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Abstract: The HIV/AIDS epidemic is still active worldwide with no existing definitive cure. Based
on the WHO recommendations stated in 2014, a treatment, called Pre-Exposure Prophylaxis (PrEP),
has been used in the world, and more particularly in France since 2016, to prevent HIV infections. In
this paper, we propose a new compartmental epidemiological model with a limited protection time
offered by this new treatment. We describe the PrEP compartment with an age-structure hyperbolic
equation and introduce a differential equation on the parameter that governs the PrEP starting
process. This leads us to a nonlinear differential–difference system with discrete delay. After a local
stability analysis, we prove the global behavior of the system. Finally, we illustrate the solutions
with numerical simulations based on the data of the French Men who have Sex with Men (MSM)
population. We show that the choice of a logistic time dynamics combined with our Hill-function-like
model leads to a perfect data fit. These results enable us to forecast the evolution of the HIV epidemics
in France if the populations keep using PrEP.

Keywords: HIV; AIDS; PrEP; differential–difference system; discrete delay; France
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1. Introduction

Since its onset in the early 1980s and its clear identification in 1983, Human Immun-
odeficiency Virus (HIV) and then Acquired Immune Deficiency Syndrome (AIDS) have
still comprised one of the most deadly active worldwide epidemics. In the 2019 UN-
AIDS study, about 38 million persons lived with HIV, 1.7 million became infected, and
690,000 died of AIDS-related diseases (UNAIDS, Global HIV & AIDS statistics—2020 fact
sheet: https://www.unaids.org/en/resources/fact-sheet) (accessed on 13 September 2022),
becoming one of the most serious public health challenges.

It is well known now that this infection evolves in three stages: first a short acute
phase where flu-like symptoms appear, followed by a symptom-free chronic phase that
lasts between 10 and 15 years. It eventually ends up with AIDS when the virus has killed
enough TCD4, leading to the failure of the immune system (https://www.hiv.gov/hiv-ba
sics/overview/about-hiv-and-aids/symptoms-of-hiv) (accessed on 13 September 2022).

Note here that the latency stage appears as one of the crucial problems. Indeed,
the dormant period of the virus drastically delays HIV/AIDS diagnosis if not detected and
plays a major role in the epidemic’s spread (see Figure 1 in [1]).

Despite extensive investigations, there is still no existing therapy that helps the organ-
ism to fully get rid of the virus.
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However, since 1996, AntiRetroviral Therapy (ART), consisting of a combination of
three (or more) antiretroviral agents taken daily, has appeared to reduce significantly the
presence of the virus under a detectable threshold. Currently, not only efficient at avoiding the
fatality of the disease, ART allows also HIV-infected individuals stop spreading the disease.
In 2019, 25.4 million of them successfully accessed antiretroviral therapy, (UNAIDS, Global
HIV & AIDS statistics—2020 fact sheet: https://www.unaids.org/en/resources/fact-sheet
(accessed on 13 September 2022); World Health Organization (WHO)—HIV/AIDS: https:
//www.who.int/news-room/fact-sheets/detail/hiv-aids (accessed on 13 September 2022).

In the late 2010s, Pre-Exposure Prophylaxis (PrEP) was introduced as a new way of prevent-
ing HIV transmission. This successful treatment addresses HIV-free individuals showing a high
risk of becoming infected. PrEP consists of taking a combination of two antiretrovirals in two dif-
ferent protocols: either on a daily basis (continuous treatment) or on demand (discrete treatment),
which is just at least 2 h before and 2 days after sexual intercourse. Every 3 months, continuous
PrEP users need to have a global Sexually Transmitted Infections (STIs) screening in order to
obtain a prescription for another 3 months (World Health Organization (WHO)—HIV/AIDS:
https://www.who.int/news-room/fact-sheets/detail/hiv-aids; https://www.who.int/team
s/global-hiv-hepatitis-and-stis-programmes/hiv/prevention/pre-exposure-prophylaxis) (ac-
cessed on 13 September 2022). Theoretically, they can stop anytime, but they are practically
more likely to choose at the end of each quarter. We remind here that PrEP is preventive and
does not cure HIV. However, it effectively reduces HIV transmission (World Health Organi-
zation (WHO)—HIV/AIDS: https://www.who.int/news-room/fact-sheets/detail/hiv-aids)
(accessed on 13 September 2022).

Our objective here was to design a new model to mathematically forecast the influence
of PrEP users among high-risk profiles on the epidemic. The application of our study
focused only on the French population, where PrEP has been used since 2016, and is
currently followed by an average of 20,000 individuals [2].

In the past few decades, many epidemiological models have been used to describe
HIV’s dynamics. Some of them used the standard Susceptible (S)–Infected (I)–Infected
under ART (C) with low viral charge–Infected with AIDS symptoms (A) (SICA) model
(see [3] for instance), and for a good review, we suggest [4,5].

It has only been in the past few years that new models including a PrEP user compart-
ment appeared and started to receive our attention. A good example is the preliminary
work [6], where the authors suggested a vaccination approach, which could be seen as a
precursor to PrEP. Their numerical simulations showed that the epidemic spread could be
controlled thanks to vaccination, even if the basic reproduction number remains above 1.
In [7,8], an explicit PrEP compartment was included in the SICA model. The parameters
in [8] were adjusted with clinical data and PrEP’s effectiveness mathematically proven.
In [9], the authors divided the PrEP compartment according to the adherence of users to
the treatment. They showed that, with at least 70% of PrEP users in the male homosexual
population, the HIV epidemic could be effectively controlled. Finally, in [10], PrEP was
combined with screening and the result was compared to Portuguese data showing that
these two processes appeared necessary to control the HIV epidemic.

In our paper, we introduce a new approach with a Susceptible–Infected–Protected
(SIP) model. Inspired by [8,11], it includes an age structure on the PrEP (protected)
compartment, corresponding to the time spent after the onset of the new 3-month treatment
period. Once the term is reached, the user chooses either to keep taking PrEP or to stop
it, becoming susceptible again. On the other hand, individuals of the S compartment may
decide to start or resume this preventative process and, hence, reach the P population.

Our goal was to propose a more accurate model than that of [8] that still possible to
handle analytically by considering a more complex susceptible interaction F(t, S) depend-
ing both on time t (through a function ψ) and the total S population (through a function
f ), which can be seen as a political or economic decision made depending on the size of
the HIV-exposed population(see Section 2 for details). After standard modifications, we
prove in Section 2 that our new model can be written as a nonlinear differential–difference
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system with discrete delay. As presented below in Sections 3 and 4, the stability analysis is
then possible when the ψ term is constant. However, since it may take a while to convince
a population set to start PrEP, it appears natural to us that ψ may follow a logistic equation.
The model becomes then too challenging to be investigated in an analytical way, and thus,
numerical simulations take over this work in Section 5. Thanks to this new assumption,
we show eventually that it is possible to fit the data with realistic values. Before this, we
proceed to its well-posedness and stability study and investigate the constant and non-
constant joining PrEP rate subcases in Section 3 and 4. Then, we compare our theoretical
work to official clinical French data in order to understand the role of PrEP’s dynamics on
the HIV/AIDS epidemic in Section 5. With some numerical simulations, we observe that,
by choosing a logistic equation for the nonlinear joining PrEP rate and a Hill function for
the dynamics of f (S), we perfectly fit our data.

2. Introducing Our Model

In order to keep the model as simple as possible, we considered only three compart-
ments: Susceptible (S), individuals that may be infected by HIV; Infected (I) and Protected
(P), individuals on PrEP treatment (see Figure 1). The total population is

N(t) = S(t) + I(t) + P(t).

