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Abstract: The complex Pearson (CP) distributions are a family of probability models for count
data generated by the Gaussian hypergeometric function with complex arguments. The complex
triparametric Pearson (CTP) distribution and its biparametric versions, the complex biparametric
Pearson (CBP) and the extended biparametric Waring (EBW) distributions, belong to this family. They
all have explicit expressions of the probability mass function (pmf), probability generating function
and moments, so they are easy to handle from a computational point of view. Moreover, the CTP and
EBW distributions can model over- and underdispersed count data, whereas the CBP can only handle
overdispersed data, but unlike other well-known overdispersed distributions, the overdispersion
is not due to an excess of zeros but other low values of the variable. Finally, the EBW distribution
allows the variance to be split into three uniquely identifiable components: randomness, liability
and proneness. These properties make the CP distributions of interest in the modeling of a great
variety of data. For this reason, and for trying to spread their use, we have implemented an R package
called cpd that contains the pmf, distribution function, quantile function and random generation for
these distributions. In addition, the package contains fitting functions according to the maximum
likelihood. This package is available from the Comprehensive R Archive Network (CRAN). In this
work, we describe all the functions included in the cpd package, and we illustrate their usage with
several examples. Moreover, the release of a plugin in order to use the package from the interface R
Commander tries to contribute to the spreading of these models among non-advanced users.

Keywords: count data models; overdispersion; underdispersion; R package

MSC: 60-04

1. Introduction

The use of discrete distributions to model count data is widely illustrated in the lit-
erature. The first model, which describes the pure random case for an infinite range, is
the Poisson distribution. This is a uniparametric model which assumes that data have
equidispersion; that is to say, the variance is equal to the mean. Nevertheless, in real studies,
data often exhibit overdispersion (i.e., the variance is greater than the mean) and less often
exhibit underdispersion (i.e., the variance is less than the mean). For these situations, a great
variety of models has been developed, with many of them obtained from the Poisson distri-
bution. Among them, we find well-known models, such as the negative binomial (NB) [1],
univariate generalized Waring (UGW) [2,3], generalized Poisson (GP) [4], zero-inflated [5]
or hurdle models [6], as well as many other new models (see, for instance, [7–10]). One
of these new models is the complex triparametric Pearson distribution with parameters
a, b and γ, which are denoted by CTP(a, b, γ). This distribution belongs to the family of
discrete distributions generated by the Gaussian hypergeometric function when the two
first parameters are complex conjugated numbers (i.e., 2F1(a + ib, a− ib; γ; 1), where i is the
imaginary unit), and it has been widely studied in [11,12]. Two particular cases with two
parameters have also been developed: the complex biparametric Pearson (CBP) distribu-
tion [13,14] and the extended bivariate Waring (EBW) distribution [15,16]. It is interesting
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to take into account the fact that the CTP and EBW models can handle both over- and
underdispersion, whereas the CBP model can only handle overdispersion. Nevertheless,
the overdispersion of these three models, unlike other well-known overdispersed models,
is not due to an excess of zeros but other low values of the variable. Specifically, the CBP
model is useful when there is overdispersion, and the probability of zero is similar to that
of a Poisson distribution [14]. In addition to the fact that the CTP and EBW models can be
underdispersed, another advantage is that they do not have computational problems since
there are explicit expresions of the pmf, pgf and moments, as they do occur in other models
such as the CMP, HP or GP models [12]. All these properties make the CP distributions of
interest in the modeling of a great variety of data.

For these reasons, it is essential to facilitate their use, which is accomplished through
their implementation in different statistical software. In this sense, R, the free software
environment for statistical computing and graphics [17], not only allows for using the
most common distributions to compute the probabilities and quantiles or generate random
numbers but also model the data. Thus, for example, the stats package contains functions
for handling many standard univariate probability distributions, and the extraDistr package
adds more univariate and multivariate distributions to the list. In the MASS package, the
maximum likelihood modeling of several models is available via the fitdistr functions,
and the fitdistrplus package implements several methods for fitting univariate parametric
distributions. In addition, there are also specific built-in functions related to these aspects
in other R packages. To sum up, this allows us to propose different models for a given
data set, estimating the corresponding parameters and, in addition, comparing them to
choose the more adequate one. However, all of these packages include the CP distributions,
making their use inaccessible to most researchers.

