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Abstract: The resource network is a non-linear threshold model where vertices exchange resource
in infinite discrete time. The model is represented by a directed weighted graph. At each time
step, all vertices send their resources along all output edges following one of two rules. For each
vertex, the threshold value for changing the operation rule is equal to the total weight of its outgoing
edges. If all vertices have resources less than their thresholds, the network is completely described
by a homogeneous Markov chain. If at least one of the vertices has a resource above the threshold,
the network is described by a non-homogeneous Markov chain. The purpose of this article is to
describe and investigate non-homogeneous Markov chains generated by the resource network model.
It is proven that they are strongly ergodic. In addition, stochastic matrices of a special form were
studied. A number of new properties were revealed for them. The results obtained were generalized
to arbitrary stochastic matrices.

Keywords: graph dynamic model; stochastic matrix; resource network; network dynamics; threshold
resource propagation; Markov chain; non-homogeneous Markov chain
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1. Introduction

Many problems from different subject areas are formulated and solved using network
models. The study of various dynamic processes in networks, both stochastic and deter-
ministic, often requires the tools of homogeneous and non-homogeneous Markov chains,
as well as operating with stochastic matrices. This article is devoted to the investigation of
the resource network model with a special kind of graph topology. The problem of studying
resource networks belongs to the intersection of several classes of diffusion models. The
first one contains various random walk models [1]. This is a large field comprising random
walks on lattices [2], on finite connected undirected graphs [3], random walks with local
biases [4], etc. In [5], the problems of optimizing flows and finding the shortest paths were
solved using an analysis of the large-deviation functions of random walks. Non-linear
diffusion was considered in [6]. The non-linearity is of our particular interest because the
model presented in this article is also, in general, non-linear. This feature is achieved by
threshold switching between the operation rules of vertices. Some vertex, under certain
conditions, switches to a non-linear rule and starts functioning similarly to the vertices in
the chip-firing game model. This model was proposed quite a long time ago [7]; however,
it had not lost its relevance at the present time [8–10]. The chip-firing game is often used to
describe the sand pile or avalanche model [11] and the similar processes of self-organized
criticality [12–16].

In addition to describing physical diffusion processes in networks, similar models
appear when simulating information processes, in particular the dynamics of opinions
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and reaching a consensus in multi-agent systems. At the present time, the classic DeGroot
model [17] has many different modifications [18–21]. Homogeneous and non-homogeneous
Markov chains are one of the main tools for describing multi-state systems, processes, and
devices [22,23].

Studying such models, researchers are faced with the need to investigate some non-
trivial properties of stochastic matrices [24–26]. In this paper, we study a resource network
model of a special topology based on a non-ergodic graph. Some of its properties are also
proven using stochastic matrices of a special form.

The resource network model is a non-linear diffusion model, where the vertices of
a directed weighted graph distribute some dimensionless infinitely divisible resource
according two rules depending on the resource amount at every time step. The time in
the model is discrete; all vertices operate in parallel. The weights of the edges denote their
throughput abilities. The vertices can store an unlimited amount of resource. If, at time
t, the resource amount in a vertex exceeds the total throughput of its outgoing arcs, this
vertex sends the full throughput to each arc; otherwise, it gives out all its resource, dividing
it in proportion to the throughput of the arcs. Non-linearity occurs in the model when the
total resource exceeds the threshold value, which is why different vertices of the network
begin to function according to different rules.

The resource network was first proposed in [27]. Since that time, the theory of resource
networks has arisen, and a brief description can be found in [28]. This article also describes
two two-threshold modifications of the standard model. Some other models based on the
standard resource network were developed by other research teams [29,30].

2. Preliminaries
2.1. Resource Network: Basic Definitions

The resource network is a non-linear flow model operating in discrete time. Vertices
of a network synchronously redistribute some infinitely divisible resource. At each time
step, every vertex sends the resource to all its neighbors according to one of two rules
with threshold switching. The choice of the rule depends on the amount of the resource
in the vertex. If the resource at the vertex is greater than the total throughput of its
outgoing edges, it sends the full throughput to each edge; otherwise, the vertex gives
away the entire resource, distributing it in proportion to the throughput of outgoing edges.
A formal description of the operation rules is presented in Section 2.2. Vertices have
unlimited capacities.

The structure of the network is given by a directed weighted graph G = (V, E). The
edges eij = (vi, vj) ∈ E have time-constant non-negative weights rij that determine the
throughputs of the corresponding edges.

Matrix R = (rij)n×n is the throughput matrix, rij ∈ R+. If edge eij exists, then rij > 0,
otherwise rij = 0.

The dynamic properties of the network are determined by the rules of resource redis-
tribution, as well as the amount of the total resource and its distribution over the vertices.

Definition 1. Resources qi(t) are nonnegative numbers assigned to vertices vi, i = 1, n, and
changing in discrete time t. The state Q(t) of a network at time step t is a vector of resource values
at each vertex:

Q(t) = (q1(t), . . ., qn(t)).

