412 (9)

γc(ρ) = ac + bc(ρmin/ρ)nc (10)

Setting ac = −0.015, bc = 0.4, nc = 6 by enumeration method, the upper solution
boundary function can be expressed as

γup(ρ) = γ f it(ρ) + γc(ρ) (11)
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In a likewise fashion, the lower solution boundary function can be approximately
approached by

γlow(ρ) = 20830ρ4 − 5303ρ3 + 531.5ρ2 − 27.36ρ + 0.864− 0.25(ρmin/ρ)5 (12)

Then the pressure angle curve in the solution space can be generally expressed as{
γ(ρ) = W(ρ)γup(ρ) + (1−W(ρ))γlow
ρpitch ≥ D/2 (13)

where W(ρ) is the function to be determined, and there is 0 ≤W(ρ) ≤ 1.

3.3. Cam Reconfiguration Synthetic Based on Different Performance Index of the Variable
Stiffness Actuator

Case 1: cam synthetic based on stiffness adjustment speed, such as actuator for wrist
joint in a humanoid robot. Usually, it needs to be used for some fine actions, such as
grabbing, polishing, and grinding. With a given motor speed, the stiffness adjustment
speed can be proportional to angle κ(ρ) in Equation (4) and inversely proportional to γ(ρ).
So, a shorter stiffness adjustment time can be obtained with the pressure angle curve
moving toward the upper boundary curve in Figure 5, i.e., W(ρ)→ 1.

Case 2: cam synthetic based on output stiffness accuracy, such as actuator for wrist
joint in a humanoid robot. Usually, it needs to be used for some fine actions, such as
grabbing, polishing, and grinding. A smaller value of the stiffness adjustment resolution is
beneficial to obtain a high output stiffness accuracy and is defined as:

aρ = ∆p
∂K
∂κ

= ∆p
∂K
∂ρ

∂ρ

∂κ
= ∆p

∂K
∂ρ

ρ tan(γ(ρ)) (14)

where ∆p indicates the position resolution of the cam, i.e., the resolution of the polar angle κ.
∂K/∂κ is the partial derivative of K over κ and represents the stiffness resolution related to κ.

To simplify the solution, we ignore the nonlinearity of output stiffness in Equation (2).
Then ∂K/∂ρ can be simplified as

∂K
∂ρ

=
2aρ

(a + ρ)3 (15)

For the case with a higher priority of stiffness accuracy, we can predefine the stiffness
adjustment function by

S(ρ) =
∂K
∂ρ

ρ tan(γ(ρ)) (16)

Then the relationship between W(ρ) and S(ρ) can be mapped as

S(ρ) =
∂K
∂ρ

ρ tan
(
W(ρ)γup(ρ) + (1−W(ρ))γlow

)
(17)

The local stiffness adjustment accuracy can be arbitrarily set according to the re-
quirements of different tasks by pre-definition of W(ρ). For a certain ρ range with higher
stiffness adjustment accuracy, the corresponding S(ρ) can be adjusted to a lower value with
a small W(ρ). The cam pressure angle function based on the predefined stiffness adjustment
accuracy can be decided by

κ(ρ) =

ρ∫
ρmin

1
S(ρ)∂K/∂ρ

dρ (18)

Case 3: cam synthetic based on load distribution on its dual motors, such as actuator
for waist joint in the legged robot. It requires the actuator to have a large driving capacity,
but it does not require a high stiffness adjustment time. The torques TM1 and TM2 on the
cams C1 and C2 can be derived from FM1 and FM2 as{

TM1 = FM1 sin γ(ρ)ρ = τe(1 + tan β) tan γ(ρ))/2
TM2 = FM2 sin γ(ρ)ρ = τe(1− tan β tan γ(ρ))/2

(19)
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In this paper, we use φ to evaluate the load distribution. It is defined as the smaller
torque on the cams over its bigger one. When θ > 0, there is TM 1 < TM 2. Then φ can be

φ =
TM1

TM2
=

1− tan β tan γ(ρ)

1 + tan β tan γ(ρ)
(20)

When θ < 0, the φ can be re-expressed as is

φ =
TM2

TM1
=

1− tan β tan γ(ρ)

1 + tan β tan γ(ρ)
(21)

Four different reconfiguration cases can be discussed. First, φ = 1. The motors share
the external load evenly. In this case, a serious overload phenomenon happens and the
stiffness cannot be tuned. Second, 0 < φ <1. The dual motors synergistically drive an
external load. The proximity of the amount is dependent on the γ(ρ). The smaller the value
of γ(ρ), the more uniform the load distribution. Third, φ = 0. Only a single motor takes the
load. This is the load distribution status of the existing freestanding VSA. Fourth, φ < 0.
The motors work against each other. This reflects the load distribution state of the existing
antagonistic VSA.