In trying to solve this problem, we implemented an R package called cpd for the CP
distributions. Thus, in this work, we present and describe a package which allows for
obtaining the pmf, distribution function, quantile function and random number generation
for the three distributions. Moreover, this package offers the possibility of estimating the
parameters by the maximum likelihood method and also provides several goodness-of-
fit tests and graphics as well as additional fit criteria. The package is available from the
Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=
cpd (accessed on 1 September 2022). In addition, we implemented a plugin for the R
Commander GUI that allows non-advanced R users to work with these models without
using R code. The plugin is also a package called RcmdrPlugin.cpd available from CRAN at
https://CRAN.R-project.org/package=RcmdrPlugin.cpd (accessed on 1 September 2022).

The remainder of this paper is organized as follows. Section 2 reviews the definitions
and properties of the CTP, CBP and EBW distributions. In Section 3, the functions of
the cpd package are detailed, including several examples to illustrate their use. In the
final section, this paper concludes with a summary of the main characteristics of the
package implemented.

2. Complex Pearson Distributions
2.1. Brief Description and Properties

The complex triparametric Pearson (CTP) distribution was first developed in [11].
It is a triparametric discrete distribution of an infinite range generated by the Gaussian
hypergeometric function 2F1 with complex parameters, so it belongs to the Gaussian
hypergeometric distributions (GHD) family [1]. Specifically, X follows a CTP(a, b, γ)
distribution when its pmf has the following expression:

f (x) = f0
(a + ib)x(a− ib)x

(γ)x

1
x!

, x = 0, 1, . . . (1)

https://CRAN.R-project.org/package=cpd
https://CRAN.R-project.org/package=cpd
https://CRAN.R-project.org/package=RcmdrPlugin.cpd


Mathematics 2022, 10, 4101 3 of 15

where i is the imaginary unit, a, b ∈ R and γ > max{0, 2a}. (α)r is the Pochhammer symbol
(also known as a rising factorial) defined as Γ(α+ r)/Γ(α), with Γ(·) as the gamma function
and f0 as the normalizing constant given by

2F1(a + ib, a− ib; γ; 1)−1 =
Γ(γ− a− ib)Γ(γ− a + ib)

Γ(γ)Γ(γ− 2a)
.

An alternative expression of Equation (1) in terms of the gamma function is

f (x) = C · Γ(a + ib + x)Γ(a− ib + x)
Γ(γ + x)

1
x!

, x = 0, 1, . . . (2)

where C is the normalizing constant

C =
Γ(γ− a− ib)Γ(γ− a + ib)

Γ(γ− 2a)Γ(a + ib)Γ(a− ib)
.

The probability generating function (pgf) is given by

G(t) =
Γ(γ− a− ib)Γ(γ− a + ib)

Γ(γ)Γ(γ− 2a) 2F1(a + ib, a− ib; γ; t), t ∈ R. (3)

Aside from its pmf, the model also has explicit expressions of the mean µ and the
variance σ2:

µ =
a2 + b2

γ− 2a− 1
, σ2 = µ

µ + γ− 1
γ− 2a− 2

,

which exist if γ > 2a + 1 and γ > 2a + 2, respectively.

This is unimodal with the mode in
[
(a−1)2+b2

γ−2a+1

]
when (a−1)2+b2

γ−2a+1 /∈ Z, where [·] is the
integer part; otherwise, the distribution has two consecutive modes in the values:

(a− 1)2 + b2

γ− 2a + 1
− 1 and

(a− 1)2 + b2

γ− 2a + 1
.

Then, if a2 + b2 < γ, then there is only one mode in zero. As a consequence, the pmf is
J-shaped or bell-shaped. Moreover, the CTP is skewed to the right since its third central
moment is always positive. For further details about the model, see [11,12].

One of the main properties of the CTP distribution is that it can be underdispersed,
equidispersed or overdispersed. In particular, if a ≥ 0, then the CTP is always overdis-
persed. Thus, the model has a great versatility in the modeling of count data, especially
when the overdispersion of the data is due to a higher frequency of non-zero values. In ad-
dition, the fact is that having explicit expressions of the pmf, mean and variance prevents
the computational problems of other well-known models that cope with over- and under-
dispersion, such as the Conway–Maxwell–Poisson [18] (CMP) and the hyper-Poisson [19]
(HP) models.