Let W be the total resource in a network. The network operation fulfills the conservation
law: the resource neither flows in nor flows out:

∀t
n

∑
i=1

qi(t) = W.

Definition 2. The flow fij(t) is the resource leaving vertex vi along the edge eij at time t.
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F(t) = ( fij(t))n×n is a flow matrix at time t (between t and t + 1). Since the through-
puts of the edges are limited, ∀t fij(t) ≤ rij. Unlike the total resource, the total flow in the
network is always limited by the throughputs of the edges.

2.2. Rules of Resource Distribution

First, we introduce two characteristics of the network vertices.

Definition 3. The values:

rin
i =

n

∑
j=1

rji and rout
i =

n

∑
j=1

rij

are the total in- and out-throughputs of vertex vi, respectively. A loop’s throughput, if it exists,
is included in both sums.

At time step t, vertex vi sends to adjacent vertex vj through edge eij a resource amount
fij(t) equal to:

fij(t) =

{
rij, if qi(t) > rout

i (rule 1);
rij

rout
i

qi(t), if qi(t) ≤ rout
i (rule 2).

(1)

In other words, if the resource amount of a vertex exceeds the total throughput of
outgoing edges, then it operates according to Rule 1. In this case, the flow in each edge is
equal to its throughput: fij(t) = rij; in total, the vertex sends out its total output throughput:

n

∑
j=1

fij(t) =
n

∑
j=1

rij = rout
i .

If a vertex has an insufficient amount of resource, then, in accordance with Rule 2,
it gives out its entire resource, distributing it to all outgoing edges in proportion to their
throughputs. Then,

n

∑
j=1

fij(t) = qi(t).

In accordance with Definition 3, we introduce similar concepts for the total input and
output flows:

f out
i (t) =

n

∑
j=1

fij(t);

f in
i (t + 1) =

n

∑
j=1

f ji(t); ( f in
i (0) = 0).

It follows from Formula (1) that the output flow of vertex vi at time t is

f out
i (t) = min{qi(t), rout

i }. (2)

Remark 1. Note that, if qi(t) = rout
i , then applying both rules will lead to the same result:

f out
i (t) = rout

i . This property is used in Section 3.

The input and output flows of all vertices form the corresponding vectors:

Fout(t) = ( f out
1 (t), . . ., f out

n (t)), Fin(t) = ( f in
1 (t), . . ., f in

n (t)).

The operation of an arbitrary network with n vertices is specified only by its initial
state Q(0) = (q1(0), . . ., qn(0)) and is given by the formula:

Q(t + 1) = Q(t)− Fout(t) + Fin(t + 1). (3)
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Definition 4. Vector Q∗ = (q∗1 , . . ., q∗n), where

lim
t→∞

qi(t) = q∗i , i = 1, n,

(if it exists) is called a limit state of the network.

If the limit state exists, it can be reached in finite time or asymptotically; it depends on
the network topology and the initial resource distribution. The limit state is always steady.
This means that, if Q(t) = Q∗, then Q(t) = Q(t + 1) = . . .

If the state of a network Q∗ is steady, then the flow is also steady.
F∗ = ( f ∗ij)n×n is a limit flow matrix.
It was proven in [28] that the limit state exists for all topologies of resource networks,

excluding cyclic networks (networks in which the GCD of the lengths of all cycles is greater
than 1).

Let us consider some properties of resource networks in more detail.

2.3. Basic Properties of Resource Networks

Here, we briefly summarize the results from [28] used in the current research.
We considered resource networks represented by strongly connected graphs with

GCD of lengths of all cycles equal to 1.
A random walk on such a graph is described by a regular Markov chain. A regular

Markov chain is one that has no transient sets and has a single ergodic set with only one
cyclic class [31].

Resource networks based on such graphs are also called regular.

Definition 5. A resource network is called non-symmetric if it contains at least one vertex vi for
which rout

i 6= rin
i .

In fact, of course, in a connected non-symmetric network, there is at least a pair of
vertices vi, vj that meet this condition. Moreover, they satisfy the inequalities of different
signs: rout

i > rin
i , rout

j < rin
j , or vice versa.

In this section, we consider regular non-symmetric networks.
Let the total network resource W be so small that all vertices at each time step operate

according to Rule 2. In this case, at every time step, each vertex gives out the entire
resource (see Equation (1)). Then, the vertex resource consists only of the incoming flow,
and Equation (3) can be reduced to the formula:

Q(t + 1) = Fin(t + 1). (4)

Combining Formulas (1) (for Rule 2) and (4), we obtain

qj(t + 1) =
n

∑
i=1

rij

rout
i

qi(t).

