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Abstract: The ranked set sampling (RSS) methodology is an effective technique of acquiring data
when measuring the units in a population is costly, while ranking them is easy according to the vari-
able of interest. In this article, we deal with an RSS-based estimation of the inverted Kumaraswamy
distribution parameters, which is extensively applied in life testing and reliability studies. Some
estimation techniques are regarded, including the maximum likelihood, the maximum product of
spacing’s, ordinary least squares, weighted least squares, Cramer–von Mises, and Anderson–Darling.
We demonstrate a simulation investigation to assess the performance of the suggested RSS-based
estimators via accuracy measures relative to simple random sampling. On the basis of actual data
regarding the waiting times between 65 consecutive eruptions of Kiama Blowhole, additional conclu-
sions have been drawn. The outcomes of simulation and real data application demonstrated that
RSS-based estimators outperformed their simple random sampling counterparts significantly based
on the same number of measured units.

Keywords: ranked set sampling; inverted Kumaraswamy distribution; maximum product spacing;
maximum likelihood; Cramer–von Mises

MSC: 62F10; 62D05; 62G30

1. Introduction

In some investigations, cost-effective sampling is a key concern, particularly when the
measurement of the characteristic of interest is expensive, uncomfortable, or time-consuming.
In order to increase the accuracy achieved per unit of the sample, the ranked set sampling
(RSS) approach is an excellent tool for achieving observational economy. Reference [1]
proposed the RSS technique as an alternative to the frequently used simple random sample
(SRS) methodology for increasing the efficiency of the sample mean. In RSS, the population
is divided into q sets of q units each by randomly selecting q2 units from it. Without taking
actual measurements, the q units in each set are ranked with respect to the study variable.
For actual quantification, the lowest-ranked unit from the first set of q units is chosen. The
second smallest ranked unit is measured from the second set of q units. The process is
repeated; say h times until the greatest rated unit from the last set is determined. To obtain
an RSS sample of size n◦ = qh, the entire process can be replicated a number of times, say h
times. The following matrix notation is considered to express the RSS design.
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Initial Observations
X(1:1) X(1:2) . . . X(1:q)
X(2:1) X(2:2) . . . X(2:q)

...
...

. . .
...

X(q:1) X(q:2) . . . X(q:q)

⇒
Ranked Observations

X11 X21 . . . Xq1

X12 X22 . . . Xq2
...

...
. . .

...
X1q X2q . . . Xqq


⇒

RSS (h = 1)
X11, X22, . . . , Xqq

The mathematical foundation of RSS was initially created in reference [2]. In statis-
tical inference, the parametric estimate approach employing the RSS sampling strategy
is of utmost importance. A large number of studies have recently been conducted on
the issue of RSS-based estimate for a variety of parametric models. For example, refef-
erence [3] used the data from the RSS technique to calculate the population variance. In
subsequent years, RSS was employed to estimate the statistical distribution’s involved pa-
rameters. Reference [4] used RSS to estimate the exponential distribution parameters, while
reference [5] investigated the estimator of the Cauchy distribution’s location parameter.
Reference [6] looked at estimating normal and exponential distribution parameters based
on RSS. Reference [7] investigated estimators for the logistic distribution’s location and
scale parameters, whereas reference [8] considered the RSS to get the geometric parameter
estimators. Reference. [9] succeeded in estimating the parameters of the half-logistic dis-
tribution, while reference. [10] investigated estimators of logistic distribution parameters
using RSS. Reference [11] achieved estimating modified Weibull distribution parameters.
Reference [12] used RSS to derive maximum likelihood (ML) and Bayesian estimators for
generalized exponential model. Reference [13] handled with parameter estimators of Pareto
distribution using RSS. The parameter estimator of the Rayleigh distribution was regarded
in [14] using different methods of estimations and ranking designs. Within the framework
of RSS, reference [15] examined the approach of the ML for the shape and scale parameters
of the generalized Rayleigh distribution. Reference [16] considered estimation of the new
Weibull-Pareto distribution parameters using RSS. Reference [17] discussed the parameter
estimators of Zubair Lomax distribution using RSS. Reference [18] investigated efficient
estimation of the generalized quasi-Lindley distribution parameters under RSS. For recent
results and references, see [19–27].

The Kumaraswamy distribution (KD) was offered in [28], which is one of the most
significant lifetime distributions with a range of [0,1]. It cannot, however, be utilized for
most lifetime data sets that theoretically have limitless support. It is regarded as a viable
alternative to beta distribution since they both share the same characteristics such as being
uni-modal, decreasing, increasing, or constant. The KD’s probability density function (PDF)
with two positive shape parameters is defined by:

f (x; τ, υ) = τυxτ−1(1− xτ)υ−1; τ, υ > 0, 0 < x < 1. (1)

Reference [29] proposed the inverted KD distribution (IKD) with the goal of providing
a new flexible lifetime distribution for analyzing real data sets in the best situation. The
following are indeed the principles of the IKD: It’s the distribution of the random variable
Z = 1/X − 1, where X is a random variable following the KD in Equation (1). The PDF and
cumulative distribution function (CDF) of the IKD are, respectively, characterized by:

f (z; τ, υ) = τυ(1 + z)−τ−1
[
1− (1 + z)−τ

]υ−1
; z, τ, υ > 0, (2)

F(z; τ, υ) =
[
1− (1 + z)−τ

]υ
; z, τ, υ > 0. (3)

Figure 1 presents some possible PDF plots of the IKD for some selected distribution
parameters. It is clear that the distribution is skewed to the right.
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Figure 1. Plots of the IKD PDF for some parameters.

The CDF (3) comprises several well-known distributions, including (i) the Lomax
distribution for υ = 1, (ii) the beta type II (inverted beta) distribution for τ = 1, (iii) log-
logistic distribution for τ = υ = 1, (iv) the inverse Weibull distribution as υ→ ∞, and the
generalized exponential distribution when τ → ∞. According to reference [29], the IKD
has a long right tail, and when compared to other distributions, the IKD gives optimistic
forecasts of uncommon events happening in the right tail.

To our knowledge, there have been no published works that have utilized the RSS
to estimate IKD parameters. In this study, we assumed that the ranking is perfect and
we focus on several classical estimations of the IKD parameters using RSS and SRS. The
considered methods are the ML, maximum product of spacing (MPS), least squares (LS),
weighted least squares (WLS), Cramer–von Mises (CvM), and Anderson–Darling (AD). A
simulation study compares the suggested RSS based estimators to the basic SRS based on
some criteria measures.

The following is the paper’s configuration: we provide the ML estimators (MLEs) and
MPS estimators (MPSEs) of the IKD parameters in Section 2. Section 3 obtains the IKD pa-
rameter estimators using LS and WLS approaches. Using the AD and CvM methodologies,
we obtain the IKD parameter estimators in Section 4. Sections 5 and 6 describe, respectively,
simulation research as well as its application to real-world situations, and comparing RSS
estimators to SRS equivalents. The paper comes to a close with main findings in Section 7.

2. ML and MPS Methods of Estimation

The ML and MPS estimation methods are examined in this section for estimating the
IKD parameters. First, we’ll go through the RSS framework methodology, and then obtain
the estimators from SRS.

2.1. ML Estimators

Let {Zct, c = 1, 2, . . . , q, t = 1, 2, . . . , h} denote cth order statistics (OS) in the tth cycle,
where h is the number of cycles and q is the set size. The data in RSS are all mutually inde-
pendent, and the data are distributed identically for each c = 1, 2, . . . , q. The distribution
of the cth data, for each c = 1, 2, . . . , q, is identical to the distribution of the cth OS of the
random sample X1, X2, . . . , Xq, that is;

fZct(zct) =
q!