Figure 1. Schematic representation of the compartmental model (1). Continuous arrows represent
movements between compartments. Dashed ones represents the transmission of the infection.

To take into account the limited protection duration offered by PrEP, we structured the
compartment of protected individuals by age. Here, age a corresponds to the time since the
last test and the renewal of PrEP treatment. The maximum duration of the protection period
is generally three months, τ = 3 months. Therefore, a ∈ [0, τ]. If an individual decides to
renew the treatment, the age a is reset to zero. We denote by p(t, a) the population on PrEP
at time t who started their new treatment period a days ago. Thus, the total population of
PrEP users at time t is

P(t) =
∫ τ

0
p(t, a)da.

The model was designed taking into account the input and output rates of each
compartment with appropriate parameters (see Figure 1). At each time t, there is a constant
number of individuals (source term σ) who become susceptible by reaching the age of
sexual consent, becoming single again, or deciding to start new intercourse experiences.
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At the same time, some susceptible individuals become infected with HIV at a rate β.
A part,

F(t, S(t)) = ψ(t) f (S(t)),

of the susceptible individuals decide to start PrEP. The choice of functions f and ψ allows us
to consider many scenarios. The function f is an increasing function of the total population
of susceptible individuals with f (0) = 0. Examples could be

f (S) = Sn or f (S) =
Sn

1 + Sn , n ≥ 1.

The first choice is well adapted to rich countries or countries with a low number of
susceptible individuals (the proposed treatment, for example the case f (S) = S, n = 1, is
proportional to the total population of susceptible individuals). The second choice is better
adapted to poor countries or countries with a large number of susceptible individuals,
which, for budgetary reasons, cannot increase the treatment indefinitely. The fact that the
function ψ is time-dependent is dictated by the data we wish to use on PrEP, which began
in 2016 in France and continues to increase. For cost reasons, this PrEP prescription rate
will eventually reach a maximum threshold. A well-fitting example of function ψ is

ψ(t) = ψ0 +
κ1tm

tm + κ2
, m ≥ 1, κ1, κ2 > 0.

For the analytical study of the model, we assumed that this threshold has already been
reached and, therefore, considered

ψ ≡ K := ψ0 + κ1

to be a constant. We can also choose t 7→ ψ(t) as a solution of the logistic equation with K
as the carrying capacity. Finally, we supposed that the disease and treatment do not affect
mortality (death rate µ is consequently the same for all). The system satisfied by S and I is
then given, for all t > 0, by{

S′(t) = σ− βI(t)S(t)− µS(t)− K f (S(t)) + (1− θ)p(t, τ),
I′(t) = βI(t)S(t)− µI(t).

(1)

The density p satisfies, for t > 0, the following age-structured partial differential equation: ∂p
∂t

(t, a) +
∂p
∂a

(t, a) = −µp(t, a), 0 < a < τ,

p(t, 0) = K f (S(t)) + θp(t, τ).
(2)

We remind here that a ∈ [0, τ] is the time elapsed from the new period of time under
treatment. If an individual decides to renew the treatment, the age a is reset to zero. We
denote by p(t, a) the population under PrEP at time t who started their new treatment
period a days ago. The initial condition is given by

S(0) = S0, I(0) = I0 and p(0, a) = p0(a), 0 < a < τ.

The boundary condition
p(t, 0) = K f (S(t)) + θp(t, τ),

represents individuals who renewed their PrEP, θp(t, τ), or those who started it, K f (S(t)).
Using the characteristics method and the boundary condition from (2) (see [12]), we

obtain, for t > 0 and a ∈ [0, τ],

p(t, a) =
{

e−µa p(t− a, 0), t > a,
e−µt p(0, a− t) = e−µt p0(a− t), 0 ≤ t ≤ a.

(3)
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To write Equation (3) in a convenient form, we supposed that the initial condition p0 is
continuous on [0, τ] and satisfies the compatibility condition

p0(0) = K f (S0) + θp0(τ).

We put
ϕ(t) := e−µt p0(−t), −τ ≤ t ≤ 0,

and we define the function
u(t) := p(t, 0), t ≥ 0.

We then obtain from (3) the expression

p(t, τ) = e−µτ

{
u(t− τ), t > τ,

ϕ(t− τ), 0 ≤ t ≤ τ.

This means that we can extend the function u to the interval [−τ, 0], by putting u(t) = ϕ(t)
for t ∈ [−τ, 0]. Then, we have directly p(t, τ) = e−µτu(t− τ), for all t ≥ 0. Consequently,
using the boundary condition of the system (2), u satisfies the difference equation:

u(t) =
{

K f (S(t)) + θe−µτu(t− τ), t > 0,
ϕ(t), −τ ≤ t ≤ 0.

Furthermore, the total population P(t) can be explicitly expressed, for t ≥ 0, in terms of the
function u:

P(t) =
∫ τ

0
e−µau(t− a)da = e−µt

∫ t

t−τ
eµau(a)da.

Thus, we obtain the complete model, for t > 0,
S′(t) = σ− βI(t)S(t)− µS(t)− K f (S(t)) + (1− θ)e−µτu(t− τ),
I′(t) = βI(t)S(t)− µI(t),
u(t) = K f (S(t)) + θe−µτu(t− τ),

(4)

with the initial condition:

S(0) = S0, I(0) = I0 and u(t) = ϕ(t), t ∈ [−τ, 0]. (5)

Knowing that P(t) = e−µt
∫ t

t−τ
eµau(a)da, we obtain

P′(t) = −µP(t) + K f (S(t))− (1− θ)e−µτu(t− τ).

We then have
N′(t) = S′(t) + I′(t) + P′(t) = σ− µN(t).

We easily obtain

N(t) =
(

N0 −
σ

µ

)
e−µt +

σ

µ
→ σ

µ
, as t→ +∞. (6)

3. Mathematical Analysis

In this section, we discuss the well-posedness of the model, the steady-states, the basic
reproduction number, and the local asymptotic stability.

3.1. Well-Posedness of the Model

The problem (4) and (5) is a coupled system of nonlinear differential and difference
equations with discrete delay. We directly derive the following proposition about the
well-posedness of the model.
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Proposition 1. For any nonnegative initial condition (S0, I0, ϕ), where ϕ is a nonnegative contin-
uous function on [−τ, 0], there exists a unique nonnegative solution to Problem (4) and (5) defined
on [0,+∞). Moreover, this solution is uniformly bounded on [0,+∞).

Proof. We first solve the system (4) and (5) on the interval [0, τ]. In this case, since u is
completely defined, the Cauchy–Lipschitz theorem gives the existence and uniqueness of
the solution on [0, τ], and this solution is nonnegative. Then, we repeat this method on each
interval of type [kτ, (k + 1)τ] with k ∈ N. Thus, we obtain a unique nonnegative solution
on the interval [0,+∞). Furthermore, using (6) and the fact that S(t) + I(t) + u(t) ≤
S(t) + I(t) + P(t) = N(t), we deduce that (S, I, u) is uniformly bounded on [0,+∞).

3.2. Steady-States and Basic Reproduction Number

In this subsection, we compute the steady-states of the system and study their local
asymptotic stability. Let us consider a steady-state (S∗, I∗, u∗) of (4). We then have

0 = σ− βI∗S∗ − µS∗ − K f (S∗) + (1− θ)e−µτu∗,
0 = (βS∗ − µ)I∗,
u∗ = K f (S∗) + θe−µτu∗.

(7)

The third equation of the system (7) leads to

u∗ =
K f (S∗)

1− θe−µτ .