According to the above discussion, a simple conclusion can be made: for case 1, a
bigger γ(ρ) is helpful to improve the stiffness adjustment speed; contrary to case 1, a smaller
γ(ρ) is better to obtain a more even load on the two motors in case 3; case 2 is between the
case 1 and case 3.

3.4. Three Cam Reconfiguration Results Based on Three Special Cases

Three special cam reconfigurations based on the above three cases are given and
compared in this section. For case 1, the VSA can obtain its maximum stiffness adjustment
speed with W(ρ) = 1. In this case, the stroke of the polar angle for stiffness adjustment
is κ = 0.57 rad. The pressure angle curve approaches its upper solution boundary (point
line in Figure 6). Going back to Equation (4) with Equation (13), the pitch curve for case
1 can be shaped. It is very close to straight line (point line in Figure 7). Obviously, this is
more suitable for scenes with requirements for high stiffness adjustment speed. We should
note that it does not cover the stiffness adjustment accuracy, as the stiffness resolution is
extremely uneven in the whole ρ range. To simplify the comparison, we assume ∆p = 1 rad
in Equation (14). With a small ρ value, the adjustment resolution would be very slow and
dramatically increase from 10 Nm to 283 Nm with an increasing ρ (solid Figure 8). This is
not conducive to improving the accuracy of stiffness adjustment. Another disadvantage is
that the VSA works in antagonistic mode with φ < –0.2 (point line in Figure 9). The two
driving motors consume each other seriously.
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For case 3, an optimal load distribution is obtained with W(ρ) = 0. In this case, the
pressure angle curve approaches its low solution boundary (asterisk marked in Figure 7).
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There is φ >0.6 with ρ > 0.02 m. And φ would be over 0.8 when ρ > 0.032 m (asterisk marked
in Figure 8). It is very useful in full exploitation of the output power of the dual driving
motors. Its shape is like that of an Archimedean spiral, but with a variable-pitch (asterisk
marked in Figure 6). Obviously, it comes at the cost of stiffness adjustment speed, with a
polar angle stroke of κ = 3.86 rad. Trade off can be made between the stiffness adjustment
time and the output power (or load distribution). It can be realized by moving the pressure
angle curve toward the upper boundary curve with a larger W(ρ). In this way, the output
power would decay but the stiffness adjustment speed would be higher.

A special case for case 2 is that: S(ρ) = C. C is a constant related to stiffness adjustment
accuracy aρ. Going back to Equation (18) with Equations (15) and (16), the pressure angle
with a uniform stiffness adjustment accuracy can be expressed as

γ(ρ) = arctan
(

0.5Ca−1ρ−2(a + ρ)3
)

(22)

By setting C = 0.13, the pressure angle S(ρ) can go through the shrinkage area smoothly
(dashed line in Figure 7) and the stiffness resolution remains the same in the whole κ range
(dotted line in Figure 9), i.e., aρ = 11 Nm. Its value is slightly bigger than that of case 3,
for the pressure angle is beyond that of case 3 (dotted line in Figure 7). Except for the
uniform stiffness adjustment accuracy, it is also a good embodiment of tradeoff design
between the stiffness adjustment time and the output power (or load distribution). The
pressure angle curve of case 2 is close to that of case 1 in the low ρ range (W(ρ)→ 1 when
ρ < 0.014 m) and exhibits a stable offset to that of case 3 in the high ρ range (W(ρ)→0 when
ρ > 0.02 m). It results in a pitch curve between case 1 and case 3 (dashed line in Figure 6). A
higher stiffness adjustment speed with a stroke polar angle of κ = 2.16 rad is obtained. At
the same time, the load ratio also reaches 0.6 quickly with an increasing ρ. There is good
compatibility for stiffness adjustment time and the output power and stiffness adjustment
accuracy. The difference and relationships of the three cases are summarized in Table 1.