(c− 1)!(q− c)!
f (zct)[F(zct)]

c−1[1− F(zct)]
q−c, −∞ < z < ∞. (4)

Substituting Equations (2) and (3) in Equation (4), then we have:

fZct(z) =
(q)!τυ

(c− 1)!(q− c)!
(1 + zct)

−τ−1
[
1− (1 + zct)

−τ
]υc−1[

1−
[
1− (1 + zct)

−τ
]υ]q−c

, 0 < zct < ∞. (5)

The likelihood function of IKD using RSS {Zct, c = 1, 2, . . . , q, t = 1, 2, . . . , h}, where
n◦ = qh is the sample size, is as follows:
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l<SS(z) =
q

∏
c=1

h

∏
t=1

(q)!τυ

(c− 1)!(q− c)!
(1 + zct)

−τ−1
[
1− (1 + zct)

−τ
]υc−1[

1−
[
1− (1 + zct)

−τ
]υ]q−c

.

The log-likelihood function of IKD, denoted by l∗<SS is as follows:

l∗<SS ∝ qh ln(τυ)− (τ + 1)
q

∑
c=1

h

∑
t=1

ln(ξct) + (υc− 1)
q

∑
c=1

h

∑
t=1

ln(1− (ξct)
−τ) + (q− c)

q

∑
c=1

h

∑
t=1

ln
[
1−

[
1− (ξct)

−τ
]υ]

,

where ξct = (1 + zct). The MLEs of τ, and υ, denoted by τ̂ML, and υ̂ML, of the IKD using
RSS are produced by solving the nonlinear equations

∂l∗<SS/∂τ = 0, and ∂l∗<SS/∂υ = 0. (6)

Let Z1, Z2, . . . , Zn◦ be a SRS of size n◦ from a IKD with PDF (2) and CDF (3). The
log-likelihood function, say l∗SRS, for τ and υ is given by:

l∗SRS = n◦ ln τ + n◦ ln υ− (τ + 1)
n◦

∑
i=1

ln(1 + zi) + (υ− 1)
n◦

∑
i=1

ln
(

1− (1 + zi)
−τ
)

.

The MLEs for τ and υ, say τ̃ML and υ̃ML, are given as the solution of the following equations:

∂l∗SRS/∂τ = 0, and ∂l∗SRS/∂υ = 0. (7)

Using numerical technique in Equation (7), we obtain the MLEs of τ and υ, denoted
by τ̃ML and υ̃ML.

2.2. MPS Estimators

For estimating the population parameters of continuous distributions, reference [30]
presented a powerful alternative approach known as MPS. Consider the ordered items
Z(1:n◦), Z(2:n◦), . . . , Z(n◦ :n◦) constitute a RSS of size n◦ = qh, q is set size and h is the
cycle numbers drawn from a distribution Equation (3). Hence, the uniform spacing’s
are defined by Dc(τ, υ) = F

(
z(c:n◦)|τ, υ

)
− F

(
z(c−1:n◦)|τ, υ

)
, c = 1, 2, . . . , n◦ + 1, with

F
(

z(0:n◦)|τ, υ
)
= 0, F

(
z(n◦+1:n◦)|τ, υ

)
= 1, such that

n◦+1
∑

c=1
Dc(τ, υ) = 1. The MPSEs, rep-

resented by τ̂MPS, υ̂MPS, are obtained by maximizing the geometric mean of the spacing
GM(τ, υ), where

GM(τ, υ) =

{
n◦+1

∏
c=1

Dc(τ, υ)

}1/(n◦+1)

. (8)

The logarithm of (8), denoted by GM∗(τ, υ), is

GM∗(τ, υ) =
1

n◦ + 1

n◦+1

∑
c=1

ln
{[

1−
(

1 + z(c:n◦)

)−τ
]υ

−
[

1−
(

1 + z(c−1:n◦)

)−τ
]υ}

.

The MPSEs; τ̂MPS, υ̂MPS can also be obtained by solving the nonlinear equations numerically:

∂GM∗(τ, υ)

∂υ
=

1
n◦ + 1

n◦+1

∑
c=1

1
Dc(τ, υ)

{
Y1

(
z(c:n◦)|τ, υ

)
− Y1

(
z(c−1:n◦)|τ, υ

)}
= 0, (9)

∂GM∗(τ, υ)

∂τ
=

1
n◦ + 1

n◦+1

∑
c=1

1
Dc(τ, υ)

{
Y2

(
z(c:n◦)|τ, υ

)
− Y2

(
z(c−1:n◦)|τ, υ

)}
= 0, (10)

where
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Y1

(
z(c:n◦)|τ, υ

)
=

∂

∂υ

[
1−

(
1 + z(c:n◦)

)−τ
]υ

=

[
1−

(
1 + z(c:n◦)

)−τ
]υ

ln
[

1−
(

1 + z(c:n◦)

)−τ
]

, (11)

Y2

(
z(c:n◦)|τ, υ

)
=

∂

∂τ

[
1−

(
1 + z(c:n◦)

)−τ
]υ

= υ

[
1−

(
1 + z(c:n◦)

)−τ
]υ−1(

1 + z(c:n◦)

)−τ
ln
(

1 + z(c:n◦)

)
. (12)

Based on SRS, let Z(1), Z(2), . . . , Z(n◦) be the OS from a sample of size n◦ from Equation (3).

Hence, the uniform spacing’s in this case are defined by D∗i (τ, υ) = F
(

z(i)|τ, υ
)
− F

(
z(i−1)|τ, υ

)
,

i = 1, 2, . . . , n◦ + 1 with F
(

z(0)|τ, υ
)
= 0, F

(
z(n◦+1)|τ, υ

)
= 1, such that

n◦+1
∑

i=1
D∗i (τ, υ) = 1.

The MPSEs, represented by τ̃MPS, υ̃MPS, are obtained by maximizing the geometric mean of
the spacing GMSRS(τ, υ), where

GMSRS(τ, υ) =

{
n◦+1

∏
i=1

D∗i (τ, υ)

}1/(n◦+1)

. (13)

The logarithm of Equation (13), denoted by GM∗SRS(τ, υ), is

GM∗SRS(τ, υ) =
1

n◦ + 1

n◦+1

∑
i=1

ln
{[

1−
(

1 + z(i)
)−τ

]υ

−
[

1−
(

1 + z(i−1)

)−τ
]υ}

.

The MPSEs; τ̂MPS, υ̂MPS can also be obtained by solving the following nonlinear equa-
tions numerically:

∂GM∗SRS(τ, υ)

∂υ
=

1
n◦ + 1

n◦+1

∑
i=1

1
D∗i (τ, υ)

{
Y1

(
z(i)|τ, υ

)
− Y1

(
z(i−1)|τ, υ

)}
= 0, (14)

∂GM∗SRS(τ, υ)

∂τ
=

1
n◦ + 1

n◦+1

∑
i=1

1
D∗

i
(τ, υ)

{
Y2

(
z(i)|τ, υ

)
− Y2

(
z(i−1)|τ, υ

)}
= 0, (15)

where, Y1

(
z(i)|τ, υ

)
and Y2

(
z(i)|τ, υ

)
have the same expressions as Equations (11) and

(12) by replacing z(c:n◦) with z(i).