We remark that, as θ ∈ (0, 1), we always have 1− θe−µτ > 0.
Assume that I∗ = 0. Then, the first equation of (7) implies that S∗ satisfies the equation:

Φ(S∗) := S∗ +
K(1− e−µτ)

µ(1− θe−µτ)
f (S∗) =

σ

µ
. (8)

Since Φ is increasing, tends to infinity, and satisfies Φ(0) = 0, we obtain the existence of
a unique S∗ such that Φ(S∗) = σ/µ. We can therefore write S∗ = Φ−1(σ/µ). Thus, we
obtain the disease-free steady-state:

(S∗, I∗, u∗) =
(

Φ−1(σ/µ) , 0 ,
K f (Φ−1(σ/µ))

1− θe−τµ

)
. (9)

Now, suppose that S∗ = µ/β. We immediately obtain that

u∗ =
K f (µ/β)

1− θe−µτ .

We inject these two last expressions into the first equation of (7) to obtain

I∗ =
σ

µ
−Φ

(
µ

β

)
,

where the function Φ is given by the expression (8). Then, I∗ > 0 exists if and only if

Φ−1
(

σ

µ

)
>

µ

β
.

Let us define the basic reproduction number R0 as a threshold for the existence of the
endemic steady-state:

R0 :=
β

µ
Φ−1

(
σ

µ

)
.
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Hence, we obtain the existence of a unique endemic steady-state:

(S∗, I∗, u∗) =
(

µ

β
,

σ

µ
−Φ

(
µ

β

)
,

K f (µ/β)

1− θe−µτ

)
(10)

if and only if
R0 > 1.

We will need to know the variation of R0 as a function of τ ∈ [0,+∞). We have the
following lemma.

Lemma 1. The basic reproduction number τ ∈ [0,+∞) 7→ R0(τ) is a decreasing function
such that

R0(0) =
βσ

µ2 and R0(∞) =
β

µ
Φ−1

∞

(
σ

µ

)
,

with
Φ∞(S) := S +

K
µ

f (S).

Proof. Consider the dependence of the function Φ on τ by putting

Φ(S, τ) := S +
K(1− e−µτ)

µ(1− θe−µτ)
f (S).

We want to study the variation of τ 7→ R0(τ) =
β

µ
Φ−1

(
σ

µ
, τ

)
. Then, we set S(τ) :=

Φ−1(σ/µ, τ). In fact, we have Φ(S(τ), τ) = σ/µ. By differentiating, we deduce that

∂Φ
∂S

(S(τ), τ)
d

dτ
S(τ) +

∂Φ
∂τ

(S(τ), τ) = 0.

Thus, we obtain
d

dτ
R0(τ) =

β

µ

d
dτ

S(τ) = − β

µ

∂Φ
∂τ (S(τ), τ)
∂Φ
∂S (S(τ), τ)

< 0.

Then, the function τ 7→ R0(τ) is decreasing on [0,+∞). Furthermore, by taking τ = 0 and
τ → +∞ in the equality:

Φ(S, τ) := S(τ) +
K(1− e−µτ)

µ(1− θe−µτ)
f (S(τ)) =

σ

µ
,

we obtain that

R0(0) =
βσ

µ2 and R0(∞) =
β

µ
Φ−1

∞

(
σ

µ

)
,

with
Φ∞(S) := S +

K
µ

f (S).

We conclude from Lemma 1 that R0(∞) < R0(τ) < R0(0), for all τ ∈ (0,+∞),
and we immediately obtain the following result.

Proposition 2. Suppose that τ ≥ 0. Then, we have three cases:

• IfR0(0) < 1, then we haveR0(τ) < 1, for all τ ≥ 0.
• IfR0(∞) > 1, then we haveR0(τ) > 1, for all τ ≥ 0.
• If R0(0) > 1 and R0(∞) < 1, then there exists a unique τ̄ > 0 such that R0(τ) > 1 for

0 ≤ τ < τ̄ andR0(τ) < 1 for τ > τ̄, withR0(τ̄) = 1.
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We linearize System (4) around any equilibrium (S∗, I∗, u∗), and we obtain
S′(t) = −βI∗S(t)− βS∗ I(t)− µS(t)− K f ′(S∗)S(t) + (1− θ)e−µτu(t− τ),
I′(t) = βI∗S(t) + βS∗ I(t)− µI(t),
u(t) = K f ′(S∗)S(t) + θe−µτu(t− τ).

We look for solutions of the form S(t) = e−λtS0, I(t) = e−λt I0 and u(t) = e−λtu0, t > 0,
and λ ∈ C. Then, we obtain the following characteristic equation

∆(λ, τ) :=

∣∣∣∣∣∣
λ + βI∗ + µ + K f ′(S∗) βS∗ −(1− θ)e−µτe−λτ

−βI∗ λ− βS∗ + µ 0
−K f ′(S∗) 0 1− θe−µτe−λτ

∣∣∣∣∣∣ = 0.

We develop the determinant and obtain

∆(τ, λ) = (λ− βS∗ + µ)
[
(λ + µ)(1− θe−µτe−λτ) + K f ′(S∗)(1− e−µτe−λτ)

]
+(λ + µ)βI∗(1− θe−µτe−λτ),

= 0.

First, consider the disease-free equilibrium (9). Then, the characteristic equation becomes

[λ− µ(R0 − 1)]
[
(λ + µ)(1− θe−µτe−λτ) + K f ′

(
Φ−1(σ/µ)

)
(1− e−µτe−λτ)

]
= 0.

We have an immediate real eigenvalue

λ0 = µ(R0 − 1).

The other eigenvalues are solutions of the transcendental equation:

∆̄(λ) := P(λ)−Q(λ)e−λτ = 0, (11)

with

P(λ) := λ + µ + K f ′(Φ−1(σ/µ)) and Q(λ) := e−µτ [θλ + θµ + K f ′(Φ−1(σ/µ))].

We have the following properties:

Property 1.

(i) The equation (11) has no purely imaginary root.
(ii) All roots λn, n ∈ N, of (11) such that |λn| → +∞, have a negative real part for n large

enough:

Proof. (i) First, we seek for pure imaginary roots λ = ±iω, ω > 0, of (11). Splitting in (11)
the real and the imaginary part, we obtain{

γ cos(ωτ)e−µτ + θω sin(ωτ)e−µτ = µ + K f ′(Φ−1(σ/µ)),
−θω cos(ωτ)e−µτ + γ sin(ωτ)e−µτ = −ω,

where γ := θµ + K f ′(Φ−1(σ/µ)). Solving this system, we find that
cos(ωτ) =

1
(θ2ω2 + γ2)e−µτ

[
θω2 + γ(µ + K f ′(Φ−1(σ/µ))

]
,

sin(ωτ) =
1

(θ2ω2 + γ2)e−µτ

[
−ωγ + θω(µ + K f ′(Φ−1(σ/µ))

]
.

Using the trigonometric identity cos2(ωτ) + sin2(ωτ) = 1, we obtain that ω satisfies

(θ2ω2 + γ2)(e−µτ)2 = ω2 + (µ + K f ′(Φ−1(σ/µ)))2.
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Then, we obtain

ω2 =
(γe−µτ − (µ + K f ′(Φ−1(σ/µ))))((µ + K f ′(Φ−1(σ/µ))) + γe−µτ)

1− θ2e−2µτ
. (12)

Notice that 1− θ2e−2µτ > 0 and

γe−µτ − (µ + K f ′(Φ−1(σ/µ))) = [θµ + K f ′(Φ−1(σ/µ))]e−µτ − [µ + K f ′(Φ−1(σ/µ))] < 0.

Thus, the right-hand side of (12) is negative, which is absurd. We conclude that the
Equation (11) has no purely imaginary root.