Thus, in matrix form, the network operation is described by the formula:

Q(t + 1) = Q(t)R′, (5)

where R′ is a stochastic matrix corresponding to the throughput matrix R:

R′ =


r11
rout

1
. . . r1n

rout
1

. . . . . . . . .
rn1
rout

n
. . . rnn

rout
n

, (6)

or R′ = D−1R, where D = diag(rout
1 , . . ., rout

n ).
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Let matrix R be such that, for any allocation of the total resource W = 1, the whole
network operates according to Rule 2 (e.g., a sufficient condition for this is the fulfillment
of the inequality rij ≥ 1 for all nonzero elements of matrix R).

Denote the vectors of the state at time step t and of the limit state for W = 1 as Q1(t)
and Q1∗, respectively.

In this case, the vector Q1(0) can be considered as a vector of the initial probability
distribution. The network operation is described by Formula (5):

Q1(t + 1) = Q1(t)R′.

Hence, the resource distribution process is described by a regular homogeneous
Markov chain. Therefore, all the results valid for regular homogeneous Markov chains [31]
and stochastic matrices [31,32] can be transferred to the resource network with W = 1:

Proposition 1. Let a regular network be given by matrix R and R′ be the corresponding stochastic
matrix obtained by Formula (6), then:

1. The limit of the degrees of matrix R′ exists:

lim
t→∞

(R′)t = R′∗;

2. The limit state Q1∗ exists and is unique for any initial state.
For an arbitrary state Q1(t), the equality holds:

Q1(t)R′∗ = Q1∗;

3. The limit matrix R′∗ consists of n identical rows equal to vector Q1∗:

R′∗ = 1 ·Q1∗,

where 1 = (1, . . ., 1)T.
4. Vector Q1∗ is a unique left eigenvector of matrices R′ and R′∗ corresponding to eigenvalue

λ = 1:
Q1∗R′ = Q1∗; Q1∗R′∗ = Q1∗.

Corollary 1. The limit flow exists and is unique for any initial state: Fin1∗ = (Fout1∗)T =
Q1∗; fsum∗ = 1.

Proposition 2. Regular resource networks have a global characteristic: the threshold value of the
total resource W = T:

• If W < T, there exists a finite time t′ such that, for t > t′, all vertices will operate according
to Rule 2;

• If W = T, all vertices will operate according to Rule 2—in finite time or asymptotically,
depending on the initial resource allocation;

• If W > T, there exists a finite time t′′ such that, for t > t′′, at least one vertex will operate
according to Rule 1.

The resource W ≤ T is called small; the resource W > T is called large.

Proposition 3. In a regular resource network, the threshold value T is unique and expressed by the
formula:

T = min
i=1, n

rout
i

q1∗
i

. (7)

Corollary 2. If W < T, then, since some time step t′, all the vertices give out their resource
according to Rule 2, and all of the above results obtained for W = 1 will also be correct.
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The limit state and flow vectors are unique for any initial state and can be found by the
formulae:

Q∗ = W ·Q1∗; Fin∗ = (Fout∗)T = W ·Q1∗; f ∗sum = W.

Let W = T. Denote the limit state and flow vectors as Q̃, F̃in, and F̃out, respectively.
Vector Q̃ exists and is unique for any regular network. The flow vectors F̃in and F̃out

also exist.

Q̃ = F̃in =
(

F̃out)T
= TQ1∗.

If W > T, then starting from the moment t′′, some vertices will switch to Rule 1.
It was proven that the ability of a vertex to function stably according to Rule 1 depends

on the topology and weights of the edges of the graph and does not depend on the initial
resource allocation.

Definition 6. Vertices capable of accumulating resource surpluses (resources in excess of T) are
called attractors.

A criterion for the attractiveness of vertices was formulated and proven [28]:

Proposition 4. The vertex vk of a regular resource network is an attractor iff

k = arg min
i=1, n

rout
i

q1∗
i

.

Let the non-symmetric network have l attractors, 1 ≤ l < n, and let these attractors
have numbers from 1 to l. Then, the limit vectors for W = T are:

Q̃ = F̃in =
(

F̃out)T
= (rout

1 , . . ., rout
l , q̃l+1, . . ., q̃n); q̃k < rout

k , k = l + 1, n. (8)

For any W > T, the n− l last coordinates of a limit state vector q̃k do not change. The
surplus ∆W = W − T is distributed among attractors:

Q∗ = (rout
1 + ∆w1, . . ., rout

l + ∆wl , q̃l+1, . . ., q̃n); ∆w1 + . . . + ∆wl = ∆W. (9)

The vectors of the limit flow remain the same as for W = T (8):

F̃in =
(

F̃out)T
= (rout

1 , . . ., rout
l , q̃l+1, . . ., q̃n).

3. Resource Networks with Large Resource and Non-Homogeneous Markov Chains

When W > T, due to the operation of some vertices according to Rule 1, the change
in the state vector ceases to be described by a homogeneous Markov chain. However, the
change in flows still remains within the framework of a homogeneous Markov model.
Therefore, for the sake of simplicity, in previous works, for a large resource, not states, but
flows were investigated.