3. LS and WLS Methods

The LS and WLS methods for estimating unknown parameters are well established in
reference [31]. Here, the LS estimators (LSEs) and WLS estimators (WLSEs) of τ, and υ are
examined using SRS and RSS design. We’ll go over the RSS framework technique first, and
then obtain these estimators using SRS.

Let the ordered items Z(1:n◦), Z(2:n◦), . . . , Z(n◦ :n◦) constitute a RSS of size n◦ = qh, from
the IKD has the CDF given by Equation (3). The LSEs and WLSEs of τ, and υ, are derived
by minimizing the following functions with respect to population parameters:

Q =
n◦

∑
c=1

[
F
(

z(c:n◦)|τ, υ
)
− c

n◦ + 1

]2
=

n◦

∑
c=1

[[
1−

(
1 + z(c:n◦)

)−τ
]υ

− c
n◦ + 1

]2

, (16)

= =
n◦

∑
c=1

N(c, n◦)
[

F
(

z(c:n◦)|τ, υ
)
− c

n◦ + 1

]2
=

n◦

∑
c=1

N(c, n◦)
[[

1−
(

1 + z(c:n◦)

)−τ
]υ

− c
n◦ + 1

]2

, (17)

where N(c, n◦) = (n◦+1)2(n◦+2)
c(n◦−c+1) . As an alternative to Equation (16), the following nonlinear

equations can be used to yield the LSEs of τ, and υ, denoted by τ̂LS, and υ̂LS, respectively,
as below:
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∂Q
∂υ

= 2
n◦

∑
c=1

[[
1−

(
1 + z(c:n◦)

)−τ
]υ

− c
n + 1

]
Y1

(
z(c:n◦)|τ, υ

)
= 0, (18)

∂Q
∂τ

= 2
n◦

∑
c=1

[[
1−

(
1 + z(c:n◦)

)−τ
]υ

− c
n + 1

]
Y2

(
z(c:n◦)|τ, υ

)
= 0. (19)

Similarly, as an alternative to Equation (17), the following nonlinear equations can be
used to obtain the WLSEs of τ, and υ, respectively, denoted by τ̂WLS, and υ̂WLS, as below:

∂=
∂υ

= 2
n◦

∑
c=1

N(c, n◦)
[[

1−
(

1 + z(c:n◦)

)−τ
]υ

− c
n + 1

]
Y1

(
z(c:n◦)|τ, υ

)
= 0, (20)

∂=
∂τ

= 2
n◦

∑
c=1

N(c, n◦)
[[

1−
(

1 + z(c:n◦)

)−τ
]υ

− c
n + 1

]
Y2

(
z(c:n◦)|τ, υ

)
= 0, (21)

where Y1

(
z(c:n◦)|τ, υ

)
and Y2

(
z(c:n◦)|τ, υ

)
are defined in Equations (11) and (12).

Additionally, the LSEs and WLEs, of ordered SRS Z(1), Z(2), . . . , Z(n◦) of sizes nº, for
τ, and υ, denoted by τ̃LS, υ̃LS and τ̃WLS, υ̃WLS are obtained, by solving numerically the
following nonlinear equations

∂QSRS
∂υ

= 2
n◦

∑
i=1

[[
1−

(
1 + z(i)

)−τ
]υ

− i
n + 1

]
Y1

(
z(i)|τ, υ

)
= 0, (22)

∂QSRS
∂τ

= 2
n◦

∑
i=1

[[
1−

(
1 + z(i)

)−τ
]υ

− i
n + 1

]
Y2

(
z(i)|τ, υ

)
= 0, (23)

∂=SRS
∂υ

= 2
n◦

∑
i=1

(n◦ + 1)2(n◦ + 2)
i(n◦ − i + 1)

[[
1−

(
1 + z(i)

)−τ
]υ

− i
n + 1

]
Y1

(
z(i)|τ, υ

)
= 0, (24)

∂=SRS
∂τ

= 2
n◦

∑
i=1

(n◦ + 1)2(n◦ + 2)
i(n◦ − i + 1)

[[
1−

(
1 + z(i)

)−τ
]υ

− i
n + 1

]
Y2

(
z(i)|τ, υ

)
= 0, (25)

where, Y1

(
z(i)|τ, υ

)
and Y2

(
z(i)|τ, υ

)
have the same expressions as Equations (11) and

(12) by replacing z(c:n◦) with z(i), where z(i) is the ordered SRS of size n◦ with CDF of IKD
presented in Equation (3).

4. AD and CvM Methods

We employ two estimating methods that are based on the minimization of two
well-known goodness-of-fit statistics. The two techniques are the CvM and AD, both
of which are based on the difference between the CDF and empirical distribution function
estimations. The CvM estimators (CvMEs) and AD estimators (ADEs) of the IKD are
explored using SRS and RSS designs.

Suppose that Z(1:n◦), Z(2:n◦), . . . , Z(n◦ :n◦) are OS items constitute a RSS of size n◦ = qh,
from IKD. The CvMEs and ADEs of τ, and υ, are derived by minimizing the following
functions with respect to population parameters

A =
1

12n◦
+

1
n◦

n◦

∑
c=1

{
F
(

z(c:n◦)|τ, υ
)
− 2c− 1

2n◦

}2
, (26)

M = −n◦ − 1
n◦

n◦

∑
c=1

(2c− 1)
{

log F
(

z(c:n◦)|τ, υ
)
+ log F

(
z(n◦−c+1:n◦)|τ, υ

)}
. (27)
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As an alternative to Equation (26), the following nonlinear equations can be used to
get the CvMEs of τ, and υ, denoted by τ̂CM, and υ̂CM, as below:

∂A

∂υ
=

2
n◦

n◦

∑
c=1

{[
1−

(
1 + z(c:n◦)

)−τ
]υ

− 2c− 1
2n◦

}
Y1

(
z(c:n◦)|τ, υ

)
= 0 , (28)

∂A

∂τ
=

2
n◦

n◦

∑
c=1

{[
1−

(
1 + z(c:n◦)

)−τ
]υ

− 2c− 1
2n◦

}
Y2

(
z(c:n◦)|τ, υ

)
= 0 , (29)

where Y1

(
z(c:n◦)|τ, υ

)
and Y2

(
z(c:n◦)|τ, υ

)
are defined in Equations (11) and (12). Similarly,

as an alternative to Equation (27), the following nonlinear equations can be used to obtain
the ADEs of τ, and υ, denoted by τ̂AD, and υ̂AD, as below:

∂M

∂υ
=
−1
n◦

n◦

∑
c=1

(2c− 1)

Y1

(
z(c:n◦)|τ, υ

)
F
(

z(c:n◦)|τ, υ
) − Y1

(
z(n◦−c+1:n◦)|τ, υ

)
F
(

z(n◦−c+1:n◦)|τ, υ
)
 = 0, (30)

∂M

∂τ
=
−1
n◦

n◦

∑
c=1

(2c− 1)

Y2

(
z(c:n◦)|τ, υ

)
F
(

z(c:n◦)|τ, υ
) − Y2

(
z(n◦−c+1:n◦)|τ, υ

)
F
(

z(n◦−c+1:n◦)|τ, υ
)
 = 0, (31)

where Y1

(
z(c:n◦)|τ, υ

)
and Y2

(
z(c:n◦)|τ, υ

)
are defined in Equations (11) and (12).