(ii) As the function ∆̄ is entire, the set of its roots cannot have accumulation points.
Furthermore, ∆̄ has at most countably many zeros. If ∆̄ has infinitely many different zeros,
λn ∈ C, n ∈ N, then

lim
n→+∞

|λn| = +∞.

The sequence λn, n ∈ N, satisfies

eλnτ

(
P(λn)

λn

)
− Q(λn)

λn
= 0.

It is clear that

lim
n→∞

∣∣∣∣P(λn)

λn
− 1
∣∣∣∣ = 0 and lim

n→∞

∣∣∣∣Q(λn)

λn
− θe−µτ

∣∣∣∣ = 0.

Then, there is a sequence (λ′n)n∈N of roots of the equation

eλτ − θe−µτ = 0

such that
lim

n→∞
(λn − λ′n) = 0.

This means that the closed-forms of the roots λn are the complex numbers

λ̄p =
1
τ

ln(θ)− µ +
2pπ

τ
i, p ∈ Z.

Since θ ∈ (0, 1), we have that Re(λ̄p) < 0. Thus, all roots such that |λn| → +∞ have a
negative real part for n large enough.

We state the stability of the disease-free equilibrium (9):

Corollary 1.

(i) Suppose that there exists τ0 ≥ 0 such thatR0(τ0) > 1. Then, the disease-free equilibrium (9)
is unstable for τ = τ0.

(ii) Suppose that there exists τ1 ≥ 0 such thatR0(τ1) < 1 and the disease-free equilibrium (9) is
locally asymptotically stable for τ = τ1. Then, it is locally asymptotically stable for all τ ≥ τ1.

(iii) Suppose that R0(0) < 1. Then, the disease-free equilibrium (9) is locally asymptotically
stable for all τ ≥ 0.

Proof. (i) The real eigenvalue
λ0 = µ(R0(τ0)− 1)

is positive becauseR0(τ0) > 1. Then, the disease-free equilibrium (9) is unstable for τ = τ0.
(ii) Suppose that there exits τ1 ≥ 0 such thatR0(τ1) < 1 and the disease-free equilibrium (9)
is locally asymptotically stable for τ = τ1. As τ 7→ R0(τ) is decreasing, we haveR0(τ) < 1
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for all τ ≥ τ1. Then, the real eigenvalue λ0 is negative for all τ ≥ τ1. The other eigenvalues
given by

∆̄(τ, λ) := P(τ, λ)−Q(τ, λ)e−λτ = 0,

with

P(τ, λ) := λ + µ + K f ′(Φ−1(σ/µ)) and Q(τ, λ) := e−µτ [θλ + θµ + K f ′(Φ−1(σ/µ))],

which cannot cross the imaginary axis when we increase τ starting from τ1. The disease-
free equilibrium (9), thus, keeps the same stability as for τ = τ1, i.e., it remains locally
asymptotically stable for all τ ≤ τ1.

(iii) Let us consider the case τ = 0. Then, Equation (11) becomes

(λ + µ)(1− θ) = 0.

This means that λ = −µ < 0. Then, the disease-free equilibrium (9) is locally asymptotically
stable for τ = 0. We use the previous property, (ii), to conclude that the disease-free
equilibrium (9) is locally asymptotically stable for all τ ≥ 0.

One can prove this corollary directly by proving that Equation (11) has no root with a
nonnegative real part, and therefore, the stability of the endemic equilibrium is determined
by the sign ofR0 − 1. Indeed, let us suppose by contradiction the existence of such a root
λ = α + iω, with α ≥ 0. Then, we obtain

|P(α + iω)|
|Q(α + iω)| = e−ατ ≤ 1.

This gives the following inequality:

[P(α)−Q(α)][P(α) + Q(α)] +
(

1− e−2µτθ2
)

ω2 ≤ 0,

with
P(α)−Q(α) = (1− e−µτθ)(α + µ) + (1− e−µτ)K f ′(Φ−1(σ/µ)) > 0.

This leads to a contradiction.

Now, we focus on the endemic equilibrium (10):

(S∗, I∗, u∗) =
(

µ

β
,

σ

µ
−Φ

(
µ

β

)
,

K f (µ/β)

1− θe−µτ

)
.

Proposition 3. Suppose thatR0(0) > 1. Then, for all τ ≥ 0 such thatR0(τ) > 1, the endemic
steady-state is locally asymptotically stable.

Proof. We suppose thatR0(τ) > 1, and we consider the endemic equilibrium. The charac-
teristic equation becomes

∆(τ, λ) := λ2 + Aλ + µβI∗ − e−µτe−λτ
[
θλ2 + (θA + K f ′(S∗))λ + θµβI∗

]
= 0, (13)

with A := µ + βI∗ > 0. We follow the same steps as in the proof of the stability of the
disease-free equilibrium. First, we consider the case τ = 0. Then, the endemic steady-
state becomes

(S∗, I∗, u∗) =
(

µ

β
,

σ

µ
− µ

β
,

K f (µ/β)

1− θ

)
,

withR0(0) = βσ/µ2, and the characteristic equation is reduced to

∆(λ, τ) := (1− θ)

∣∣∣∣λ + βI∗ + µ βS∗

−βI∗ λ− βS∗ + µ

∣∣∣∣ = 0.
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We obtain two eigenvalues λ1 = −µ < 0 and λ2 = −µ− β(I∗ − S∗) = −µ(R0(0)− 1) < 0.
Hence, the endemic steady-state is locally asymptotically stable for τ = 0. We then look for
pure imaginary roots λ = ±iω, ω > 0. Then, splitting the real and imaginary parts in (13),
we have the following system:{

ωΓ cos(ωτ)e−µτ + ρω sin(ωτ)e−µτ = ω(A + ψ f ′(µ/β)),
ρω cos(ωτ)e−µτ −ωΓ sin(ωτ)e−µτ = ω2 − µβI∗,

with ρω := (ω2−µβI∗)θe−µτ and Γ = (θA+ψ f ′(µ/β))e−µτ . Using the identity cos2(ωτ)+
sin2(ωτ) = 1, we obtain the polynomial equation in ω:

[1− (θe−µτ)2]ω4 + [2µβI∗(θe−µτ)2 − 2µβI∗ + (A + ψ f ′(µ/β))2 − Γ2]ω2

+(µβI∗)2(1− (θe−µτ)2) = 0.

Let us set

N :=
1

1− (θe−µτ)2 [2µβI∗(θe−µτ)2 − 2µβI∗ + (A + ψ f ′(µ/β))2 − Γ2] and X := ω2.

Then, we obtain the following polynomial:

X2 + NX + (µβI∗)2 = 0. (14)

First, if N > 0, then the Routh–Hurwitz criterion implies that all roots of (14) have a
negative real part. This leads to a contradiction.

Suppose now that N ≤ 0. We compute the discriminant of Equation (14) to obtain

∆ = N2 − 4(µβI∗)2 = (N + 2µβI∗)(N − 2µβI∗).

As we supposed that N ≤ 0, we have that N − µβI∗ < 0. On the other hand, we have that

(1− (θe−µτ)2)(N + 2µβI∗) = (A + K f ′(µ/β))2 − Γ2.

But, as θ < 1 and e−µτ < 1, we obtain

Γ2 = [(θA + K f ′(µ/β))e−µτ ]2 < (A + K f ′(µ/β))2.

We conclude that ∆ < 0. Therefore, there is no positive real root of (14) and ω > 0 cannot
exist. Furthermore, as for the disease-free equilibrium, if ∆ has infinitely many different
zeros, λn ∈ C, n ∈ N, then

lim
n→+∞

|λn| = +∞.

The sequence λn, n ∈ N, satisfies

eλnτ

(
P(λn)

λ2
n

)
− Q(λn)

λ2
n

= 0,

with

P(λ) := λ2 + Aλ + µβI∗ and Q(λ) := e−µτ
[
θλ2 + (θA + K f ′(S∗))λ + θµβI∗

]
.