The CTP model is a generalization of the complex biparametric Pearson (CBP(b, γ))
distribution, since the latter appears when a = 0 [13]. This model has the advantage of
having one less parameter, but it is always overdispersed. It can be compared to an NB
distribution, except for the fact that the probability of zero is less than that provided by an
NB model and similar to that of a Poisson distribution.

The EBW distribution has two parameterizations: EBW(α, ρ) with α, ρ = γ− 2α > 0
and EBW(α, γ) with α < 0 and γ > 0. This model can also be seen as a particular case
of the CTP(a, b, γ) distribution when b = 0 and as a particular case of the UGW(a, k, ρ)
distribution when a = k = α > 0. In fact, given a UGW distribution, there exists an EBW
distribution that is very close to the former with the benefit of having one less parameter.
In addition, the EBW distribution allows the variance to be split into three uniquely
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identifiable components: randomness, liability and proneness (see more details in [16]),
solving the existing indeterminacy in the UGW model. Specifically, if X ∼ EBW(α, ρ), then
these components are

σ2 =
α2

ρ− 1
+

α2(α + 1)
(ρ− 1)(ρ− 2)

+
α3(α + ρ− 1)
(ρ− 1)2(ρ− 2)

. (4)

2.2. Maximum Likelihood Estimation

Under the i.i.d. sample assumption, the parameters a, b and γ are by default estimated
by maximizing the log-likelihood function, defined as

ln Lx1,...,xn(a, b, γ) =
n

∑
j=1

ln f (xj|a, b, γ) = 2Re[ln Γ(γ− a + ib)]− 2Re[Γ(a + ib)] (5)

+ 2Re[Γ(a + ib + x)]− ln Γ(γ− 2a)− ln Γ(γ + x)− ln x!

with x1, . . . , xn, where n is the number of observations of the variable X ∼ CTP(a, b, γ). It
should be noticed that Γ(z) = Γ(z), where z and z are conjugate complex numbers.

The log-likelihood for the CBP distribution is obtained when a = 0, and that for the
EBW distribution is obtained when b = 0.

3. Using the cpd Package
3.1. Overview

The cpd package provides the functions to compute the probability mass function,
distribution function, quantile function and random generation for the complex tripara-
metric Pearson (CTP), complex biparametric Pearson (CBP) and extended biparametric
Waring (EBW) distributions. In addition, the package contains maximum-likelihood fitting
functions for these models.

The source code is available from the Comprehensive R Archive Network (CRAN)
repository (https://CRAN.R-project.org/package=cpd, accessed on 1 September 2022),
with all the information about its functions and parameters in the package’s help file. It
can be installed and loaded by typing the following commands in R:

R> install.packages(‘‘cpd’’)
R> library(cpd)

The package is open-source, so it is also available from GitHub (https://github.com/
ujaen-statistics/cpd, accessed on 1 September 2022), where updates and comments can
be submitted.

Specifically, the cpd package allows for computing the probability mass, distribution
and quantile funtions of a CBP distribution through the following respective code:

dcbp(x, b, gamma)
pcbp(q, b, gamma, lower.tail = TRUE)
qcbp(p, b, gamma, lower.tail = TRUE)

where x is a vector of the non-negative integer values, q is a vector of the quantiles, p is a
vector of the probabilities and b and gamma are the parameters of the distribution. In the
pcbp and qcbp functions, the argument lower.tail has to be specified to consider P(X ≤ x)
(if it is TRUE) or P(X ≥ x) (if it is FALSE). It is also possible to generate n random numbers
from a CBP distribution with parameters b and gamma using the rcbp function, whose
sentence is rcbp(n, b, gamma).