Table 1. The difference and relationship among the three cam reconfiguration results.

Case 1 Case 2 Case 3

Stroke of polar angle κ κ = 0.57 rad κ = 2.16 rad κ = 3.86 rad

Stiffness resolution aρ 10 Nm < aρ <282 Nm aρ = 11 Nm 1.78 Nm < aρ < 7.5 Nm

Load ratio φ φ < −0.2 in the whole ρ range φ < −0.2 with ρ < 0.014 m;
φ > 0.6 with ρ > 0.026 m

φ > 0.6 with 0.02 < ρ < 0.032 m;
φ > 0.8 with ρ > 0.032 m.

Pressure angle γ(ρ) Maximum γ(ρ) close to the upper
solution boundary

γ(ρ) close to case 1 in low ρ range;
γ(ρ) close to case 2 in high ρ range.

Minimum γ(ρ) close to the lower
solution boundary

4. Experiment Verification and Analysis of the Optimal Load Design

The cam shape in case 3 is chosen for the VSA’s output power enhancement in a compact
joint of the support fund. It focuses on the load distribution design. The load ratio is verified by
the Adams simulation and physical prototype experiment from different aspects.

4.1. Load Distribuation Erification by Adams Simulation

Adam’s simulation settings. Adam’s simulation can provide a fast and exact verifica-
tion of the design result when the virtual prototype is very close to the theory prototype.
It can be regarded as an important supplement to the physical prototype experiment. In
cam modeling, the system friction was neglected in the static equilibrium equations of
Equations (5) and (19). To avoid the influence of inertia force and friction on the simulation
results of cam load ratio, the virtual prototype with non-friction, zero-damping is estab-
lished, as shown in Figure 10, according to the working principle proposed in Figure 1. The
model has the same specifications with that proposed in [34].



Mathematics 2022, 10, 4088 11 of 18

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 18 
 

 

Table 1. The difference and relationship among the three cam reconfiguration results. 

 Case 1 Case 2 Case 3 

Stroke of polar angle κ κ = 0.57 rad κ = 2.16 rad κ = 3.86 rad 

Stiffness resolution aρ 10 Nm < aρ <282 Nm aρ = 11 Nm 1.78 Nm < aρ < 7.5 Nm 

Load ratio ϕ ϕ < −0.2 in the whole ρ range 
ϕ < −0.2 with ρ < 0.014 m; 

ϕ > 0.6 with ρ > 0.026 m 

ϕ > 0.6 with 0.02< ρ < 0.032 m; 

ϕ > 0.8 with ρ > 0.032 m. 

Pressure angle γ(ρ)  
Maximum γ(ρ) close to the 

upper solution boundary 

γ(ρ) close to case 1 in low ρ range; 

γ(ρ) close to case 2 in high ρ range. 

Minimum γ(ρ) close to the 

lower solution boundary 

4. Experiment Verification and Analysis of the Optimal Load Design 

The cam shape in case 3 is chosen for the VSA’s output power enhancement in a 

compact joint of the support fund. It focuses on the load distribution design. The load 

ratio is verified by the Adams simulation and physical prototype experiment from differ-

ent aspects. 

4.1. Load Distribuation Erification by Adams Simulation 

Adam’s simulation settings. Adam’s simulation can provide a fast and exact verifi-

cation of the design result when the virtual prototype is very close to the theory prototype. 

It can be regarded as an important supplement to the physical prototype experiment. In 

cam modeling, the system friction was neglected in the static equilibrium equations of 

Equations (5) and (19). To avoid the influence of inertia force and friction on the simulation 

results of cam load ratio, the virtual prototype with non-friction, zero-damping is estab-

lished, as shown in Figure 10, according to the working principle proposed in Figure 1. 

The model has the same specifications with that proposed in [34]. 

 

 

Figure 10. The virtual prototype in ADAMS (a) Bottom view; (b) Front view; (c) Deformed config-

uration with ρ = 0.0396 m, θ =0.44 rad. 