Furthermore, the ADs of τ, and υ, denoted by τ̃CM, and υ̃CM, based on ordered SRS
Z(1), Z(2), . . . , Z(n◦) of sizes nº are obtained by solving numerically the following equations

∂ASRS
∂υ

=
2

n◦
n◦

∑
i=1

{[
1−

(
1 + z(i)

)−τ
]υ

− 2i− 1
2n◦

}
Y1

(
z(i)|τ, υ

)
= 0 , (32)

∂ASRS
∂τ

=
2

n◦
n◦

∑
i=1

{[
1−

(
1 + z(i)

)−τ
]υ

− 2i− 1
2n◦

}
Y2

(
z(i)|τ, υ

)
= 0 , (33)

where Y1

(
z(i)|τ, υ

)
and Y2

(
z(i)|τ, υ

)
are defined in Equations (11) and (12) with ordered

samples Z(1), Z(2), . . . , Z(n◦).
Similarly, the CvMEs of τ, and υ, denoted by τ̃CM, and υ̃CM, based on ordered SRS

Z(1), Z(2), . . . , Z(n◦) of sizes nº, are obtained by solving the following non-linear equations:

∂MSRS
∂υ

=
−1
n◦

n◦

∑
i=1

(i− 1)

Y1

(
z(i)|τ, υ

)
F
(

z(i)|τ, υ
) − Y1

(
z(n◦−i+1)|τ, υ

)
F
(

z(n◦−i+1)|τ, υ
)
, (34)

∂MSRS
∂τ

=
−1
n◦

n◦

∑
i=1

(2i− 1)

Y2

(
z(i)|τ, υ

)
F
(

z(i)|τ, υ
) − Y2

(
z(n◦−i+1)|τ, υ

)
F
(

z(n◦−i+1)|τ, υ
)
, (35)

where Y1

(
z(i)|τ, υ

)
and Y2

(
z(n◦−i+1)|τ, υ

)
are defined in Equations (11) and (12) with

ordered samples Z(1), Z(2), . . . , Z(n◦).

5. Numerical Evaluation

A simulation study is undertaken here to evaluate the performance of the estimation
methods under SRS and RSS. The random samples were produced using IKD for different
values of υ and τ. The following is the simulation algorithm:

1. Generate nº SRS from IKD using the quantile function zi =
(

1− (u)1/υ
)−1/τ

− 1,
0 < u < 1, i = 1, 2, . . . , n◦, where u is the uniform random variable.
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2. Select q random samples via SRS each set of size q from the IKD, then rank the units
within each set.

3. Choose a sample for actual quantification by including the smallest ranked unit in the
first set, the second smallest ranked unit in the second set, the process continues in
this way until the largest ranked unit is selected from the last set.

4. Repeat steps 2 and 3 for h cycles to obtain a sample of sizes n◦ = qh, where the set
size q = 3, 4, 5 with cycles number h = 5 and 10.

5. The sample sizes of SRS are selected as n◦ = 15, 20, 25, 30, 40, and 50. The sample sizes
of RSS are selected as n◦ = qh, where the set size q = 3, 4, 5 with cycles number h = 5
and 10.

6. The parameter values are selected as (υ, τ) = (0.5, 0.8), (0.5, 1.2), (1.2, 0.8) and (1.5, 1.5).
7. Obtain the ML estimates under RRS and SRS, respectively, by solving numerically

Equations (6) and (7).
8. The MPS estimates of τ, and υ, are produced by solving Equations (9) and 10 for RSS,

while solving Equations (14) and (15) in case of SRS.
9. The LS and WLS estimates of τ, and υ, are computed by solving numerically

Equations (18)–(21) for RSS and solving Equations (22)–(25) in case of SRS.
10. The CvM and AD estimates of τ, and υ, are computed by solving numerically

Equations (28)–(31) in case of SRS, while solving Equations (32)–(35) in case of SRS.
11. Repeat the pervious steps from 1 to 10 N times representing different samples, where

N = 1000. The criteria for comparison include mean squared errors (MSEs) for all
parameter estimates (PEs) and efficiency (Eff), which are obtained using the follow-
ing relations:

MSE(ϑ̂) =
1

1000

1000

∑
c=1

(
ϑ̂c − ϑ

)2
, Eff(ϑ̂) =

MSESRS(ϑ̃)

MSE<SS(ϑ̂)
, ϑ̂ = τ̂, υ̂.

The PE, MSE, and the Eff are all presented in Tables 1–12. One can draw the following
conclusions from the simulation findings.
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Using the Kolmogorov-Smirnov (K–S) test, the data set is checked for such a fitted 

model and the estimates are obtained using the ML method. With a p-value (PV) of 0.591, 
the K–S distance is 0.409. As a result, it is obvious that the IKD is a suitable model for 
fitting these data. Data’s estimated PDF and CDF are displayed in Figure 10. According 
to this graph, the IKD seems to be a suitable model for fitting the data. 

Figure 10. Estimated PDF and CDF Plots for IKD. 

Based on the aforementioned theoretical results, actual data sets are checked using 
the RSS and SRS sampling techniques. The SRS and RSS estimators from the IKD are 
shown in Tables 13 and 14 for various set sizes under five and ten cycles utilizing different 
estimating techniques. The R-package is used to generate the RSS and SRS observations. 

All estimates based on RSS are more efficient than their competitors based on SRS in
most of the situations (see Tables 9–12).
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Based on the aforementioned theoretical results, actual data sets are checked using 
the RSS and SRS sampling techniques. The SRS and RSS estimators from the IKD are 
shown in Tables 13 and 14 for various set sizes under five and ten cycles utilizing different 
estimating techniques. The R-package is used to generate the RSS and SRS observations. 

All estimates under RSS generally exhibit lower MSE than those under SRS for differ-
ent sample sizes.
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Based on the aforementioned theoretical results, actual data sets are checked using 
the RSS and SRS sampling techniques. The SRS and RSS estimators from the IKD are 
shown in Tables 13 and 14 for various set sizes under five and ten cycles utilizing different 
estimating techniques. The R-package is used to generate the RSS and SRS observations. 

As the cycles number increase, the Eff value of estimates increases in most of the cases
(Tables 9–12).
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Based on the aforementioned theoretical results, actual data sets are checked using 
the RSS and SRS sampling techniques. The SRS and RSS estimators from the IKD are 
shown in Tables 13 and 14 for various set sizes under five and ten cycles utilizing different 
estimating techniques. The R-package is used to generate the RSS and SRS observations. 

In most of the cases, as seen in Figures 2 and 3, the MSEs of all estimates decrease as
the set size increases. Also, the MSE of υ̂CM and τ̂CM has the highest values, while the
MSE of υ̂MPS, υ̂ML, τ̂MPS and τ̂ML has the smallest values.
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Based on the aforementioned theoretical results, actual data sets are checked using 
the RSS and SRS sampling techniques. The SRS and RSS estimators from the IKD are 
shown in Tables 13 and 14 for various set sizes under five and ten cycles utilizing different 
estimating techniques. The R-package is used to generate the RSS and SRS observations. 

In most of the cases, the MSEs of all estimates decrease as n◦ increases in both SRS
and RSS (see Figures 3 and 4).
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Based on the aforementioned theoretical results, actual data sets are checked using 
the RSS and SRS sampling techniques. The SRS and RSS estimators from the IKD are 
shown in Tables 13 and 14 for various set sizes under five and ten cycles utilizing different 
estimating techniques. The R-package is used to generate the RSS and SRS observations. 