For the CTP distribution, the probability mass, distribution and quantile functions,
as well as the random generation, are analogous:

dctp(x, a, b, gamma)

https://CRAN.R-project.org/package=cpd
https://github.com/ujaen-statistics/cpd
https://github.com/ujaen-statistics/cpd
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pctp(q, a, b, gamma, lower.tail = TRUE)
qctp(p, a, b, gamma, lower.tail = TRUE)
rctp(n, b, gamma)

In the case of the EBW distribution, there are two possible parameterizations depend-
ing on the sign of its first parameter α. Thus, if α < 0, then the usual parametrization is
EBW(α, γ) with γ > 0, whereas if α > 0, then the usual parametrization is EBW(α, ρ) with
ρ = γ− 2α > 0. (This constraint guarantees the existence of the probability distribution.)
Then, the corresponding probability mass, distribution and quantile functions, together
with the random generation, take into account these two parameterizations:

debw(x, alpha, gamma, rho)
pebw(q, alpha, gamma, rho, lower.tail = TRUE)
qebw(p, alpha, gamma, rho, lower.tail = TRUE)
rebw(n, alpha, gamma, rho)

Moreover, the cpd package provides functions for fitting the CTP, CBP and EBW
distributions to count data by the maximum likelihood method. These functions are fitctp,
fitcbp and fitebw, respectively. Thus, the usage for the fitcbp function is

fitcbp(x, bstart = NULL, gammastart = NULL, method = ‘‘L-BFGS-B’’,
+ control = list(), ...),

for the CTP distribution

fitctp(x, astart = NULL, bstart = NULL, gammastart = NULL,
+ method = ‘‘L-BFGS-B’’, control = list(), ...)

as well as for the EBW distribution

fitebw(x, alphastart = NULL, gammastart = NULL, rhostart = NULL,
+ method = ‘‘L-BFGS-B’’, control = list(), ...)

These fitting functions estimate the distribution parameters by maximizing the log-
likelihood function given in Equation (5) using the optim function of the stats package
with “L-BFGS-B” [20] as the default fitting method, which allows box constraints. Other
alternative methods of the optim function include “Nelder–Mead”, “BFGS”, “CG” and
“SANN” (see the function help information for more details). Nonlinear minimization using
a Newton-type algorithm is also possible (see the nlm function of the stats package). If
the fitting method is not “L-BFGS-B”, then the parameters have to be reparameterized as
α = eα0 and ρ = eρ0 or α = −eα0 and γ = eγ0 with α0, ρ0 and γ0 ∈ R, in order to satisfy
the corresponding constraints in each model. In this case, the standard errors provided
by the fitting function are for the estimates of α0 and ρ0 or γ0. The starting values for the
optimization process are the estimates obtained by the method of the moments, unless
the user introduces other values. These estimates are obtained by solving the system of
equations: m′1 −m′1 −1

m′2 −m′2 −m′21 −m′1 + 1
m′3 −m′3 − 2m′2 −m′1 −m′2 − 2m′1 − 1

 θ1
θ2
θ3

 =

 0
m2

2m3 + m2

 (6)

where m′r is the rth sample raw moment, θ1 = γ̂− 1, θ2 = 2â and θ3 = â2 + b̂2.
In the case of the EBW distribution, the method of moments could provide two sets of

starting values. In such a case, the optimization process would be carried out twice (one
with each set of starting values), and the solution with less AIC will be shown. These fitting
functions return S3 objects of the classes fitCBP, fitCTP and fitEBW for which the print,
summary and plot methods are provided.

The summary of an object of the classes fitCBP, fitCTP and fitEBW provides the ML
parameter estimates, their standard errors and the statistic and p values of the Wald test to
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check if the parameters are significant. This summary also shows the loglikelihood, AIC
and BIC values, as well as the results for the χ2 goodness of fit test and the Kolmogorov–
Smirnov test for discrete variables [21,22]. Finally, the correlation matrix of the parameter
estimates also appears.

In addition, when the ML estimate of α is positive, the function varcomp—applied
to an object of the class fitEBW—allows us to obtain the decomposition of the variance in
the fitted EBW model (see the components in Equation (4)). This fact is useful to know the
origin of the data variability.

The plot of an object of class fitCBP, fitCTP or fitEBW provides, by default, the observed
and theoretical frequencies against the values of the variable, the CDF plot of both the
empirical distribution and the fitted distribution or a PP plot representing the empirical
distribution function evaluated at each data point (y axis) against the fitted distribution
function (x axis).

3.2. Examples
3.2.1. Probability Mass, Distribution, Quantile and Random Generation Functions

We illustrate the use of the probability mass, distribution and quantile functions and
how to generate random numbers from the CP distributions.