Figure 10a is the bottom view of the virtual prototype. The cam followers are placed 

in the common grooves of the dual cams with curve-to-curve constraints. Figure 10b is the 

front view. The cam followers are connected to the linkage mechanism via a slider. Cams 

C1 and C2 rotary around the center O with motion 1 and motion 2. Their angle displace-

ments are indicated by κ1 and κ2 respectively. Then the polar angle can be indicated by κ 

= (κ1 − κ2)/2 and the corresponding ρ can be obtained by Equations (3) and (12). The output 

link OA moves around the center O with motion 3 with angular displacement of κ3. To 

simplify the simulation, the κ3 is set to zero. Then the deflection angle of the variable stiff-

ness module can be expressed as θ = (κ1 + κ2)/2. 

The simulation steps are as follows: 

Spring on joint A

 oint  

 am  1

 am   

 am followers

 in   

 oupler lin   
Slider

 a)  b)  c)  otion  

with    and k 

 

q  0.  rad

 
 

r 0.03  m

 otion 1

with   1 and k1

 otion 3

with t and k3

 urve to curve

constraint

Figure 10. The virtual prototype in ADAMS (a) Bottom view; (b) Front view; (c) Deformed configura-
tion with ρ = 0.0396 m, θ =0.44 rad.

Figure 10a is the bottom view of the virtual prototype. The cam followers are placed
in the common grooves of the dual cams with curve-to-curve constraints. Figure 10b is
the front view. The cam followers are connected to the linkage mechanism via a slider.
Cams C1 and C2 rotary around the center O with motion 1 and motion 2. Their angle
displacements are indicated by κ1 and κ2 respectively. Then the polar angle can be indicated
by κ = (κ1 − κ2)/2 and the corresponding ρ can be obtained by Equations (3) and (12). The
output link OA moves around the center O with motion 3 with angular displacement of κ3.
To simplify the simulation, the κ3 is set to zero. Then the deflection angle of the variable
stiffness module can be expressed as θ = (κ1 + κ2)/2.

The simulation steps are as follows:

(1) First, adjust the value of ρ with no deformation by the reverse motion of cams C1 and
C2. The measurement range varies from ρ = 0.008 m to ρ = 0.05 m, with a step of 0.002
m. The motion angle κ1 and κ2 of cams C1 and C2 are decided by κ1(ρ)= −κ2(ρ) = κ(ρ) =

ρ∫
ρmin

[ρ tan(γ(ρ))]−1dρ

γ(ρ) = 20830ρ4 − 5303ρ3 + 531.5ρ2 − 27.36ρ + 0.864− 0.25(ρmin/ρ)5
(23)

A simple example is demoed in Figure 10b, with κ1= − κ2 = 3.14 rad, ρ = 0.0396 m,
θ = 0 rad.

(2) Secondly, deform the variable stiffness module with an angle θ by synchronized
motion. The maximum θ corresponding to each ρ is shown in Figure 4. It is mainly
constrained by the allowable spring angle. Now the motion angle exerted on the cams
C1 and C2 become 

κ1(ρ) =
ρ∫

ρmin

[ρ tan(γ(ρ))]−1dρ + θ

κ2(ρ)= −
ρ∫

ρmin

[ρ tan(γ(ρ))]−1dρ + θ

A deformed configuration with κ1 = 3.58 rad, κ2 = −2.7 rad, ρ = 0.0396 m, θ = 0.44 rad
is exhibited in Figure 10c.

Adams simulation results. The driving torque TM1 and TM2 exerted on the two cams
can be observed as a characteristic of motion 1 and motion 2 in ADAMS. And the output
torque τe can be obtained from motion 3. For a clear illustration, τe is scaled down by
0.5 times. TM1 is indicated by the green mesh, TM2 the blue mesh and τe/2 the yellow mesh,
as shown in Figure 11. There is always 0 < TM1 < τe/2/ < TM2 and TM1 + TM2= τe, i.e., the
VSA works with helping mode in the whole working space. The difference between TM1
and TM2 decreases notably with an increasing ρ, but increases with an increasing deflection
angle θ. For quantitative analysis, the load ratio with maximum θ is graphed in Figure 12
(φADMAS, solid line).
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Figure 12. Load ratio comparison between the theory and the ADMAS.