The MSE of υ̂MPS, and τ̂MPS, take the least values at (υ, τ) = (0.5, 0.8) for sample
sizes = 15, 20 and 25 (see Figures 4 and 5).
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Based on the aforementioned theoretical results, actual data sets are checked using 
the RSS and SRS sampling techniques. The SRS and RSS estimators from the IKD are 
shown in Tables 13 and 14 for various set sizes under five and ten cycles utilizing different 
estimating techniques. The R-package is used to generate the RSS and SRS observations. 

The MSE of υ̂CM, and τ̂CM, get the largest values at (υ, τ) = (0.5, 0.8) for sample sizes
= 15, 20 and 25 in both sampling methods (see Figures 2–5).
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Based on the aforementioned theoretical results, actual data sets are checked using 
the RSS and SRS sampling techniques. The SRS and RSS estimators from the IKD are 
shown in Tables 13 and 14 for various set sizes under five and ten cycles utilizing different 
estimating techniques. The R-package is used to generate the RSS and SRS observations. 

The MSEs of υ and τ estimates for all methods of estimation in RSS are smaller than
the others via SRS (Figures 6 and 7).
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Based on the aforementioned theoretical results, actual data sets are checked using 
the RSS and SRS sampling techniques. The SRS and RSS estimators from the IKD are 
shown in Tables 13 and 14 for various set sizes under five and ten cycles utilizing different 
estimating techniques. The R-package is used to generate the RSS and SRS observations. 

The MSEs of υ̃MPS and υ̂MPS get the smallest values in both SRS and RSS schemes.
While, the MSEs of υ̃CM and υ̂CM get the highest values in both SRS and RSS in
majority of situations.
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Based on the aforementioned theoretical results, actual data sets are checked using 
the RSS and SRS sampling techniques. The SRS and RSS estimators from the IKD are 
shown in Tables 13 and 14 for various set sizes under five and ten cycles utilizing different 
estimating techniques. The R-package is used to generate the RSS and SRS observations. 

Figure 8 shows that AD is the most Eff method for υ estimates at (υ, τ) = (0.5, 1.2),
and h = 10 for different set sizes. Also, we conclude that the MPS is the least Eff
method for υ estimates at (υ, τ) = (0.5, 1.2), and h = 10 for different set sizes.
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Based on the aforementioned theoretical results, actual data sets are checked using 
the RSS and SRS sampling techniques. The SRS and RSS estimators from the IKD are 
shown in Tables 13 and 14 for various set sizes under five and ten cycles utilizing different 
estimating techniques. The R-package is used to generate the RSS and SRS observations. 

Figure 9 demonstrates that MPS is the least Eff method for τ estimates at (υ, τ) = (0.5, 1.2),
and h = 10 for different set sizes. Also, we conclude that AD is the most efficient
method for τ estimates at (υ, τ) = (0.5, 1.2), and h = 10 at different set sizes, except at
sample size 40.
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Based on the aforementioned theoretical results, actual data sets are checked using 
the RSS and SRS sampling techniques. The SRS and RSS estimators from the IKD are 
shown in Tables 13 and 14 for various set sizes under five and ten cycles utilizing different 
estimating techniques. The R-package is used to generate the RSS and SRS observations. 

Efficiency of all estimates increases as the set size increases (Figures 8 and 9).
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Based on the aforementioned theoretical results, actual data sets are checked using 
the RSS and SRS sampling techniques. The SRS and RSS estimators from the IKD are 
shown in Tables 13 and 14 for various set sizes under five and ten cycles utilizing different 
estimating techniques. The R-package is used to generate the RSS and SRS observations. 

The MSE always decreases as sample size increases, indicating that the estimates are
all consistent.
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Based on the aforementioned theoretical results, actual data sets are checked using 
the RSS and SRS sampling techniques. The SRS and RSS estimators from the IKD are 
shown in Tables 13 and 14 for various set sizes under five and ten cycles utilizing different 
estimating techniques. The R-package is used to generate the RSS and SRS observations. 

The estimates get more accurate as the sample size increases, indicating that they are
asymptotically unbiased.
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Based on the aforementioned theoretical results, actual data sets are checked using 
the RSS and SRS sampling techniques. The SRS and RSS estimators from the IKD are 
shown in Tables 13 and 14 for various set sizes under five and ten cycles utilizing different 
estimating techniques. The R-package is used to generate the RSS and SRS observations. 

In general, for fixed υ and τ as the sample size increases the suggested estimates of υ
and τ approach their real values.

Table 1. MSE values for all parameter estimates of IKD under SRS.

n◦ True
Value

ML MPS LS WLS CvM AD

PE MSE PE MSE PE MSE PE MSE PE MSE PE MSE

15
υ = 0.5 0.585 0.190 0.461 0.090 0.514 0.167 0.529 0.175 0.589 0.255 0.437 0.107
τ = 0.8 1.007 0.728 0.716 0.299 0.847 0.633 0.866 0.616 1.043 1.058 0.777 0.532

20
υ = 0.5 0.564 0.160 0.466 0.088 0.505 0.131 0.521 0.137 0.571 0.196 0.453 0.102
τ = 0.8 0.959 0.621 0.726 0.298 0.838 0.588 0.862 0.557 0.993 0.885 0.787 0.497

25
υ = 0.5 0.545 0.138 0.464 0.082 0.506 0.122 0.517 0.124 0.556 0.164 0.472 0.104
τ = 0.8 0.924 0.504 0.728 0.260 0.828 0.432 0.849 0.432 0.946 0.608 0.802 0.420

30
υ = 0.5 0.543 0.133 0.472 0.085 0.511 0.115 0.518 0.118 0.549 0.145 0.472 0.102
τ = 0.8 0.912 0.466 0.742 0.259 0.838 0.418 0.854 0.430 0.933 0.557 0.792 0.388

40
υ = 0.5 0.530 0.120 0.474 0.083 0.506 0.108 0.513 0.110 0.534 0.128 0.470 0.096
τ = 0.8 0.873 0.381 0.739 0.233 0.813 0.340 0.829 0.344 0.881 0.425 0.768 0.322

50
υ = 0.5 0.527 0.116 0.479 0.085 0.512 0.109 0.516 0.110 0.534 0.125 0.474 0.099
τ = 0.8 0.858 0.352 0.746 0.230 0.820 0.330 0.830 0.331 0.873 0.396 0.767 0.313

Table 2. MSE values for all parameter estimates of IKD under RRS.

q h True
Value

ML MPS LS WLS CvM AD

PE MSE PE MSE PE MSE PE MSE PE MSE PE MSE

3
5

υ = 0.5 0.557 0.029 0.444 0.020 0.489 0.037 0.492 0.030 0.570 0.070 0.510 0.025
τ = 0.8 0.936 0.170 0.670 0.121 0.772 0.217 0.785 0.193 0.964 0.365 0.824 0.153

10
υ = 0.5 0.535 0.008 0.460 0.010 0.494 0.015 0.501 0.014 0.530 0.020 0.506 0.012
τ = 0.8 0.226 0.336 0.709 0.059 0.789 0.095 0.805 0.086 0.877 0.121 0.818 0.071

4
5

υ = 0.5 0.539 0.016 0.449 0.015 0.486 0.025 0.494 0.026 0.542 0.038 0.505 0.017
τ = 0.8 0.892 0.077 0.680 0.073 0.766 0.161 0.786 0.166 0.900 0.229 0.809 0.079

10
υ = 0.5 0.512 0.004 0.465 0.007 0.493 0.010 0.498 0.008 0.520 0.012 0.502 0.008
τ = 0.8 0.188 0.377 0.713 0.039 0.776 0.054 0.789 0.043 0.841 0.064 0.799 0.041