Here, we propose a method for studying the functioning of resource networks with a
large resource using non-homogeneous Markov chains, i.e., Markov chains with dynami-
cally changing stochastic matrices, and obtain new results.

Let us consider an example of the functioning of a network with a large resource.
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Example 1. Let the resource network be determined by the weighted graph with two vertices shown
in Figure 1 with the throughput matrix R:

R =

(
1 1
1 0

)
.

The initial state vector is Q(0) = (10, 0).
The functioning of this network is the following:
t = 0 : Q(0) = (10, 0);
t = 1 : Q(1) = (9, 1);
t = 2 : Q(2) = (9, 1).
. . .
Thus, the stable state of the network is Q∗ = (9, 1).

𝑣1 𝑣2

1

1

Figure 1. The weighted graph determining the considered resource network.

Let us analyze the law of changing states at the first steps and create the sequence of
stochastic matrices defining a non-homogeneous Markov chain for its description. Consider
the first vertex at the initial state: q1(0) = 10 > 2 = rout

1 . This means that the vertex v1 at
time step t = 0 sends some resource equal to 1 to each of two outgoing edges (one of them
is a loop), according to Rule 1, and stores the rest of the resource, equal to 8, in itself. The
vertex v2 does not transfer anything, since q2(0) = 0. As a result, we have the state Q(1),
but the same state Q(1) would be obtained if the loop of the vertex v1 had an arbitrary
throughput in segment [0, 9]. If r11 ∈ [0, 9], then Q(1) = (9, 1) remains the same. If r11 > 9,
then Q(1) will change because the vertex v1 will switch from Rule 1 to Rule 2 and will
distribute its resource in the other way. Therefore, the value r11(0) = 9 is a threshold value
of the first vertex for the resource amount q1(0) = 10 with a network topology determined
by R.

Consider the new throughput matrix R(0):

R(0) =
(

9 1
1 0

)
.

As r11(0) = 9, then rout
1 (0) = 10 and q1(0) = rout

1 (0), so the vertex v1 uses Rule 2 and
sends out its entire resource. The vertex v2 also uses Rule 2, which means that the next
state Q(1) is obtained using Formula (5) with the stochastic throughput matrix R′(0):

Q(1) = Q(0)R′(0) = (10, 0)
( 9

10
1

10
1 0

)
= (9, 1).

At the next time step, to save the operation according Rule 2 (i.e., the equality
q1(1) = rout

1 (1)), the loop throughput of vertex v1 needs to be decreased by 1:

R(1) =
(

8 1
1 0

)
.
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Then, the next state Q(2) can be calculated using the same formula with the new
stochastic throughput matrix R′(1):

Q(2) = Q(1)R′(1) = (9, 1)
( 8

9
1
9

1 0

)
= (9, 1).

As previously, the stable state of the resource network is Q∗ = (9, 1).
We have that

Q∗ = Q(0)R∗,

where

R∗ = R′(0)R′(1) =
( 9

10
1

10
1 0

)( 8
9

1
9

1 0

)
=

( 9
10

1
10

8
9

1
9

)
.

Q∗ is an equilibrium vector. However, the matrix R∗ itself is not a limit matrix of
the (corresponding homogeneous) Markov chain. It is easy to verify this by considering
its degrees.

However, ∀t > 1 R′(t) = R′(1), then Q(t + 1) = Q(t)R′(1) and Q∗ = Q∗R′(1).
On the other hand,

Q∗ = Q(0)R′(0)R′(1)R′(1)R′(1). . . = Q(0)R′(0)(R′(1))∞.

Matrix (R′(1))∞ is a limit of the degrees of a regular stochastic matrix. By definition,
it consists of identical rows equal to the limit vector of the probability distribution. This
vector, in turn, is a normalized equilibrium vector Q∗, i.e., it is equal to ( 9

10 , 1
10 ), and

(R′(1))∞ =

( 9
10

1
10

9
10

1
10

)
.

By the property of the limit matrix of a homogeneous Markov chain:

R(0)(R′(1))∞ = (R′(1))∞

and
Q∗ = Q(0)(R′(1))∞.

Remark 2. The network operation in the example is very simple. The limit state is reached in
one step. However, the behavior of resource networks with a large resource, in the general case, is
rather complicated. The corresponding statements can be read in [28]; examples of the operation of
networks with different topologies can be found in [33].

This example shows that the functioning of the resource network with the vertices
having a large resource amount can be considered as the non-homogeneous Markov
chain [34].