We have

lim
n→∞

∣∣∣∣P(λn)

λ2
n
− 1
∣∣∣∣ = 0 and lim

n→∞

∣∣∣∣Q(λn)

λ2
n
− θe−µτ

∣∣∣∣ = 0.
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Then, as for the case of the disease-free steady-state, the closed forms of the roots λn are

λ̄p =
1
τ

ln(θ)− µ +
2pπ

τ
i, p ∈ Z.

Thus, all roots such that |λn| → +∞ have a negative real part for n large enough. We
conclude that all roots of (13) have a negative real part, and then, the endemic equilibrium
is locally asymptotically stable.

Remark 1. As for the proof of Corollary 1, we can also prove directly by contradiction that there is
no root λ = α + iω of (13) with α ≥ 0.

4. Global Stability Analysis

We consider in this section the case:

f (S) = S.

The model becomes
S′(t) = σ− βI(t)S(t)− µS(t)− KS(t) + (1− θ)e−µτu(t− τ),
I′(t) = βI(t)S(t)− µI(t),
u(t) = KS(t) + θe−µτu(t− τ),

(15)

with the initial condition:

S(0) = S0, I(0) = I0 and u(t) = ϕ(t), t ∈ [−τ, 0].

The function Φ given by (8) becomes

Φ(S∗) =
[

1 +
K(1− e−µτ)

µ(1− θe−µτ)

]
S∗.

The corresponding disease-free equilibrium is

(S0, I0, u0) :=
(

σ(1− θe−µτ)

µ + K− (µθ + K)e−µτ , 0 ,
Kσ

µ + K− (µθ + K)e−µτ

)
, (16)

and the endemic steady-state is

(S∗, I∗, u∗) =
(

µ

β
,

σ

µ
−Φ

(
µ

β

)
,

Kµ

β(1− θe−µτ)

)
. (17)

The basic reproduction number becomes

R0 :=
β

µ
Φ−1

(
σ

µ

)
=

β

µ
S0 =

βσ(1− θe−µτ)

µ2(1− θe−µτ) + µK(1− e−µτ)
. (18)

A model similar to (15) was studied in [11] as a generalization of a Kermack–McKendrick
SIR model with an age-structured protection phase. We established the global asymptotic
stability of the two steady-states. We showed that ifR0 < 1, then the disease-free steady-
state is globally asymptotically stable, and if R0 > 1, then the endemic steady-state is
globally asymptotically stable. We constructed quadratic and logarithmic Lyapunov func-
tions to establish this global stability. In the following subsections, we also present results
on the global asymptotic stability of the two steady-states. We used similar techniques as
those used for the proofs of the global stability results in [11].
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4.1. Global Asymptotic Stability of the Disease-Free Steady-State

In this subsection, we assumed that R0 < 1, and we show that the disease-free
equilibrium (S0, I0, u0) is globally asymptotically stable. The proof is based on the use of
the following auxiliary differential–difference system, for t > 0: dS+

dt
(t) = σ− (µ + K)S+(t) + (1− θ)e−µτu+(t− τ),

u+(t) = KS+(t) + θe−µτu+(t− τ),
(19)

with the same initial condition as the main system:

S+(0) = S0 and u+(t) = ϕ(t), t ∈ [−τ, 0].

By using a comparison principle, we obtain that S(t) ≤ S+(t) and u(t) ≤ u+(t) for all t > 0.
Furthermore, the system (19) has a unique equilibrium that corresponds to the disease-free
equilibrium of the system (15). The basic reproduction number associated with (19) is also
given by (18). The global asymptotic stability of the auxiliary system (19) was established
in [11]. Indeed, by setting

Ŝ(t) := S+(t)− S0, û(t) := u+(t)− u0

and considering the Lyapunov function V : R× C([−τ, 0],R) −→ R+,

V(S0, ϕ) =
S2

0
2

+ ξ
∫ 0

−τ
ϕ2(s)ds, with ξ =

1
2K2

[
µ(1− θ2e−2µτ) + K

]
> 0,

we proved in [11] the following lemma.

Lemma 2. Suppose that R0 < 1. Then, the unique steady-state (S0, u0) of the system (19) is
globally asymptotically stable.

Thanks to a comparison principle and the global attractivity of the set:

Ωε := {(S, I, u) ∈ R+ ×R+ × C([−τ, 0],R+) :
0 ≤ S ≤ S0 + ε, 0 ≤ u(s) ≤ u0 + ε, s ∈ [−τ, 0]

}
,

for ε > 0 small enough, we are able to obtain the global asymptotic stability of the disease-
free equilibrium of (15). More precisely, the proof of the global asymptotic stability of the
disease-free steady-state (16) is based on the following lemma.

Lemma 3. Suppose that R0 < 1. Then, for any sufficiently small ε > 0, the subset Ωε of
R+ ×R+ × C([−τ, 0],R+) is a global attractor for the system (15).

Proof. The solutions of (15) satisfy, for all t > 0, the system:{
S′(t) ≤ σ− (µ + K)S(t) + (1− θ)e−µτu(t− τ),
u(t) = KS(t) + θe−µτu(t− τ).

By the comparison principle and the positivity of the solutions, we have 0 ≤ S(t) ≤ S+(t)
and 0 ≤ u(t) ≤ u+(t), for all t > 0, where (S+, u+) is the solution of the system (19).
Lemma 2 implies that (S+(t), u+(t))→ (S0, u0) as t→ +∞. This convergence means that
the subset Ωε, with ε > 0 small enough, is a global attractor for the system (15).

Lemma 3 allows us to restrict the analysis of the global stability of the disease-free
steady-state (16) of (15) to the subset Ωε with ε > 0 small enough.
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Theorem 1. Suppose thatR0 < 1. Then, the disease-free steady-state (S0, 0, u0) given by (16) of
the model (15) is globally asymptotically stable.

Proof. We consider the solutions of System (15) in the subset Ωε, with ε > 0 small enough.
It is clear that the second equation of (15) implies that

I′(t) ≤ β(S0 + ε)I(t)− µI(t) = −µ

(
1− β(S0 + ε)

µ

)
I(t).

Since R0 =
β

µ
S0 < 1, we can choose ε > 0 such that

β(S0 + ε)

µ
< 1. This implies that

limt→+∞ I(t) = 0. Then, there exists Tε > 0 such that 0 ≤ I(t) ≤ ε, for all t > Tε. We then
have, for t > Tε,{

S′(t) ≥ σ− (µ + K)S(t)− εβS(t) + (1− θ)e−µτu(t− τ),
u(t) = KS(t) + θe−µτu(t− τ).

We again use the comparison principle to obtain S(t) ≥ Sε(t) and u(t) ≥ uε(t), for all
t > Tε, where (Sε, uε) is the solution of the problem, for t > 0,

S′ε(t) = σ− (µ + K)Sε(t)− εβSε(t) + (1− θ)e−µτuε(t− τ),
uε(t) = KSε(t) + θe−µτuε(t− τ),
Sε(0) = S0, uε(s) = ϕ(s), for − τ ≤ s ≤ 0.

(20)

We use the same techniques as for the proof of the lemmas 2 and 3 to show that (Sε(t), uε(t))→
(S0

ε , u0
ε ) as t→ +∞, with (S0

ε , u0
ε ) the steady-state of System (20). In fact, (S0

ε , u0
ε ) is given by

the expression:

(S0
ε , u0

ε ) :=
(

σ(1− θe−µτ)

µε + K− (µεθ + K)e−µτ ,
Kσ

µε + K− (µεθ + K)e−µτ

)
,

with µε := µ + εβ. Then, there exists T̃ε > Tε > 0 such that, for t > T̃ε,

S0
ε − ε ≤ S(t) ≤ S0 + ε and u0

ε − ε ≤ u(t) ≤ u0 + ε.