First, we consider X ∼ CBP(3, 2.5), and we compute P(X = 0), P(X = 1) and
P(X = 2):

R> library(cpd)
R> cpd::dcbp(c(0, 1, 2), 3, 2.5)
[1] 0.02985882 0.10749176 0.15355965

The following sentences allow for computing P(X ≤ 3), P(X ≤ 5) and P(X > 2):

R> cpd::pcbp(c(3, 5), 3, 2.5)
[1] 0.4387825 0.6528353
R> cpd::pcbp(c(2), 3, 2.5, lower.tail = FALSE)
[1] 0.7090898

To obtain the quartiles of X and the 95th percentile, the sentence and the R output are

R> cpd::qcbp(c(0.25, 0.5, 0.75, 0.95), 3, 2.5)
[1] 2 4 7 17

Finally, to generate 300 numbers from X, we type

R> set.seed(123)
R> x <- cpd::rcbp(300, 3, 2.5)
R> table(x)
x
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 26
5 28 54 48 35 27 24 14 14 6 4 9 6 4 1 2 1 2 4 1 2 2 1 1
28 29 30 45
1 1 2 1

Figure 1a shows the bar plot of the random generated data which is obtained with the code

R> barplot(table(x), xlab = ‘‘values’’, ylab = ‘‘frequencies’’)

We can observe that the mode of these data is at a value of two, and they exhibit
overdispersion (x = 5.676667 < s2 = 32.21952).

Next we consider Y ∼ CTP(−1.5, 2, 2), which is underdispersed, and we compute
P(X = 0), P(X = 1), P(X = 2), P(X = 3):

R> cpd::dctp(c(0:3),-1.5, 2, 2)
[1] 0.1331089 0.4159654 0.2946422 0.1043524
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Now, the cumulative probabilities P(X ≤ 1), P(X ≤ 3) and P(X > 1) are

R> cpd::pctp(c(1,3), −1.5, 2, 2)
[1] 0.5490744 0.9480690
R> cpd::pctp(1, −1.5, 2, 2, lower.tail = FALSE)
[1] 0.4509256

The quartiles and 95th percentile are obtained as follows:

R> cpd::qctp(c(0.25, 0.5, 0.75, 0.95), −1.5, 2, 2)
[1] 1 1 2 4

To generate 500 random values from Y, we use the code

R> set.seed(123)
R> y <- cpd::rctp(500, −1.5, 2, 2)

The frequency table is

R> table(y)
y

0 1 2 3 4 5 6 7 10
57 227 142 41 21 8 2 1 1

Additionally, Figure 1b shows a bar plot of the random generated data. The mode
of these data is at a value of one, and they exhibit underdispersion (y = 1.574 > s2 =
1.367259).

Finally, to conclude this section, let us consider X1 ∼ EBW(α = 2, ρ = 5) and
X2 ∼ EBW(α = −1.2, γ = 0.75), with the first being overdispersed and the second being
underdispersed, and let us compute P(Xi = 0), P(Xi = 1), P(Xi = 2), P(Xi = 3) and
P(Xi = 4), i = 1, 2:

R> cpd::debw(c(0:4), 2, rho = 5)
[1] 0.53571429 0.23809524 0.10714286 0.05194805 0.02705628
R> cpd::debw(c(0:4), −1.2, gamma = 0.75)
[1] 0.3396452713 0.6521189210 0.0074527877 0.0005781556 0.0001248816

The cumulative probabilities P(Xi ≤ 2), P(Xi ≤ 4) and P(Xi > 2), i = 1, 2 are obtained as
follows:

R> cpd::pebw(c(2,4), 2, rho = 5)
[1] 0.8809524 0.9599567
R> cpd::pebw(2, 2, rho = 5, lower.tail = FALSE)
[1] 0.1190476
R> cpd::pebw(c(2,4), −1.2, gamma = 0.75)
[1] 0.9981288 0.9998974
R> cpd::pebw(3, −1.2, gamma = 0.75, lower.tail = FALSE)
[1] 0.0002048643

The corresponding quartiles and 99th percentile are given by

R> cpd::qebw(c(0.25, 0.5, 0.75, 0.99), 2, rho = 5)
[1] 0 0 1 8
R> cpd::qebw(c(0.25, 0.5, 0.75, 0.99), −1.2, gamma = 0.75)
[1] 0 1 1 1