In the general case, this transformation for the resource network with the initial state
vector Q(0) and the throughput matrix R can be written as follows:

R→ R(t) = {rij(t)}i, j=1,n,

rij(t) =

{
rii + (qi(t)− rout

i ), if {qi(t) > rout
i & i = j},

rij, otherwise.
(10)

Here, ∀t ≥ 0 Q(t + 1) = Q(t)R′(t), or

Q(t + 1) = Q(0)
t

∏
i=0

R′(i).
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In the example above, the non-homogeneous Markov chain was strongly ergodic
(see [34,35]):

Definition 7. A non-homogeneous Markov chain with stochastic matrices P(i) is called strongly
ergodic if

lim
t→∞

t

∏
i=1

P(i) = 1 · πT,

where 1 is a column vector of n units and π is some probability vector.

In general, if the limit state and the limit matrix exist, they can be found as

Q∗ = Q(0) lim
t→∞

t

∏
i=0

R′(i) = Q(0)R′∞,

where R′∞ = 1 ·Q1∗∗ (Q1∗∗ is some vector of the distribution of the resource W = 1).
This equality holds for all strongly ergodic non-homogeneous Markov chains.
Let us turn to the study of strong ergodicity and the description of the limit character-

istics of resource networks with the transient and regular components.

4. Study of Processes in Transient Components of Two-Component Resource Networks

Consider a resource network with two strongly connected components, such that
there are only edges from the first one (called the transient component, with n1 vertices) to
the second one (called final, with n2 vertices). Let n be the total number of vertices in the
network (Figure 2).

𝑣4

𝑣3

𝑣7

𝑣1

𝑣8

𝑣6
𝑣2

𝑣5

𝑣9

Figure 2. The two-component resource network. Vertices (v1–v4) belong to the transient component;
vertices (v5–v9) form the final component; n1 = 4, n2 = 5, n = 9.

Theorem 1. There exists a finite time moment t′ such that, for t > t′, all vertices of the transient
component operate according to Rule 2.

Proof. We assumed there should always exist at least one vertex (say, vs) in the transient
component that has an edge to the final component. Otherwise the network graph is not
even weakly connected. If so, we can analyze weakly connected components independently.

Suppose there is an excessive amount of resource in an arbitrary vertex vk of the
transient component at time step t. Since the transient component is strongly connected,
there exists a simple path vk = vi0 → vi1 → · · · → vip = vs. In that case, the resource equal
to ck

1 = ri0i1 will be transferred from vi0 to vi1 at the time moment t + 1. This means vertex
vi1 will contain at least ck

1 resource. Next, at the moment t + 2, vertex vi1 will transfer at
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least ck
2 = min{ri1i2 , r′i1i2

· ck
1} resource to the vertex vi2 . In that case, at the moment t + 2,

vertex vi2 will contain at least ck
2 resource. If we continue this process, we will obtain that

vertex vip will contain at least ck
p resource at the moment of time t + p. Finally, at least

ck
fin = min{rs fin, r′s fin · ck

p} resource will go to the final component at the moment t + p + 1
(where rs fin is some edge from vs to some vertex in the final component). Therefore, if there
was excessive resource in vertex vk at moment t, then, during time period [t, t + n1] (more
precisely, [t, t + p + 1]), at least ck

fin resource will be transferred to the final component. It
is important to note that ck

f in depends on nothing but the fact that there was an excessive
amount of resource in vertex vk.

Similar reasoning can be applied to any other vertex with excessive resource vl . Let us
define ε = min

l∈1,n1

cl
fin > 0. Then, the following holds: if, at some time moment t, an arbitrary

vertex contained an excessive amount of resource, then by the time moment t + n1, at least
ε resource will be transferred to the final component.

The proof now goes by contradiction: Suppose there is no moment t′ from which the
transient component operates according to Rule 2 all the time. In other words, suppose
there exists an infinite sequence of time moments {t′1, t′2, . . . } such that at least one vertex in
the transient component contains excessive resource at each of these moments. Without loss
of generality, assume that ∀i > 0 t′i+1− t′i > n1. Hence, at least ε resource will be transferred
to the final component at each of the time intervals {[t′1, t′1 + n1], [t′2, t′2 + n1], . . . }. The total

amount of transferred resource is at least
∞
∑

i=1
ε = ∞. The contradiction is now obvious since

the resource network contains only a finite amount of resource by definition.

Theorem 1 states that every possible resource distribution in the transient component
sooner or later reduces to the linear case. The following theorem shows how the network
behaves in the linear case.

Theorem 2. If the entire two-component network operates according to Rule 2, then the total
amount of resource in the transient component tends to zero as time goes to infinity.

Proof. Let the network be defined by the matrix:

R =

[
R1 R2
0 R3

]
,

where R1 ∈ Rn1×n1 and R3 ∈ Rn2×n2 are nonzero square blocks corresponding to the edges
of the transient and the final components, respectively; R2 ∈ Rn1×n2 is a rectangle block
corresponding to the edges from the transient to the final component. The corresponding
stochastic matrix is of the following form:

R′ =
[

R′1 R′2
0 R′3

]
.

Whenever the network operates according to Rule 2, its next state is obtained according
to Formula (5).