As ε→ 0, we have S0
ε → S0 and u0

ε → u0. Then, we obtain

lim
t→+∞

S(t) = S0 and lim
t→+∞

u(t) = u0.

Recall that (S0, 0, u0) is locally asymptotically stable. Then, it is globally asymptotically
stable.

4.2. Global Asymptotic Stability of the Endemic Equilibrium

In this subsection, we assumed that

R0 > 1,

whereR0 is given by (18), and we studied the global asymptotic stability of the endemic
steady-state (17). Let us define

S̃(t) := S(t)− S∗ and ũ(t) := u(t)− u∗.

Then, the system (15) becomes, with βS∗ = µ,
S̃′(t) = −(µ + K)S̃(t)− βS̃(t)I(t)− βS∗ I(t) + βS∗ I∗ + (1− θ)e−µτ ũ(t− τ),
I′(t) = βS̃(t)I(t),
ũ(t) = KS̃(t) + θe−µτ ũ(t− τ).

(21)
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The endemic steady-state (17) of the system (15) becomes (0, I∗, 0) (as a steady-state of the
system (21)). We then obtain the following result.

Theorem 2. Let us suppose that R0 > 1. Then, the endemic steady-state (S∗, I∗, u∗) given by
(17) of the model (15) is globally asymptotically stable.

Proof. The proof of this theorem is based on the use of the following Lyapunov function
V : R×R+ × C([−τ, 0],R)→ R+ defined by

V(S0, I0, ϕ) =
S2

0
2

+ ξ
∫ 0

−τ
ϕ2(s)ds + S∗

[
I0 − I∗ − I∗ ln

(
I0

I∗

)]
,

with ξ =
1

2K2

[
K + µ(1− (θ2e−2µτ)

]
.

First, we note that the function G : (0 + ∞)→ [0 + ∞) defined by

G(I0) = I0 − I∗ − I∗ ln
(

I0

I∗

)
, I0 > 0,

satisfies G(I0) ≥ 0 for all I0 > 0 and G(I0) = 0 if and only if I0 = I∗. Then, we have
V(S0, I0, u0) = 0 if and only if (S0, I0, u0) = (0, I∗, 0). We set

Ṽ(t) := V(S̃(t), I(t), ũt), t ≥ 0,

where (S̃(t), I(t), ũt) is the solution of (21). Then, we obtain

Ṽ′(t) = −aS̃2(t) + bS̃(t)ũ(t− τ)− cũ2(t− τ)− βI(t)S̃2(t),

≤ b2 − 4ac
4c

S̃2(t),

= −κS̃2(t),

(22)

with 
a = µ + K− ξK2,
b = (1− θ)e−µτ + 2ξKθe−µτ > 0,
c = ξ(1− θe−µτ)(1 + θe−µτ) > 0,
κ = (4ac− b2)/4c > 0.

We conclude that the function t 7→ V(S̃(t), I(t), ũt) is nonincreasing. Then, we obtain

lim
t→+∞

V(S̃(t), I(t), ũt) = inf
s≥0

V(S̃(s), I(s), ũs) =: V∗ ≥ 0.

By integrating (22) from 0 to t > 0, we obtain

κ
∫ t

0
S̃2(s)ds ≤ V(S̃(0), I(0), ũ0)−V(S̃(t), I(t), ũt).

It is clear that the limits on both sides exist when t→ +∞, and we have

lim
t→+∞

∫ t

0
S̃2(s)ds ≤ 1

κ

[
V(S̃(0), I(0), ũ0)−V∗

]
. (23)

Furthermore, the first equation of System (21) implies that t 7→ S̃′(t) is uniformly bounded.
Then, the function t 7→ S̃(t) is uniformly continuous. We conclude from (23) that limt→+∞ S̃(t)
= 0, and the fluctuations lemma implies that there exists a sequence (tk)k∈N, tk → +∞
such that limk→+∞ S̃′(tk) = 0. On the other hand, using the difference equation satisfied



Mathematics 2022, 10, 4093 16 of 24

by ũ, we also have limt→+∞ ũ(t) = 0. Then, the first equation of System (21) implies that
limk→+∞ I(tk) = I∗. We also have from the expression of V that

lim
t→+∞

G(I(t)) =
V∗

S∗
.

Furthermore, the continuity of the function G implies that limk→+∞ G(I(tk)) = G(I∗) = 0.
Then, V∗ = 0. This means that limt→+∞ G(I(t)) = 0. The properties of the function G
imply that limt→+∞ I(t) = I∗. We conclude that the endemic steady-state (S∗, I∗, u∗) is
globally asymptotically stable.

We assumed, for the first time, that the rate of the start of PrEP treatment was constant
and that f (S) = S. Thus, the model admits two equilibrium points, the disease-free equilib-
rium and the endemic equilibrium. By consideringR0 as a function of the delay, we showed
that, if R0 < 1, the disease-free equilibrium is globally asymptotically stable and that, if
R0 > 1, then it is the endemic equilibrium that becomes globally asymptotically stable.

5. Applications to French Clinical Data

In order to apply our model to real data, we chose the French MSM population, and
later, we focused more specifically on the high-risk individuals within this group. We
define here the high-risk MSM population as multi-partner gay men, as well as sexual
intercourse while using drugs, usually called chemsex, or new generations not inclined
to use any protection anymore (mainly condoms). Of course, this reduces our study to a
small part of the population, but, because of their having the highest rate of infectivity, they
belong to the target of PrEP treatments at the infectious disease center in France.

Furthermore , for a more realistic approach, ψ was considered time-dependent, and ψ
is defined by the logistic equation for a more accurate data fit (details and parameters in
the first subsection below). The PrEP users were collected between January 2016 (starting
year of PrEP in France) and June 2019 (before the SARS-CoV-2 outbreak) (see [2]).

Section 5 is structured into three subsection: First, we introduce the data and the
methods to approximate the parameters. Then, we propose a set of simulations adapted
to the general French MSM population. The last subsection is focused on the so-called
high-risk individuals as described previously.

It is important at this stage to remind that HIV is not curable and that PrEP does not
have a direct influence on the decreasing number of the infected compartment over time,
which is mainly due to natural death (with a life expectancy for treated persons as high as
non-infected ones) or, more rarely now, thus neglected here for the French group, untreated
AIDS individuals. However, PrEP policy in the population may have an important impact
on the infectivity rate. Since PrEP’s efficiency can be measured in a long-term range and
using incidence, we simulated over 15 years (that is, 180 months) for a forecast of this
prevention strategy over time.

5.1. Choice of the Parameters

In Table 1, we give the parameters used in Model (1), as well as their meaning and val-
ues for the general and high-risk MSM community in France estimated from [2], assuming
that 60% of the the population considered in the dataset of the study are MSM.

PrEP treatment in France started in 2016, and since the SARS-CoV-2 epidemic drasti-
cally modified sexual habits (through successive lockdowns), we considered the population
data until 2019 only. Then, after, we simulated our model based on the estimated parameter
values for the following 15 years. Note here that we did not take the SARS-CoV-2 nor the
monkey pox epidemic into account for three reasons: first, because these periods are a bias
for our model and need to be carefully adjusted with updated parameter values; second,
to the best of our knowledge, the official French data related to these past two years have
not been released yet; finally, we preferred keeping our model as simple as possible for this
present work. A more complex approach will be the object of a future work.
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Table 1. Parameters used in Model (1) with values applied to the French population estimated
from [2].