To generate 1000 random values of X1 and X2, we type the code

R> set.seed(123)
R> x1 <- cpd::rebw(1000, 2, rho = 5)
R> x2 <- cpd::rebw(1000, −1.2, gamma = 0.75)
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The respective frequency tables are

R> table(x1)
x1

0 1 2 3 4 5 6 7 8 9 10 11 18
542 236 105 51 25 16 8 6 5 3 1 1 1
R> table(x2)
x2

0 1 2 3
332 657 10 1

In addition, the bar plots of these two datasets may be seen in Figure 1c,d. The modes
of these data were zero and one, respectively. The first dataset was overdispersed (x1 =
0.975 < s2

1 = 2.657032), and the second one was underdispersed (x2 = 0.68 > s2
2 =

0.2438438).
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Figure 1. Bar plots of the random generated data from (a) CBP(3, 2.5), (b) CTP(−1.5, 2, 2),
(c) EBW(2, 5) and (d) EBW(−1.2, 0.75).

3.2.2. Fitting Functions

To illustrate the use of the fitting functions, we provide three examples: two overdis-
persed and one underdispersed.

The first data set refers to the number of fire outbreaks by municipality in the region
of Andalusia (Spain). Data were obtained from the Nature Databank of the Ministry of the
Environment (Spain) and counting the number of fire outbreaks from 2001 to 2014. A fire
outbreak was defined as a wildfire whose total area was less than one hectare. Moreover,
municipalities whose forest land was zero were removed from the data. A description of
these data appears in Table 1, which contains the mean, variance, quartiles, minimum and
maximum of the data. It is clear that these data exhibit overdispersion since s2 > x.
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Table 1. Descriptive summary of data.

x s2 Q1 Q2 Q3 Min Max

Fire outbreaks 3.528 28.964 1 2 4.75 0 56
Schools 1.431 10.3807 0 1 1 0 48

Syllables-1 1.889 0.910 1 2 2 0 4

We fit a CBP model to the data, considering as the initial values the estimates by the
method of moments:

R> fireoutbreaks.cbp <- cpd::fitcbp(fireoutbreaks)

The output shows the ML estimates and their standard errors in parentheses:

b gamma
1.486206 1.494944

(0.08849089) (0.12183708)

Using the summary method, the output is more complete. The argument grouping = TRUE
is the setting for grouping in classes with an expected frequency greater than or equal to
five in the χ2 goodness of fit test, since the default value is FALSE:

R> summary(fireoutbreaks.cbp, grouping = TRUE)

Parameters:
Estimate Std. Error z-value Pr(>|z|)

b 1.486206 0.08849089 16.79502 2.654186 × 10−63

gamma 1.494944 0.12183708 12.27003~1.312062 × 10−34

Loglikelihood: −1637.21 AIC: 3278.43 BIC: 3287.5

Goodness-of-fit tests:
Chi-2: 60.05902 (p-value: 5.11525627536094 × 10−7)
Kolmogorov-Smirnov: 0.04732388 (p-value: 0.033)

Correlation Matrix:
b gamma

b 1.0000000 0.9296264
gamma 0.9296264 1.0000000

The AIC for the CBP fit is lower than the AIC related to an usual NB fit for these data:
R> library(MASS)
R> fireoutbreaks.nb <- MASS::fitdistr(fireoutbreaks, ‘‘negative binomial’’)
R> fireoutbreaks.nb

size mu
0.80061445 3.52752644

(0.05537946) (0.16624492)
R> AIC(fireoutbreaks.nb)
[1] 3292.707

Next we model the data using the CTP distribution. However, the method of moments
does not provide any estimates, so we introduce starting values for these parameters:
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R> fireoutbreaks.ctp <- cpd::fitctp(fireoutbreaks)
Error in fitctp(fireoutbreaks) :

The method of moments does not provide any estimates. Enter
initial values for the~parameters.