If the network is operated according to Rule 2 for every t ≥ 0, then the following
holds:

Q(t + 1) = Q(0)(R′)t. (11)

Passing to the limit as t → ∞ (this limit always exists since the final component
is regular):

Q∗ = Q(0)R′∞. (12)
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Consider powers of matrix R′:

(R′)2
=

[
R′1 R′2
0 R′3

][
R′1 R′2
0 R′3

]
=

[
(R′1)

2 R′1R′2 + R′2R′3
0 (R′3)

2

]
, (13)

(R′)3
=

[
R′1 R′2
0 R′3

][
(R′1)

2 R′1R′2 + R′2R′3
0 (R′3)

2

]
=

=

[
(R′1)

3 (R′1)
2R′2 + R′1R′2R′3 + R′2(R′3)

2

0 (R′3)
3

]
, (14)

and so on.
It follows from (12) that the first n1 components of Q∗ are defined entirely by the first

n1 columns of R′∞. Therefore, only the left-side blocks of powers of R′ are of our interest.
Since we can interpret R′1 as part of the stochastic matrix corresponding to the transient
component of a Markov chain, it is easy to prove then (using Theorem 3.1.1 of [31]) that

lim
t→∞

(R′1)
t
= 0.

It follows that, for each possible initial state Q(0), such that the network operates ac-
cording to Rule 2 forever, the limiting state will contain only zeros in the first n1 components
(see (12)). The statement of the theorem thus follows.

The following theorem generalizes the two previous ones to the case of an arbitrary
total resource amount in the network.

Theorem 3. In the two-component resource network, for any value and initial distribution of the
network total resource, the total amount of resource in the transient component tends to zero as time
goes to infinity.

Proof. Let the network be defined by the matrix:

R =

[
R1 R2
0 R3

]
, (15)

and the resource is greater than the threshold value. Then, the resource distribution is
described by a non-homogeneous Markov chain with a stochastic matrix:

R′(t) =
[

R′1(t) R′2(t)
0 R′3(t)

]
. (16)

The network operates according to the formula:

Q(t + 1) = Q(t)R′(t), or

Q(t + 1) = Q(0)
t

∏
i=1

R′(i). (17)

By Theorem 1, there is such a moment t′, starting from which the transition component
begins to function according to Rule 2. Then, for all t > t′, the matrix R′(t) can be presented
as matrix R′′(t), where

R′′(t) =
[

R′1 R′2
0 R′3(t)

]
.
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Thus, Formula (17) can be written as follows:

Q(t + 1) = Q(0)
t′

∏
i=1

R′(i)
t

∏
j=t′+1

R′′(j).

In the second product, the block R′1 is constant; therefore, the first m columns tend to
zero. Then, in the entire product, the first m columns tend to zero as time goes to infinity.

Thus, for any total resource and any of its initial distribution in a two-component
resource network, the entire resource will pass into the final component.

5. Some Properties of Stochastic Matrices

The above results can be generalized to arbitrary stochastic matrices, and some new
properties can be derived. Theorem 2 implies the validity of the following theorem.

Theorem 4. For any rectangular stochastic matrix R′ = [R′1, R′2] ∈ Rm×n, m < n, where
R′1 ∈ Rm×m is a square block, R′2 ∈ Rm×(n−m) is a rectangular block; if R2 6= 0, the rectangular
matrix (I − R′1)

−1R′2 ∈ Rm×(n−m) is stochastic.

Proof. Let us relatea rectangular matrix to a square one as follows:

R′′ =
[

R′1 R′2
0 I

]
,

Consider the powers of the matrix R′′:

R′′2 =

[
R′1 R′2
0 I

][
R′1 R′2
0 I

]
=

[
R
′2
1 R′1R′2 + R′2

0 I

]
,

R′′3 =

[
R
′2
1 R′1R′2 + R′2

0 I

][
R′1 R′2
0 I

]
=

[
R
′3
1 R

′2
1 R′2 + R′1R′2 + R′2

0 I

]
,

...

R′′t =

[
R
′t
1 R

′t−1
1 R′2 + R

′t−2
1 R′2 + . . . + R′1R′2 + R′2

0 I

]
.

For t → ∞, there is R
′∞
1 = 0 in the upper left block, as R′1 is the block of stochastic

matrix R′. Furthermore, there is the sum of a infinite decreasing geometric progression
with the denominator R′1 in the upper right block:

R′′∞ =

[
0 (I − R′1)

−1R′2
0 I

]
.

Here, mentioning that R′2 6= 0 and R
′∞
1 = 0, the inverse matrix (I − R′1)

−1 exists
always according to Theorem 1.11.1 in [31]. The matrix R′′ is stochastic; therefore, the
matrix R′′∞ is stochastic. Thus, if R′2 6= 0, the matrix (I − R′1)

−1R′2 is stochastic.

The simple example demonstrates how Theorem 4 works.

Example 2. Consider the stochastic vector:

R′ = (r1, r2, r3, r4), r1 + r2 + r3 + r4 = 1.