5
5

υ = 0.5 0.529 0.001 0.451 0.010 0.489 0.014 0.493 0.012 0.533 0.020 0.502 0.010
τ = 0.8 0.862 0.049 0.684 0.055 0.762 0.081 0.775 0.067 0.868 0.107 0.798 0.053

10
υ = 0.5 0.495 0.003 0.467 0.005 0.491 0.006 0.496 0.005 0.511 0.007 0.499 0.005
τ = 0.8 0.167 0.402 0.723 0.028 0.774 0.035 0.787 0.029 0.825 0.039 0.796 0.027

Table 3. MSE values for all parameter estimates of IKD under SRS.

n◦ True
Value

ML MPS LS WLS CvM AD

PE MSE PE MSE PE MSE PE MSE PE MSE PE MSE

15
υ = 0.5 0.598 0.062 0.471 0.029 0.533 0.065 0.537 0.062 0.644 0.292 0.516 0.050
τ = 1.2 1.537 0.787 1.095 0.390 1.281 0.715 1.292 0.637 1.596 1.211 1.310 0.704

20
υ = 0.5 0.566 0.031 0.468 0.018 0.525 0.041 0.509 0.024 0.564 0.042 0.518 0.018
τ = 1.2 1.419 0.393 1.078 0.232 1.246 0.445 1.205 0.246 1.397 0.457 1.244 0.206

25
υ = 0.5 0.550 0.023 0.469 0.015 0.514 0.027 0.520 0.024 0.560 0.039 0.513 0.024
τ = 1.2 1.379 0.278 1.090 0.177 1.241 0.394 1.264 0.339 1.411 0.551 1.260 0.283

30
υ = 0.5 0.538 0.019 0.467 0.014 0.511 0.024 0.516 0.019 0.551 0.031 0.508 0.021
τ = 1.2 1.333 0.197 1.083 0.139 1.229 0.285 1.274 0.263 1.401 0.389 1.266 0.249

40
υ = 0.5 0.529 0.012 0.473 0.009 0.502 0.014 0.509 0.012 0.530 0.017 0.505 0.014
τ = 1.2 1.306 0.138 1.106 0.105 1.211 0.162 1.234 0.140 1.312 0.199 1.231 0.148

50
υ = 0.5 0.527 0.010 0.479 0.008 0.511 0.012 0.515 0.010 0.533 0.014 0.505 0.013
τ = 1.2 1.290 0.100 1.120 0.079 1.234 0.136 1.247 0.116 1.315 0.165 1.229 0.131
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Table 4. MSE values all parameter estimates of IKD under RSS.

q h
True

Value

ML MPS LS WLS CvM AD

PE MSE PE MSE PE MSE PE MSE PE MSE PE MSE

3
5

υ = 0.5 0.558 0.032 0.447 0.022 0.488 0.034 0.493 0.032 0.568 0.059 0.514 0.028
τ = 1.2 1.390 0.319 1.003 0.242 1.144 0.417 1.161 0.378 1.432 0.715 1.237 0.321

10
υ = 0.5 0.525 0.011 0.458 0.010 0.496 0.016 0.499 0.013 0.532 0.020 0.506 0.012
τ = 1.2 1.308 0.132 1.071 0.122 1.187 0.194 1.206 0.173 1.321 0.248 1.231 0.141

4
5

υ = 0.5 0.541 0.018 0.448 0.014 0.495 0.025 0.499 0.022 0.552 0.038 0.508 0.017
τ = 1.2 1.356 0.198 1.027 0.169 1.179 0.276 1.175 0.243 1.384 0.398 1.239 0.200

10
υ = 0.5 0.517 0.007 0.463 0.007 0.488 0.010 0.495 0.008 0.514 0.012 0.499 0.008
τ = 1.2 1.254 0.072 1.068 0.082 1.145 0.113 1.172 0.096 1.240 0.129 1.189 0.084

5
5

υ = 0.5 0.529 0.010 0.452 0.010 0.484 0.013 0.490 0.011 0.527 0.018 0.501 0.010
τ = 1.2 1.309 0.130 1.037 0.129 1.144 0.178 1.168 0.152 1.301 0.232 1.209 0.142

10
υ = 0.5 0.514 0.004 0.466 0.005 0.492 0.006 0.496 0.005 0.512 0.006 0.499 0.004
τ = 1.2 1.247 0.051 1.081 0.060 1.162 0.075 1.180 0.060 1.238 0.085 1.190 0.055

Table 5. MSE values for all parameter estimates of IKD under SRS.

n◦
True

Value

ML MPS LS WLS CvM AD

PE MSE PE MSE PE MSE PE MSE PE MSE PE MSE

15
υ = 1.5 1.915 1.204 1.381 0.445 1.661 1.138 1.670 1.029 2.102 2.710 1.707 0.805
τ = 1.5 1.739 0.362 1.356 0.229 1.542 0.409 1.556 0.370 1.803 0.655 1.601 0.300

20
υ = 1.5 1.759 0.528 1.359 0.251 1.598 0.710 1.604 0.618 1.882 1.504 1.624 0.405
τ = 1.5 1.652 0.238 1.349 0.178 1.498 0.269 1.515 0.238 1.678 0.366 1.549 0.207

25
υ = 1.5 1.715 0.443 1.379 0.234 1.605 0.372 1.623 0.333 1.816 0.631 1.613 0.278
τ = 1.5 1.615 0.171 1.361 0.141 1.495 0.132 1.521 0.175 1.634 0.253 1.536 0.156

30
υ = 1.5 1.709 0.341 1.413 0.189 1.598 0.372 1.614 0.339 1.769 0.561 1.626 0.300
τ = 1.5 1.629 0.151 1.402 0.115 1.536 0.192 1.554 0.172 1.654 0.243 1.567 0.149

40
υ = 1.5 1.600 0.171 1.376 0.124 1.523 0.227 1.543 0.203 1.638 0.297 1.550 0.177
τ = 1.5 1.567 0.096 1.387 0.088 1.491 0.124 1.512 0.112 1.576 0.143 1.522 0.101

50
υ = 1.5 1.587 0.127 1.398 0.097 1.530 0.172 1.546 0.150 1.622 0.218 1.548 0.130
τ = 1.5 1.563 0.076 1.410 0.069 1.508 0.100 1.525 0.088 1.577 0.115 1.530 0.078

Table 6. MSE values for all parameter estimates of IKD under RSS.

q h
True

Value

ML MPS LS WLS CvM AD

PE MSE PE MSE PE MSE PE MSE PE MSE PE MSE

3
5

υ = 1.5 1.779 0.665 1.302 0.328 1.519 0.951 1.529 0.802 1.880 1.903 1.593 0.660
τ = 1.5 1.673 0.248 1.300 0.202 1.437 0.326 1.459 0.289 1.672 0.450 1.524 0.234

10
υ = 1.5 1.652 0.191 1.381 0.147 1.527 0.285 1.550 0.245 1.686 0.418 1.576 0.222
τ = 1.5 1.586 0.094 1.369 0.100 1.473 0.139 1.498 0.121 1.587 0.165 1.521 0.109

4
5

υ = 1.5 1.690 0.317 1.315 0.228 1.500 0.456 1.525 0.422 1.750 0.784 1.558 0.323
τ = 1.5 1.608 0.142 1.305 0.156 1.438 0.198 1.461 0.178 1.611 0.251 1.500 0.151