R> fireoutbreaks.ctp <- cpd::fitctp(fireoutbreaks, astart = 0, bstart = 1,
+ gammastart = 2.1)
R> summary(fireoutbreaks.ctp, grouping = TRUE)

Parameters:
Estimate Std. Error z-value Pr(>|z|)

a 1.880214 0.8151401 2.306615 0.021076319
b 1.579993 0.5102531 3.096489 0.001958269
gamma 6.441561 2.1065484 3.057874~0.002229130

Loglikelihood: −1623.73 AIC: 3253.45 BIC: 3260.53

Goodness-of-fit tests:
Chi-2: 23.21167 (p-value: 0.0569114065884523)
Kolmogorov-Smirnov: 0.01796262 (p-value: 0.746)

Correlation Matrix:
a b gamma

a 1.0000000 −0.9502083 0.9952855
b −0.9502083 1.0000000 −0.9193242
gamma 0.9952855 −0.9193242 1.0000000

Once again, the fitted model was improved compared with the previous ones.
Finally, we carry out an EBW fit:

R> fireoutbreaks.ebw <- cpd::fitctp(fireoutbreaks)
R> summary(fireoutbreaks.ebw, grouping = TRUE)

Parameters:
Estimate Std. Error z-value Pr(>|z|)

alpha 2.749528 0.1621672 16.954903 1.770541 × 10−64

rho 3.139183 0.3171861 9.896977 4.290494 × 10−23

gamma 8.638240 0.6293458 13.725746~7.119262 × 10−43

Loglikelihood: −1624.12 AIC: 3252.25 BIC: 3261.32

Goodness-of-fit tests:
Chi-2: 24.05791 (p-value: 0.0641165517298056)
Kolmogorov-Smirnov: 0.01778027 (p-value: 0.773)

Correlation Matrix:
alpha rho

alpha 1.0000000 0.9247998
rho 0.9247998 1.0000000

This is the most accurate of the four fits using the AIC. Moreover, the goodness-of-fit tests
show that the EBW distribution is a reasonable model for the fire outbreak data. Figure 2
includes the observed and expected frequencies, CDFs and PP plots for this fit obtained
with the following sentences:
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R> plot(fireoutbreaks.ebw)
R> plot(fireoutbreaks.ebw, plty = ‘‘CDF’’)
R> plot(fireoutbreaks.ebw, plty = ‘‘PP’’)
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Figure 2. Observed and expected frequencies, CDFs and PP plots for the EBW fit of fire outbreak data.

As α̂ = 2.7495 > 0, the absolute value and the ratio of the variance components of the EBW
fit can be obtained by typing the command

R> cpd::varcomp(fireoutbreaks.ebw)

Value Ratio
Randomness 3.534015 0.1019654
Liability 11.631922 0.3356107
Proneness 19.493035 0.5624239

The results indicate that 10.1965% of the variability in fire outbreaks was due to ramdom-
ness, 33.5611% was due to liability (which refers to the general and external conditions of
the municipality), and 56.2424% was due to proneness (related to the specific and internal
characteristics of the municipality).

The second data set refers to the number of compulsory secondary schools by mu-
nicipality in Andalusia (Spain) in the academic year 2020–2021. Data have been obtained
through the Multiterritorial Information System of Andalusia (SIMA). The main descriptive
statistics for these data appear in Table 1. These data reveal severe overdispersion caused
by a value of one, as can be seen from the table of frequencies:

R> table(cs_schools)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 18 20
201 437 67 31 17 6 6 2 3 2 2 1 2 1 1 1~1

26 28 47 48
1 1 1 1

First, we fit an NB model:

R> schools.nb <- MASS::fitdistr(cs_schools, ‘‘negative binomial’’)
R> schools.nb

size mu
1.19336385 1.43057377
(0.10212557) (0.06330097)

R> AIC(schools.nb)

2584.456

As expected, the results for the CTP fit (with initial values a = 0, b = 1 and γ = 0.5)
improved remarkably with respect to the previous ones:
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R> schools.ctp <- cpd::fitctp(schools, astart = 0, bstart = 1,
+ gammastart = 0.5)
R> summary(schools.ctp)

Parameters:
Estimate Std. Error z-value Pr(>|z|)

a −0.5141782 0.03519091 −14.611108 2.386050 × 10−48

b 0.4165253 0.09994774 4.167431 3.080518 × 10−5

gamma 0.2020829 0.05620251 3.595620~3.236198 × 10−4

Loglikelihood: −1058.91 AIC: 2123.81 BIC: 2131.14

Goodness-of-fit tests:
Chi-2: 40.81333 (p-value: 0.649840570375861
Kolmogorov-Smirnov: 0.007734697 (p-value: 0.932)