Symbols Signification Value for
General MSM

Value for
High-Risk MSM Unity

θ Probability to keep the PrEP treatment 0.83 0.83
σ Recruitment 3000 562 indiv.months−1

µ Removal rate from the compartments 0.000758333 0.0076 indiv.months−1

β HIV transmission rate per infected individual 1.821× 10−10 2.85× 10−7 (indiv.months)−1

τ Duration of the period of PrEP taking 3 3 months

In [2], information between 2016 and 2019 was collected every 6 months. We remind
here that, at the end of a 3-month period, the patient decides whether to give up the
treatment or to continue. This is the reason why our simulations below were computed on
a monthly basis.

Initial conditions for functions t 7→ S(t), t 7→ I(t) and t 7→ u(t) were chosen to be
January, the 1st of 2016, according to [2].

Because of the delay equation for u, the function uinit : [−3, 0]→ R+, t 7→ uinit(t) was
adjusted with a cubic spline interpolation of 60% of each total number of the last column in
Table 2. Note that uinit is the same for both populations’ (general MSM and its high-risk
subset) simulations because we assumed here that most of the French PrEP users belong to
the high-risk MSM group.

Regarding the susceptible: based on an AVAC study (https://www.avac.org/sites
/default/files/u3/MSM_in_Europe_Euro_Rave.pdf, page 5) (accessed on 13 September
2022), 4–10% of French males declare belonging to the MSM group. Assuming that France
has about 65,000,000 inhabitants, it seems then reasonable to assume that S(0) = 2,600,000.

Furthermore, on the official website of UNAIDS (https://www.unaids.org/en/region
scountries/countries/france) (accessed on 13 September 2022), we obtained that 170,000
individuals were infected with HIV in France in 2016. We assumed that a majority be-
long to the MSM group, but not the entire number (indeed, a large portion of new cases
was reported to be foreign heterosexuals, among other subcases). This is why we took
I(0) = 90,000. It is important to remind here that this value may not be the exact one, since
the number of HIV infections detected is always below the real number of HIV infections
(HIV testing is not compulsory, and thus, several individuals may carry the virus for years
without knowing it).

Table 2. Summary of initial conditions for susceptibles and infected among general MSM and MSM
high-risk populations.

Initial Conditions Value for MSM Value for High-Risk MSM

S(0) 2,600,000 40,000
I(0) 90,000 9000

Finally, when simulating the MSM high-risk population, the estimated susceptible
number would be between 3000 and 50,000 depending on the literature. Thus, we took
S(0) = 40,000 according to [2]. According to French data (https://vih.org/20190328/stabili
te-des-chiffres-du-vih-en-france/) (accessed on 13 September 2022), French infections have
been stable since 2010. On average, there are 6500 contaminations per year, and infections
within the MSM population represent 43%. Then, we chose I(0) = 9000.

According to the official French data (https://www.insee.fr/fr/statistiques/2383440)
(accessed on 13 September 2022), µ = 0.000758333 individuals.months−1 at the coun-
try scale. We chose this value for the French MSM removal rate (death, as well as
removed from sexual life). For the high-risk MSM, µ is considered much larger be-

https://www.avac.org/sites/default/files/u3/MSM_in_Europe_Euro_Rave.pdf
https://www.avac.org/sites/default/files/u3/MSM_in_Europe_Euro_Rave.pdf
https://www.unaids.org/en/  regionscountries/countries/france
https://www.unaids.org/en/  regionscountries/countries/france
https://vih.org/20190328/stabilite-des-chiffres-du-vih-en-france/
https://vih.org/20190328/stabilite-des-chiffres-du-vih-en-france/
 https://www.insee.fr/fr/statistiques/2383440
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cause a high-risk sexual life style does not last longer than the average MSM one. Thus,
µ = 0.0076 individuals.months−1 in this subgroup.

The 2016–2019 semester official French datasets are given in Table 3.

Table 3. Total number of PrEP users in France since 2016, given by semester (see Table 3 in [2] ).

Semester Initiation of PrEP Renewal of the
Treatment Total PrEP Users

S1—2016 1166 ### 1166
S2—2016 1826 911 2737
S1—2017 2193 2273 4466
S2—2017 2564 3807 6371
S1—2018 3138 5413 8551
S2—2018 4488 7647 12,135
S1—2019 5103 10,398 15,501

Thanks to Tables 2 and 3, we are able to assess the values of functions θ and ψ for
the years 2016–2019. Indeed, for each semester, we obtained a different θ by using the
following formula coming from its definition:

θ(semester) =
Number of renewal treatment of the current semester

Total of PrEP users of the previous semester
.

We assumed that this value is the same for every month of the semester. Then, we chose ψ,
per month, as follows:

ψ(months) =
Number of individuals who begin the treatment

S(0) ∗ 6
,

where S(0) is the initial condition for the susceptible compartment S.
These values are given in Table 4.

Table 4. Values of parameters ψ and θ per month according to each semester, computed according to
Tables 2 and 3.

Semester Values of ψ for
General MSM

Values of ψfor
High-Risk MSMS Values of θ

S1—2016 0.0000747 0.0048583 ###
S2—2016 0.000117 0.007608 0.7813
S1—2017 0.00014 0.00913 0.8305
S2—2017 0.000164 0.0106 0.8159
S1—2018 0.000201 0.0130 0.8496
S2—2018 0.00029 0.0187 0.8943
S1—2019 0.00033 0.0216 0.8569

We selected θ = 0.83 as the average value of all the previous θ from Table 4.
As mentioned in Section 2, we assumed that ψ is the solution of a logistic equation

given by:
dψ

dt
= rψ

(
1− ψ

K

)
,

where K is the carrying capacity and r exponential growth. We remind that the explicit
form of ψ is then written by the following expression:

ψ(t) =
K

1 +
(

K
ψ0
− 1
)

exp(−rt)
,
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where ψ0 is the initial condition depending on the population type. Using the data for ψ
given in Table 4, we summarize our results in Table 5.

Table 5. Values of parameters K and r depending on the population.

Parameters Values for General MSM Values for High-Risk MSM

K 0.0007 0.072
r 0.0000222 0.000026

We assumed a Hill function for the dynamics of the function f :

f (S) = Ssat
Sn

γn + Sn ,

with Ssat the saturation of the Hill function, γ the abscissa of the inflection point, and n the
intensity of the slope. We summarize the values of these parameters in Table 6.

Table 6. Values of parameters Ssat, γ, and n depending on the general French MSM and the high-risk
French MSM.

Parameters Values for MSM Values for High-Risk MSM

Ssat 5× 106 230,000
γ 120 50
n 2 1.56

One of our goals was to estimate the HIV epidemicR0 for French MSM. We used the
package in the R® language untitled R0 (https://www.rdocumentation.org/packages/R0
/versions/1.2-6) (accessed on 13 September 2022) and, precisely, the function est.R0.SB,
which estimatesR0 using a Bayesian approach following the idea developed in [13]. Thanks
to our data of new HIV infections ([14,15]), we obtained R0 = 0.93 for the normal MSM
French population.

The two remaining parameters, β and σ, were estimated to keepR0 equal to 0.93. We
decided to choose σ = 3000; in other words, each month, 3000 individuals might join the
susceptible compartment (by reaching the sexual consent age or deciding to join the MSM
group). Thus, β = 1.821× 10−10(individuals.months)−1 was estimated for the French
general MSM group.

On the other hand, according to the official French data (https://solidarites-sante.go
uv.fr/IMG/pdf/argumentaire_depistage_vih_HAS_2009-2.pdf) (accessed on 13 September
2022), the basic reproduction number related to the high-risk MSM ranges between 1.27
to 1.44. We took R0 = 1.31 and estimated β = 2.85× 10−7(individuals.months)−1, with
µ = 0.0076 months−1 and σ = 562 given by Table 1.