10
υ = 1.5 1.582 0.109 1.364 0.098 1.493 0.166 1.504 0.132 1.606 0.220 1.521 0.120
τ = 1.5 1.543 0.057 1.366 0.070 1.460 0.088 1.475 0.071 1.545 0.099 1.491 0.064

5
5

υ = 1.5 1.610 0.168 1.310 0.152 1.455 0.224 1.478 0.203 1.639 0.340 1.513 0.179
τ = 1.5 1.567 0.097 1.318 0.119 1.432 0.130 1.453 0.121 1.568 0.154 1.485 0.106

10
υ = 1.5 1.557 0.068 1.375 0.072 1.474 0.103 1.494 0.085 1.561 0.125 1.505 0.074
τ = 1.5 1.539 0.041 1.388 0.053 1.467 0.064 1.486 0.053 1.534 0.069 1.496 0.048
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Table 7. MSE values for all parameter estimates of IKD under SRS.

n◦
True

Value

ML MPS LS WLS CvM AD

PE MSE PE MSE PE MSE PE MSE PE MSE PE MSE

15
υ = 1.2 1.494 0.663 1.098 0.245 1.337 1.17 1.332 0.822 1.65 2.245 1.345 0.476
τ = 0.8 0.926 0.114 0.712 0.072 0.812 0.133 0.822 0.117 0.952 0.203 0.848 0.095

20
υ = 1.2 1.469 0.367 1.15 0.156 1.314 0.42 1.325 0.37 1.541 0.906 1.350 0.278
τ = 0.8 0.928 0.091 0.752 0.055 0.828 0.099 0.84 0.088 0.935 0.146 0.863 0.08

25
υ = 1.2 1.359 0.225 1.109 0.126 1.252 0.229 1.261 0.200 1.406 0.365 1.281 0.189
τ = 0.8 0.867 0.058 0.724 0.046 0.800 0.063 0.810 0.056 0.88 0.081 0.823 0.052

30
υ = 1.2 1.305 0.159 1.093 0.104 1.227 0.225 1.239 0.179 1.348 0.317 1.248 0.150
τ = 0.8 0.846 0.043 0.722 0.038 0.793 0.055 0.804 0.047 0.859 0.067 0.813 0.042

40
υ = 1.2 1.291 0.094 1.119 0.066 1.231 0.124 1.245 0.108 1.318 0.166 1.250 0.092
τ = 0.8 0.842 0.031 0.740 0.027 0.801 0.038 0.811 0.034 0.849 0.045 0.816 0.031

50
υ = 1.2 1.274 0.079 1.129 0.059 1.234 0.106 1.246 0.093 1.303 0.134 1.247 0.081
τ = 0.8 0.837 0.025 0.751 0.023 0.807 0.034 0.817 0.0300 0.846 0.039 0.819 0.027

Table 8. MSE values for all parameter estimates of IKD under RSS.

q h
True

Value

ML MPS LS WLS CvM AD

PE MSE PE MSE PE MSE PE MSE PE MSE PE MSE

3
5

υ = 1.2 1.422 0.372 1.056 0.170 1.224 0.452 1.225 0.358 1.514 1.070 1.272 0.259
τ = 0.8 0.896 0.077 0.687 0.062 0.772 0.103 0.778 0.083 0.910 0.155 0.813 0.068

10
υ = 1.2 1.304 0.109 1.099 0.086 1.218 0.157 1.238 0.151 1.335 0.223 1.252 0.126
τ = 0.8 0.846 0.034 0.724 0.037 0.789 0.048 0.802 0.046 0.854 0.058 0.813 0.039

4
5

υ = 1.2 1.335 0.177 1.059 0.133 1.178 0.229 1.197 0.206 1.358 0.381 1.234 0.175
τ = 0.8 0.868 0.048 0.700 0.047 0.766 0.065 0.780 0.059 0.864 0.083 0.805 0.050

10
υ = 1.2 1.257 0.058 1.094 0.057 1.190 0.089 1.205 0.077 1.275 0.117 1.214 0.064
τ = 0.8 0.831 0.019 0.731 0.023 0.787 0.029 0.798 0.025 0.836 0.034 0.805 0.021

5
5

υ = 1.2 1.289 0.090 1.058 0.077 1.153 0.104 1.168 0.090 1.287 0.153 1.203 0.078
τ = 0.8 0.842 0.028 0.703 0.032 0.757 0.037 0.768 0.031 0.834 0.044 0.791 0.028

10
υ = 1.2 1.233 0.036 1.095 0.044 1.185 0.059 1.195 0.048 1.250 0.072 1.201 0.042
τ = 0.8 0.813 0.013 0.728 0.018 0.781 0.020 0.788 0.016 0.818 0.022 0.792 0.015

Table 9. Eff values for all estimates.

q h True Value ML MPS LS WLS CvM AD

3
5

υ = 0.5 6.552 4.500 4.514 5.833 3.643 4.280
τ = 0.8 4.282 2.471 2.917 3.192 2.899 3.477

10
υ = 0.5 16.220 8.500 7.667 8.429 7.250 8.500
τ = 0.8 1.387 4.390 4.400 5.000 4.603 5.465

4
5

υ = 0.5 10.000 5.867 5.240 5.269 5.158 6.000
τ = 0.8 8.065 4.082 3.652 3.355 3.865 6.291

10
υ = 0.5 28.571 11.690 10.800 13.253 10.667 12.468
τ = 0.8 1.011 5.974 6.296 8.000 6.641 7.854

5
5

υ = 0.5 138.000 8.200 8.714 10.333 8.200 10.722
τ = 0.8 10.286 4.727 5.333 6.448 5.682 7.925

10
υ = 0.5 44.615 17.000 17.302 21.195 17.361 20.625
τ = 0.8 0.876 8.214 9.429 11.414 10.154 11.593
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Table 10. Eff values for all estimates.

q h True Value ML MPS LS WLS CvM AD

3
5

υ = 0.5 1.938 1.318 1.912 1.938 4.949 1.786
τ = 1.2 2.467 1.612 1.715 1.685 1.694 2.193

10
υ = 0.5 1.727 1.400 1.500 1.462 1.550 1.750
τ = 1.2 1.492 1.139 1.469 1.520 1.569 1.766

4
5

υ = 0.5 1.722 1.286 1.640 1.091 1.105 1.059
τ = 1.2 1.985 1.373 1.612 1.012 1.148 1.030

10
υ = 0.5 1.739 1.292 1.400 1.379 1.417 1.842
τ = 1.2 1.917 1.280 1.434 1.458 1.543 1.762

5
5

υ = 0.5 2.300 1.546 2.077 2.182 2.167 2.400
τ = 1.2 2.138 1.372 2.213 2.230 2.375 1.993

10
υ = 0.5 2.310 1.531 2.143 2.128 2.188 3.023
τ = 1.2 1.961 1.317 1.813 1.933 1.941 2.382

Table 11. Eff values for all estimates.

q h True Value ML MPS LS WLS CvM AD

3
5

υ = 1.5 1.811 1.357 1.197 1.283 1.424 1.220
τ = 1.5 1.460 1.134 1.255 1.280 1.456 1.282

10
υ = 1.5 1.785 1.286 1.305 1.384 1.342 1.351
τ = 1.5 1.606 1.150 1.381 1.421 1.473 1.367

4
5

υ = 1.5 1.666 1.101 1.557 1.464 1.918 1.254
τ = 1.5 1.676 1.141 1.359 1.337 1.458 1.371