Correlation Matrix:
a b gamma

a 1.0000000 −0.8066776 −0.7935876
b −0.8066776 1.0000000 0.9637505
gamma −0.7935876 0.9637505 1.0000000

The goodness-of-fit tests also support the adequacy of the model fitted. Figure 3 includes
the observed and expected frequencies, CDFs and PP plots for the CTP fit obtained with
the code sentences

R> plot(schools.ctp)
R> plot(schools.ctp, plty = ‘‘CDF’’)
R> plot(schools.ctp, plty = ‘‘PP’’)
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Figure 3. Observed and expected frequencies, CDFs and PP plots for the EBW fit of compulsory
secondary school data.

In this example, it makes no sense to fit a CBP or a EBW model, since the parameters a
and b in the CTP are statistically significant.

The third data set contained lengths of words (numbers of syllables) in a Slovak
poem [23]. A description of these data appears in Table 1, where we considered the response
variable X− 1, as though the data were generated by adding one to the distribution. These
types of data related to word length often exhibit underdispersion [24].

As the CBP model is always overdispersed, it made no sense to fit it to these data,
so we fitted a CTP model, considering as the initial values the estimates by the method
of moments. In this example, the argument grouping is missing, so it is set to FALSE
by default, since there are not enough degrees of freedom to group the classes with an
expected frequency greater than or equal to five. Thus, the code is

R> syllables.ctp <- cpd::fitctp(syllables)
R> summary(syllables.ctp)
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and the output

Parameters:
Estimate Std. Error z-value Pr(>|z|)

a −5.7319721810 0.8127761 −7.0523387550 1.759352 × 10−12

b 0.0008637403 6.0264402 0.0001433251 9.998856 × 10−1

gamma 6.9298746437 3.3472112 2.0703428298~3.842025 × 10−2

Loglikelihood: −159.33 AIC: 324.67 BIC: 328.19

Goodness-of-fit tests:
Chi-2: 0.6018625 (p-value: 0.437868271837147)
Kolmogorov-Smirnov: 0.01181905 (p-value: 0.994)

Correlation Matrix:
a b gamma

a 1.000000000 0.002883042 −0.970588862
b 0.002883042 1.000000000 −0.001203176
gamma −0.970588862 −0.001203176 1.000000000

Now, we model these data using EBW distribution by typing

R> syllables.ebw <- cpd::fitebw(syllables)
R> summary(syllables.ebw)

Parameters:
Estimate Std. Error z-value Pr(>|z|)

alpha −5.731882 0.812740 −7.052541 1.756792 × 10−12

gamma 6.929558 3.347026 2.070363~3.841840 × 10−2

Loglikelihood: −159.33 AIC: 322.67 BIC: 328.19

Goodness-of-fit tests:
Chi-2: 0.6019236 (p-value: 0.74010605961245)
Kolmogorov-Smirnov: 0.01181588 (p-value: 0.994)

Correlation Matrix:
alpha gamma

alpha 1.0000000 −0.9705887
gamma −0.9705887 1.0000000

Let us notice that the EBW fit was the best one according to the AIC and goodness-of-
fit tests.

In addition, we used the sentences

R> plot(syllables.ebw)
R> plot(syllables.ebw, plty = ‘‘CDF’’)
R> plot(syllables.ebw, plty = ‘‘PP’’)

to obtain the plots in Figure 4.
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Figure 4. Observed and expected frequencies, CDFs and PP plots for the CTP fit of Slovak poem data.

4. Conclusions

The cpd package has been designed for computing probabilities and quantiles as
well as for generating random numbers from the CBP, CTP and EBW distributions. These
functions have also been included in a plugin for the GUI R Commander with the aim of
facilitating their use by non-advanced R users. In addition, the package contains fitting
functions to obtain the ML estimates of their parameters. In this way, we give more
visibility to these models, which allows for modeling overdispersed data in which the
overdispersion is not due to a value of zero but to low values of the variable (1, 2, . . . ) and
also underdispersed data. Thus, the probability of zero in the CBP is lower than in the
corresponding Poisson with the same mean, so the CBP can be seen as an adequate model
for overdispersed data without too many zeros. Regarding the CTP and EBW models, they
do not have the computational problems of other well-known models for both over- and
underdispered data such as the GP, the CMP or the HP.
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