Let us split it into two blocks, so that the first block R′1 = (r1) is square dimensioned 1× 1,
R′2 = (r2, r3, r4).
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Thus, according to the proven Theorem 4, the vector (1− R1)
−1R2 is also stochastic. Actually:

(1− r1)
−1(r2, r3, r4) =

( 1
r2 + r3 + r4

)
(r2, r3, r4).

An important generalization follows directly from Theorem 4.

Theorem 5. For any square stochastic matrix R′ and for any arbitrary partition into blocks:

R′ =
[

R′1 R′2
R′3 R′4

]
,

where R′1 and R′4 are square blocks; if R′2 6= 0, the rectangular matrix (I − R′1)
−1R′2 is stochastic.

6. Limit States in Two-Component Resource Networks and the Strong Ergodicity of
Non-Homogeneous Markov Chains

In Section 4, it was established that, whatever the initial resource distribution is, all of
the resource will be transferred to the final component in infinite time.

According to Proposition 2 and Corollary 2, if a resource network is regular, then in
the case of a small resource, there exists a unique limit state that does not depend on the
initial distribution.

In the case of a large resource, there also always exists a limit state, but if there are
several attractor vertices (Definition 6), then the limit state might not be unique for every
initial state. However, the limit state is always of the form (9). What interests us is whether
an analogy can be drawn with our case of a two-component network. The following
theorems answer this question.

Suppose that the final component of the resource network is regular. Let T (Formula (7))
be the threshold value of the total resource for the final component.

Theorem 6. If W ≤ T, then there exists a unique limit state that depends neither on the initial
distribution of the total resource Q(0) nor on blocks R1 and R2 of capacity matrix R.

Proof. The statement of the theorem means that there is no difference what the topology of
the transient component is and what edges lead from the transient to the final component,
if the resource amount is small.

If W < T, it is assumed that there is a point of time from which the entire network
operates according to Rule 2. Without loss of generality, suppose that the entire network
operates according to Rule 2 from the first moment.

One can deduce from Equations (13) and (14) that an arbitrary power of R′ has
the form:

(R′)N
=

[
(R′1)

N R′2(N)

0 (R′3)
N

]
, (18)

where

R′2(N) =
N

∑
t=1

(R′1)
N−tR′2(R′3)

t−1. (19)

For instance,

R′2(1) = (R′1)
0R′2(R′3)

0
= R′2,

R′2(2) = R′1R′2 + R′2R′3,

R′2(3) = (R′1)
2R′2 + R′1R′2R′3 + R′2(R′3)

2,

and so on.



Mathematics 2022, 10, 4095 14 of 18

According to Theorem 11.1 of [32], there exists a limit lim
N→∞

(R′)N = R′∗. Combining

this fact with the statement of Theorem 2, we obtain that the limit must have the form

R′∗ =
[

0 R′2∗
0 R′∗3

]
,

where
R′2∗ = lim

N→∞
R′2(N); R′∗3 = lim

N→∞
R′N3 .

Multiplying the limit stochastic matrix by itself is idempotent (i.e., R′∗R′∗ = R′∗). That
means the following:

R′∗R′∗ =
[

0 R′2∗
0 R′∗3

][
0 R′2∗
0 R′∗3

]
=

[
0 R′2∗R

′∗
3

0 (R′∗3)
2

]
=

[
0 R′2∗
0 R′∗3

]
= R′∗.

The latter equation implies
R′2∗R

′∗
3 = R′2∗. (20)

Being a limit of the power of a regular stochastic matrix, R′∗3 consists of equal rows. Its
rank is 1. Moreover, whenever any stochastic matrix is right-multiplied by R′∗3 , the result
will also consist of the same rows. That being said, the matrix R′2∗ consists of the same rows
as R′∗3 .

Suppose that R′∗3 consists of rows (r′∗3). Then, R′∗ has the form

R′∗ =

 0 r′∗3
. . . . . .
0 r′∗3

.

It is obvious that R′∗ is of rank 1. It follows that the image of this linear operator (see
Equation (12)) is determined solely by the initial amount of resource W.

The resource W = T is a limit case for a small resource. By Proposition 2, for some
initial states, two limit transitions are required to prove the theorem: the first one is for the
transition of all vertices to Rule 2; then, the above reasoning is applied.

Theorem 7. If W > T, then for every initial state Q(0), there exists a limit state Q∗. If, addition-
ally, the final component contains only one attractor vertex, then this limit state depends only on W,
i.e., it depends neither on the initial distribution of the total resource and on blocks R1 and R2 of
capacity matrix R.

Proof. In this case, it is assumed that there is a point of time from which at least one vertex
of the network contains an excessive amount of resource.