There is a tiny difference between φADMAS and φtheory near ρ = 0.014 m. It is caused
by the simulation step. For the theory value of load ratio in Equation (20) (φtheory), the
calculation step is 0.0005 m. And for the φADMAS, the step is 0.002 m. The influence appears
when the ρ-φ curve changes sharply in the range of ρ < 0.016 m. But its impact becomes
very weak in the range of ρ > 0.016 m, as the ρ-φ curve is gentle in this area. So, we can
conclude that the correctness of the cam design method is proved effectively by the load
ratio observation in ADAMS. We can conclude that simulation experiments fully verified
the correctness of the load distribution design during the deformation process.

4.2. Performance Validation by Physical Prototype

CAD model of a physical prototype. The CAD model is illustrated in Figure 13. The
motor M1 determines the cam C1 position, and the reduction ratio between the two is
100:29. The motor M2 devotes to the cam C2 position and the reduction ratio is 130:47. The
cam follower consists of two bearings, the outer rings are respectively arranged in the two
cam grooves, and the inner ones are mounted on a common shaft, which is bolted with a
slider on guide rod AC. Through the differential movement of the cams, the slider can slide
along the guide rod AC to change the radial position and realize the stiffness adjustment.
To ensure the compactness of the actuator, the torsion spring at point A is derived from the
stiffness adjustment module [35].
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Figure 13. CAD model of the physical prototype.

Physical prototype of reconfigurable cams. The symmetrical cams C1 and C2 in
Figure 14a,b was machined with the same pitch curve in Figure 10. It focuses on optimal
load distribution for output torque enhancement of the VSA. By changing the cam groove
shape, the performance of the VSA can be reconfigured, as described in case 1 and case 2.
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Figure 14. Cam prototype based on optimal load distribution: (a) cam C1; (b) cam C2.

Physical prototype and experiment platform. After the cam group is installed coaxially,
a common cam groove is formed. Joint B is set at the common groove through a common
shaft (Figure 15a) and its position is decided by the cams’ position. By cams differential
control, the goal ρ for stiffness adjustment can be set and the stiffness of the VSA would
be changed. By cams’ synchronous motion, the deformation angle θ changed. To simplify
the measurement, both the housing and the output link (Figure 15b) are bolted with the
test frame (Figure 15c) Then the ρ and θ can be obtained after reduction ratio calculation
with the encoder value of the dual motors. The output torque can be measured through the
internal torque sensor between them.
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Figure 15. Physical prototype and experiment platform: (a) Bottom view of VSA; (b) Side view of
VSA; (c) The test platform.

According to the previous research results [35], the actual stiffness of the manufactured
torsion spring is 85 Nm/rad. To avoid overloading the stiffness adjustment module, a
matching design of the drive motors is carried out, combined with the load distribution
design result in Figure 12. The torque constant of motor M1 is 36.9 mN/A and that of motor
M2 is 25.1 mN/A. Considering 40% transfer efficiency, the rated driving torque that the
motor M1 can provide to the cam C1 is 6.12 Nm and the rated torque that M2 provides to
cam C2 is 6.06 Nm.

Physical prototype performance results. Using a method similar to the ADAMS
simulation, the ρ of the VSA is tuned to a certain value by cam differential movement,
such as ρ = 0.02 m, ρ = 0.026 m, ρ = 0.032 m, ρ = 0.038 m, ρ = 0.048 m. Then the cams
are synchronously driven, and the ρ will remain unchanged in the deformation progress,
i.e., the output stiffness remains constant. The force-deformation characteristics of the
prototype under different ρ values are shown in Figure 16.

In the direction of the arrow in Figure 16, the output stiffness is respectively 9.4 Nm/rad,
13.19 Nm/rad, 16.89 Nm/rad, 20.17 Nm/rad and 25.28 Nm/rad. For each ρ value, there
are two kinds of curves, the loop curve is the actual test result of the output torque, which
corresponds to the VSA loading loop; the other curve is the theoretical curve of the force-
deformation relationship, which is calibrated according to the force-deformation Equation
in (1). The two curves are highly convergent during loading and diverge during unloading.
This is mainly due to the elastic hysteresis during unloading, and the elastic hysteresis
amplitude is 0.5 Nm. The performance parameters of the prototype are shown in Table 2.
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Table 2. Performance of Physical prototype.