10
υ = 1.5 1.569 1.265 1.367 1.538 1.350 1.475
τ = 1.5 1.684 1.257 1.409 1.577 1.444 1.578

5
5

υ = 1.5 2.637 1.539 1.661 1.640 1.856 1.553
τ = 1.5 1.763 1.185 1.015 1.446 1.643 1.472

10
υ = 1.5 1.868 1.347 1.670 1.765 1.744 1.757
τ = 1.5 1.854 1.302 1.563 1.660 1.667 1.625

Table 12. Eff values for all estimates.

q h True Value ML MPS LS WLS CvM AD

3
5

υ = 1.2 1.782 1.441 2.588 2.296 2.098 1.838
τ = 0.8 1.481 1.161 1.291 1.410 1.310 1.397

10
υ = 1.2 1.459 1.209 1.433 1.185 1.422 1.190
τ = 0.8 1.265 1.027 1.146 1.022 1.155 1.077

4
5

υ = 1.2 2.073 1.173 1.834 1.796 2.378 1.589
τ = 0.8 1.896 1.170 1.523 1.492 1.759 1.600

10
υ = 1.2 1.621 1.158 1.393 1.403 1.419 1.438
τ = 0.8 1.632 1.174 1.310 1.360 1.324 1.476

5
5

υ = 1.2 2.500 1.636 2.202 2.222 2.386 2.423
τ = 0.8 2.071 1.438 1.703 1.806 1.841 1.857

10
υ = 1.2 2.194 1.341 1.797 1.938 1.861 1.929
τ = 0.8 1.923 1.278 1.700 1.875 1.773 1.800

6. Real Data Application

In order to demonstrate the utility of the suggested estimators, a real data set was
taken into consideration and carefully thoroughly explained in this part. The informa-
tion is based on the times between 64 consecutive eruptions of Kiama Blowhole in 1998.
A popular tourist destination is the Kiama Blowhole, which is around 120 km south
of Sydney. The water is forced into a cliff’s gap by the ocean’s surging. The water
then bursts forth via an opening, typically dousing everyone close. Since 12 July 1998,
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there have been 1340 h’ worth of eruption data collected. These are the data set’s details:
83 51 87 60 28 95 8 27 15 10
18 16 29 54 91 8 17 55 10 35
47 77 36 17 21 36 18 40 10 7
34 27 28 56 8 25 68 146 89 18
73 69 9 37 10 82 29 8 60 61
61 18 169 25 8 26 11 83 11 42
17 14 9 12

Using the Kolmogorov-Smirnov (K–S) test, the data set is checked for such a fitted
model and the estimates are obtained using the ML method. With a p-value (PV) of 0.591,
the K–S distance is 0.409. As a result, it is obvious that the IKD is a suitable model for fitting
these data. Data’s estimated PDF and CDF are displayed in Figure 10. According to this
graph, the IKD seems to be a suitable model for fitting the data.
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Based on the aforementioned theoretical results, actual data sets are checked using the
RSS and SRS sampling techniques. The SRS and RSS estimators from the IKD are shown in
Tables 13 and 14 for various set sizes under five and ten cycles utilizing different estimating
techniques. The R-package is used to generate the RSS and SRS observations.

Table 13. SRS estimates of the data set based on different estimation methods.

n ML MPS LS WLS CvM AD

15
υ 52.759 28.766 22.742 27.786 32.434 34.004
τ 1.29 1.107 1.024 1.092 1.127 1.147

20
υ 61.707 37.744 362.488 566.907 646.151 49.261
τ 1.232 1.098 1.623 1.749 1.771 1.146

25
υ 46.967 31.391 41.129 47.972 54.742 38.924
τ 1.196 1.082 1.123 1.185 1.2 1.124

30
υ 89.6 59.695 52.938 67.719 65.581 66.906
τ 1.426 1.306 1.249 1.336 1.31 1.326

40
υ 65.611 48.335 87.959 117.002 109.634 59.715
τ 1.284 1.198 1.322 1.42 1.381 1.237

We considered the K–S test for quantifying the distance between the empirical distribu-
tion function of the real data and the CDF using the estimators’ parameters in each design,
based on the choices of q and h, in order to demonstrate the superiority of RSS over the SRS
using various estimation methods considered in this study. Be aware that we have substi-
tuted the K–S for the mean squared in this case. Obviously, estimators that outperform the
other competitors have larger PVs (greater than 5%) and lower K–S values. Remember that
for data, the MLEs based on SRS are regarded as the true population parameters.
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Table 14. RSS estimates of the data set based on different estimation methods.

q h ML MPS LS WLS CvM AD

3
5

υ 30.92 22.378 13.259 18.47 17.111 20.176
τ 1.159 1.059 0.889 0.996 0.963 1.02

10
υ 40.778 32.993 19.161 29.912 22.273 26.569
τ 1.294 1.228 1.046 1.192 1.092 1.153

4
5

υ 49.991 32.709 23.525 30.568 29.35 31.467
τ 1.286 1.167 1.049 1.138 1.114 1.144

10
υ 64.691 46.637 46.466 71.757 53.781 45.476
τ 1.311 1.228 1.194 1.354 1.235 1.203

5 5
υ 56.251 56.251 43.076 33.266 44.666 38.693
τ 1.33 1.33 1.26 1.159 1.272 1.204

The SRS design is considered for this dataset and for each estimation method, where
the estimators are obtained using a sample of size qh = 40. Using the RSS with sample of
sizes q = 4 and h = 10 is considered for calculating the estimators. We compare the SRS and
RSS designs in terms of the K–S distance value and PVs results given in Table 15, and the
corresponding fittings are displayed in Figures 11 and 12. Due to the smallest values of the
K–S and the corresponding largest PVs, the RSS is more efficient than the SRS based on the
same number of measured units for all estimators.
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Table 15. The PEs, KS and PV in SRS and RSS designs for the dataset at sample size for nº = qh = 40.

Method
υ τ K–S PV

SRS RSS SRS RSS SRS RSS SRS RSS

ML 65.611 58.035 1.284 1.365 0.128 0.096 0.525 0.858
MPS 48.335 61.198 1.198 1.382 0.135 0.098 0.461 0.838
LS 87.959 38.497 1.322 1.225 0.140 0.106 0.411 0.761

WLS 117.002 52.336 1.420 1.326 0.114 0.087 0.674 0.924
CvM 109.634 44.232 1.381 1.267 0.591 0.099 0.409 0.826
AD 59.715 50.793 1.237 1.316 0.132 0.089 0.489 0.911
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7. Conclusions

This article considered the problem of RSS-based estimation for the IKD parameters
using some estimation techniques; such as, the maximum likelihood, the maximum product
of spacing, the ordinary and weighted least squares, the Cramer-von Mises, and the
Anderson-Darling. With the aid of a simulation study and the use of a real dataset, the
performance results of the proposed estimators are contrasted with those of their SRS
equivalents based on the same number of measured units. The numerical simulation
results show that for all outcomes shown in the tables with the same sample sizes, the
proposed RSS estimators are superior to their SRS counterparts in terms of the smallest MSE.
The estimates are asymptotically unbiased because their accuracy improves with sample
size. The results of the real dataset also showed that the RSS design is superior to the SRS
design due to the largest values for its P-values. As future research the IKD parameters
can be estimated using other modifications of RSS as modified robust extreme ranked set
sampling [32], neoteric RSS [33] and varied RSS [34]. Also, the process performance index
of the IKD can be obtained in future [35,36].
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