It follows from Theorem 1 that there is a moment from which the entire transient
component operates according to Rule 2. That means that all of the excessive resource is
located in the final component (at least for sufficiently large moments of time). After this
fact is established, the proof in the case W > T is made in analogy with the case W ≤ T.
The main difference is that R′∗3 is not a limit of the powers of a single matrix, but a limit of
the products of different matrices. However, it is known from the previous works [28] that
this limit of the products of matrices exists for every initial condition. In the case where
there is only one attractor vertex in the final component, this limit of products depends
only on W. Thus, the statement of the theorem follows.

Example 3. Let us consider the two-component resource network shown in Figure 2. The edge
weights are given by the matrix:
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R =



1 1 0 1 0 0 0 0 0
1 0 1 0 1 0 0 0 0
1 0 0 1 0 0 0 0 1
0 1 1 0 0 0 0 0 1

ine0 0 0 0 0 2 1 0 1
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0 1
0 0 0 0 3 0 0 0 0


. (21)

Let W = 14 and the initial state be given by vector Q(0) = (5, 4, 3, 2, 0, 0, 0, 0, 0). In this
case, the entire resource is concentrated in the transient component.

The limit state is Q∗ = (0, 0, 0, 0, 2.4, 1.2, 6.4, 1.6, 2.4).
The functioning of the network is shown in Figure 3.
On the graph, it can be seen how the resource flows from the transient component to the vertices

of the final component.

Figure 3. The resource distribution over time for the network represented by matrix (21). W = 14,
and the vector of the initial state is Q(0) = (5, 4, 3, 2, 0, 0, 0, 0, 0). The resource values in vertices
(v1–v4) tend to 0; all the resource is concentrated in vertices (v5–v9).

If W > T, then matrix sequences R′(t), t = 0, 1, . . ., differ for different initial resource
distributions Q(0). The infinite products of these matrices tend to the limit matrices
R
′∞(Q(0)) (further, we omit the argument (Q(0))).

Example 1 shows that, for at least some regular resource networks with W > T, there
exist two stochastic matrices transforming the initial vector into the limit one:

Q∗ = Q(0)R′∗; Q∗ = Q(0)R′∞. (22)

It is easy to see that such matrices exist for any regular, as well as two-component
networks and for any initial state Q(0) (W > T).

The first matrix R′∗ is obtained from matrix R defined by Formula (10), where qi(t) =
q∗i ; here, q∗i are the components of a limit vector Q∗. This matrix has different rows and is
not a limit matrix. However, the limit matrix R′∞ is a limit of the powers of the stochastic
matrix R′∗.
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R′∞ = lim
t→∞

(R′∗)t. (23)

Matrix R′∞ is unique for every Q(0) and consists of n normalized vectors Q∗.
Therefore, the following theorem is true.

Theorem 8. For a two-component resource network, if W > T, then, for every initial state, the
non-homogeneous Markov chain with stochastic matrices R′(t) is strongly ergodic.

7. Discussion

The results presented in the article can be divided into three areas: two-component
resource networks, stochastic matrices, and non-homogeneous Markov chains.

The main results concerning two-component resource networks were stated in the
Theorems 6 and 7. It was proven that the two-component resource network with a regular
final component is globally asymptotically stable, if W ≤ T or W > T and there is a
single attractor vertex. If there are several attractor vertices in a final component, the
resource surplus is distributed among attractors (Formula (9)) in a unique way described
by Formula (22).

The study of the behavior of two-component networks made it possible to prove a num-
ber of non-trivial statements about stochastic matrices, as well as about non-homogeneous
Markov chains.

In our opinion, Theorems 4–6 deserve special attention, since they formulate the
interesting properties of stochastic matrices. These properties are universal and applicable
to any stochastic matrices, without reference to the resource network model.

Theorem 8 states that the non-homogeneous Markov chain describing the operation of
the two-component resource network with a regular final component for W > T is strongly
ergodic. This implies that the non-homogeneous Markov chain describing the regular
resource network with W > T is definitely strongly ergodic.

The non-homogeneous Markov chain corresponding to the given network and given
initial distribution of resource W > T is defined by Formula (10). Two matrices that
transform the initial distribution into the limit distribution are presented in Formula (22),
and their relationship is in Formula (23).

In the future, we plan to obtain an analytical formula for resource allocation among
attractors in the limit state for a network with several attractors and W > T. This problem
still remains open.

8. Conclusions

The resource network model is described by very simple operation rules; however, it
is capable of generating complex behavior. Moreover, the network turned out to be a good
tool for studying the properties of stochastic matrices and Markov chains.

In our team, two extensions of resource networks were proposed and studied: a
network with the capacity limitations of attractor vertices and a network with greedy
vertices [28].

Based on the resource network defined by a regular grid, a model of the distribution
of pollutants on the surface of a reservoir was developed [36].

In our future research, we plan to study new modifications of resource networks, such
as networks with dynamic throughputs. Using such a model, it will be possible to search
for bottlenecks in the distribution of traffic in networks of various kinds—from transport
to telecommunications.
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