Performance (Unit) Value

Power (W) 60
Radial dimension (mm) 82
Axial dimension (mm) 127

Weight (kg) 2.5
Range of output angle (rad) −2π~2π

Stiffness adjustment range (Nm/rad) 2.51~26.23
Maximum output torque (Nm) 9.5

Deformability (rad/s) 0.38~1.785
Maximum stiffness adjustment time (s) 1.57

In the direction of the arrow, the value of ρ increases from 0.02 m to 0.048 m. Cor-
respondingly, the deformation is 0.593 rad, 0.523 rad, 0.457 rad and 0.471 rad and the
maximum output torque is 5.58 Nm, 6.91 Nm, 7.73 Nm, 8.42 Nm, 9.5 Nm. The changing
trend of the maximum output torque corresponds to the load distribution characteristics in
Figure 12. When the ρ value is close to 0.048 m, the load ratio is close to 0.82. According to
the load distribution Equation in (19), the theoretical maximum output torque is 11 Nm
when ρ = 0.048 m. The measured maximum output torque is 9.5 Nm. The two are relatively
close. The discrepancy between the test results and the theoretical results stems from the
fact that the adjustable stiffness module has reached the deformation capacity allowed by
its design. It shows that through the optimal design of the load distribution, the torque
output performance of the dual motors can be fully utilized, and the output torque of
the adjustable stiffness actuator can be enhanced. This verifies the correctness of the load
distribution from the aspect of output torque enhancement.

From the obtained results, we can conclude that the proposed VSA interacts with
the outside world through the spring and the contact stiffness can be changed from
2.51 Nm/rad to 26.23 Nm/rad. And the deformability verifies from 1.785~0.38 rad corre-
spondingly. This is similar to an artificial muscle, which can be made very soft (2.51 Nm/rad)
or very stiff (26.23 Nm/rad), with mechanically controllable flexibility. In a traditional
rigid motor, a small contact deformation behavior will generate a huge contact force, which
is likely to cause irreversible damage to the person or object in contact with it. However,
when VSA performs human-computer interaction, the contact force does not change signif-
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icantly with the slight change of contact deformation (for example, when the stiffness is
2.51 Nm/rad, the deformation angle changes by 0.1 rad, and the contact force changes only
by 0.25 Nm). Besides, it provides enough time for the actuator to respond safely. So, the
VSA can improve the safe performance in human-robot interaction.

5. Conclusions

The variable stiffness actuator (VSA) proposed in this paper mainly includes a variable
stiffness module and a cam-based actuation module based on two symmetrically arranged
cams. The two modules are connected by a common node. And the stiffness is changed
by the node’s radical distance adjustment. Moreover, the dual cams resolve the contact
force into two orthogonal directions, one for stiffness adjustment and another for position
balance. By cam reconfiguration, the VSA with different characteristics can be obtained.

A cam shape synthetic approach for VSA reconfiguration has been put forward. The
mathematical formulas are established among the VSA’s key performance indexes and
the key design parameter of the driven cam. It covers the following key factors with a
mathematical model for multi-objective optimization, including load distribution, stiffness
adjustment speed and accuracy. A bigger pressure angle is helpful to improve the stiffness
adjustment speed; a smaller one is better to obtain a favorable load distribution on the
dual motors for output power enhancement; the case between the above two can realize a
uniform stiffness adjustment accuracy. By reconfiguration of the cam pitch curve, the VSA
can be reconfigured depending on its functionality with the external interface unchanged.

Furtherly, the VSA prototype with a favorable load distribution is provided. The
design result was verified by the ADAMS simulation and physical prototype experiment
effectively. In the ADAMS, the simulation results are highly consistent with the theoretical
design results. In the fabricated prototype, the output torque enhancement result verifies
the correctness of the load distribution.

At the same time, the proposed new structure also brings challenging problems to
the control: the output of the dual motors is cross-coupled, and the load of one motor is
a major disturbance term of the dynamic model of the other motor. How to realize the
high-precision synchronous control of dual motors under the cross-coupling condition is
an important research direction in the future.
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