5.2. Numerical Simulations for the General French MSM

In Figure 2, protected (P) in green (graph on the right) keeps track of the exact data
(crosses) for the first semesters, then reaches a threshold due to the French policy of
regulating PrEP users. Indeed, the treatment is fully taken care of by the health insurance
in France. Thus, a threshold needs to be set up (estimated at 60,000 MSM individuals here).
With this threshold, it seems already that, within 15 years, the number of infected drops
and keeps on decreasing. The number of susceptibles (blue curve on the left of the graph)
keeps on growing with a lower slope between 50 and 100 months due to the increase of
the protected and then the threshold. However, even with the increase of the susceptibles,
the infected remain low. The protected compartment plays the role of a reservoir to prevent
the HIV epidemic from growing back.

https://www.rdocumentation.org/packages/R0/versions/1.2-6
https://www.rdocumentation.org/packages/R0/versions/1.2-6
https://solidarites-sante.gouv.fr/IMG/pdf/argumentaire_depistage_vih_HAS_2009-2.pdf
https://solidarites-sante.gouv.fr/IMG/pdf/argumentaire_depistage_vih_HAS_2009-2.pdf
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Figure 2. Plot of the evolution of the French MSM population (4) along the time (over 15 years).
The crosses in the last plot represent the real values of PrEP users taken from Table 3. Function ψ

verifies the logistic equation, and f is a Hill function.

Just as a comparison point, we simulated our model with a function f defined as
identity (and not a Hill function anymore) (see Figure 3). We easily observed that the graph
of the protected population does not fit the data in the first months with the same realistic
parameter sets. Then, it seems that f needs to be more complex than identity for the case of
French MSM, and the Hill function seems to be validated here.

In Figure 4, we plot the incidence with or without PrEP treatment. It seems obvious
that without the PrEP reservoir (in blue), the incidence keeps on growing with no chance
for the HIV epidemic to be controlled. On the other hand, with the PrEP compartment (in
red), it is possible to keep the incidence at a low level (and even to decrease it significantly
for the first years). The slight increase at the end (after Month 125) is due to the threshold
of the number of PrEP users imposed in our model and likely used by the French health
insurance policy.

Figure 3. Plot of the evolution of the different compartments of the model (4) along time (over
15 years). The crosses in the last plot represent the real values of PrEP users taken from Table 3.
ψ verifies the logistic equation, and f is identity.

Figure 4. Plot of the evolution of the incidence with PrEP (in red) and without (in blue) from the
system (4) over 15 years among the general French MSM.
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In Figure 5, we depict the effect of the variation of R0 as a function of ψ. It appears
clearly here that, as ψ increases (that is, the number of PrEP users rises), R0 declines
drastically. This is, however, not linear, and a plateau may be reached after a certain
threshold (above 0.2), which indicates that the flow of new PrEP users does not need to
expand drastically. Indeed, even at ψ larger than 0.125, we obtain R0 already below 0.3,
which is quite satisfactory. Augmenting ψ would decreaseR0, but not as fast as the first
values of ψ.

Figure 5. Plot of theR0 as a function of ψ.

5.3. Numerical Simulations for High-Risk Population

In this subsection, we focus our attention to the French MSM high-risk population.
We remind that this MSM subgroup consists of individuals with multi-partner intercourse,
sex relationships while using drugs (chemsex), etc. The HIV risk of infection is thus much
higher than the rest of the MSM population. This is one of the reasons why this subgroup
is the PrEP treatment target for the French health insurance. The protected compartment
in this particular case plays a major role as a reservoir. This was clearly confirmed in our
model simulations, as shown in Figure 6, where the number of susceptibles clearly drops as
the number of protected individuals increases. Note that the infected population rises, but
for the first time, reaches a threshold. This means that barely any new infected cases appear.
We remind here that the model is an SI and not an SIR, that is no recovered individuals
can appear since HIV is a disease with a lifetime treatment.

Figure 6. Plot of the evolution of the different compartments of the high-risk french population along
time (over 15 years). The crosses in the last plot represent the real values of the number of PrEP users
obtained from Table 4. ψ verifies the logistic equation, and f is a Hill function.

In Figure 7, the incidence evolution is plotted with or without PrEP treatment. The reser-
voir effect is even more explicit there in the sense that, with PrEP, the incidence declines to
reach a low plateau, while without, it keeps on growing indefinitely.

Finally, as mentioned before, for the MSM high-risk population, the R0 in France
is higher than 1. Figure 8 reveals that, as the number ψ of new PrEP users increases, R0
not only decreases below one, but also keeps on falling off. Here, the critical value of
ψ, which keeps R0 below one, is ψcritical = 0.113 person.months−1. According to our
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data, ψ = 0.071 person.months−1, as we assume the maximum threshold has been reached.
The decay appears, however with a smaller slope, which means, as in the previous subsec-
tion, that, after a certain threshold (0.2 here), very large values of ψ do not influence the
reduction ofR0 much.

Figure 7. Plot of the evolution of the incidence with and without PrEP (4) over 15 years among French
high-risk MSM.

This reservoir effect is so important that, if for any reason, there is the decision to
stop PrEP treatment for this MSM group, the rise in new infected individuals would be
inevitable, as shown in Figure 9.

Figure 8. Plot of theR0 as a function of ψ.

Figure 9. Plot of the susceptibles and infected if PrEP were stopped in 15 years. We considered that
all the protected individuals become susceptibles again.

6. Conclusions and Discussion

The aim of this work was to propose a brand-new model for prescribing PrEP for
3 months, with the choice to continue treatment or to stop it at any time after this period.
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This choice changes many things in the new modeling approach by introducing difference
equations with delay and, thus, the possibility of describing the effect of inertia and the
reservoir of protected individuals, not only analytically, but also numerically. This approach
could also be generalized to other epidemiological models describing the effect of vaccine
or booster doses for improved efficacy of protection.

Furthermore, the double insights of the MSM general and high-risk populations
seemed very important to us, especially to depict the effect of PrEP treatment on the disease
incidence of the disease and the French health insurance policy to target the high-risk
subgroup. With our model and simulations, it appeared that these strategies are much
more effective than random targeting of any MSM individual.

Our future work, in production, will take into account that the exponential growth of
susceptibles is not realistic for a longer period of time, so it would be better to model it as a
logistic growth and then numerically simulated on a longer period of time.

The data we worked on were from 2016 to 2019. It would be interesting to analyze
the effect of the SARS-CoV-2 lockdown effect on the incidence and PrEP users. It would
also be informative to analyze the booster effect of the non lockdown period (mid-2021
and after). For this purpose, it is necessary to wait a few more years to collect a sufficient
amount of data.

A future model should also consider θ time dependent. Indeed, depending on certain
periods (a lockdown, for example, or a seasonal effect), the number of PrEP users willing
to take the treatment at the end of their 3-month prescription may vary over time. Some
users may also take it for a short period of time (e.g., 2 years on average) and discontinue
treatment after choosing a long-term closed relationship.

The addition of a compartment of the infected population under tritherapy should also
be more realistic. Indeed, with tritherapy, HIV individuals can no longer be infectious and
can be removed from the I compartment. The estimate of β would then be more accurate
and reflect a more realistic situation.

Finally, it would be interesting to add the cost of treatment and the cost-efficient
strategy with the threshold of PrEP users in the compartment for optimal disease control
and, eventually, its disappearance. For this purpose, our next goal is to compare data and
policies across multiple countries (some with full financial support for treatment, some
with partial support, and some with no support).
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