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Abstract: This research is devoted to investigating the thermo-piezoelectric bending of functionally
graded (FG) porous piezoelectric plates reinforced with graphene platelets (GPLs). A refined four-
variable shear deformation plate theory is utilized considering the transverse shear strain to describe
the displacement components. The porous nanocomposite plate is composed of polymer piezoelectric
material containing internal pores and reinforced with FG GPLs. In accordance with modified
distribution laws, the porosity and GPLs volume fraction are presumed to vary continuously through
the plate thickness. Four GPLs and porosity distribution types are presented. By applying the
Halpin–Tsai model, the elastic properties of the nanocomposite plate are calculated. The governing
equations are derived based on the present theory and the principle of virtual work. The deduced
partial differential equations are converted to ordinary equations by employing Levy-type solution.
These equations are numerically solved based on the differential quadrature method (DQM). In order
to determine the minimum grid points sufficient to gain a converging solution, a convergence study
is introduced. Moreover, the accuracy of the present formulations are examined by comparing the
obtained results with those published in the literature. Additional parametric analyses are introduced
to investigate the influences of the GPLs weight fraction, distribution types, side-to-thickness ratio,
external electric voltage and temperature on the thermal bending of FG GPLs porous nanocomposite
piezoelectric plates.

Keywords: Levy-type solution; differential quadrature method; porosity; piezoelectric; graphene
platelets

MSC: 74G15

1. Introduction

Materials that can generate electric charges whenever they are deformed and sub-
jected to a mechanical load and vice versa are called piezoelectric materials [1]. Composite
structures with layers of such materials, known as active lightweight smart structures, have
drawn considerable attention for variety different applications such as sensors, heat ex-
changers, automobiles, nuclear devices and transducers. Furthermore, piezoelectric sensors
react to vibrations and produce an electric voltage; the resultant voltage can be prepared
and intensified by a feedback gain and then applied to an actuator. Because of the converse
piezoelectric impact, the actuator will create a control force. Therefore, the piezoelectric
materials are extensively utilized for the manufacture of intelligent structures and systems
due to their ability to suppress dynamic vibrations and to control shape [2]. Extraordinary
composite structures with piezoelectric materials are characterized by electro-mechanical
coupling properties, as well as the effective capability to convert energy types such as
mechanical and electrical energy between each other [3]. Accordingly, several studies in the
open literature have analyzed the behavior of such materials, which makes dealing with the
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FGMs more efficient, as discussed by Wu et al. [4]. Based on the DQM, Sobhy [3] discussed
the axisymmetric bending response of sandwich annular and circular nanoplates with FG
GPLs-reinforced face layers and an FG porous core, integrated with piezoelectric layers
lying on elastic foundations. By using the finite element method and the Euler–Bernoulli
theory, El Harti et al. [5] investigated the vibration control of FG porous beams with bonded
piezoelectric materials under a thermal environment, in which the motion equations were
obtained through Hamilton’s principle. Mallek et al. [6] presented the nonlinear dynamic
behavior of piezolaminated FG carbon nanotube-reinforced composite shells based on the
improved first-order shear deformation theory. Zenkour and Aljadani [7] examined the
electro-mechanical buckling behavior of simply supported rectangular FG piezoelectric
(FGP) plates under the impact of external electric voltage using a quasi-3D refined plate
theory. Moreover, Moradi-Dastjerdi and Behdinan [8] analyzed the free vibration behavior
of smart sandwich plates with piezoelectric face sheets and porous FG carbon nanotubes,
employing Reddy’s third-order shear deformation theory.

Graphene guarantees efficient electro-mechanical and thermal characteristics, such
as semi-perfect optical transparency and electrical conductivity [9]. The tensile strength
of graphene is about 130.5 GPa, it has a Young’s modulus greater than 1 TPa and its elec-
trical conductivity is 1000 times greater than copper in terms of electric current-carrying
capacity. In the basic structure of graphene, carbon atoms are arranged in regular hexag-
onal pattern as in the case of graphite, but in a one-atom-thick sheet. It is very light,
with a 1 m2 of a single-sheet weighing only 0.77 mg [10]. Moreover, the specific-surface-
area of the graphene is around 2630 m2/g [11], whereas that of carbon nanotubes is in
the range of 100–1000 m2/g. Graphene represents the best reinforcement for polymer-,
metal- and ceramic-matrix composite structures to enhance their mechanical properties
and piezoelectric characteristics, as well as their stiffness. As a consequence, many articles
have investigated the properties and behavior of piezoelectric nanocomposite structures
reinforced with graphene platelets (GPLs). Experimentally, Abolhasani et al. [12] pre-
pared piezoelectric PVDF (polyvinylidene fluoride) composite nanofibers reinforced with
graphene and investigated the polymorphism, crystallinity, electrical outputs and morphol-
ogy of these composites. Mao et al. [13] discussed the small-scale effect on the frequencies
of graphene nanoplatelet-reinforced FG piezoelectric composite microplates depending on
the nonlocal constitutive relation in addition to von Karman geometric non-linearity. Fur-
thermore, Sobhy and Al Mukahal [14] presented the free vibration of piezoelectromagnetic
plates reinforced with FG graphene nanosheets (FG-GNSs) subjected to external electric
and magnetic potentials. They found that the increase of the elastic foundation stiffness,
graphene weight fraction and applied magnetic potential and electromagnetic properties
of graphene can enhance plate stiffness. They also [15] studied wave propagation in a
sandwich plate with GPLs-reinforced piezoelectromagnetic face layers and a honeycomb
core based on higher-order shear deformation plate theory. Alazwari et al. [16] employed
the DQM to investigate the critical buckling temperature of piezoelectric circular nanoplates
reinforced with uniformly distributed GPLs resting on an elastic substrate and subjected to
an external electric field.

Porous structures are attracting remarkable attention as advanced engineering ma-
terials in aerospace vehicles, the automotive industry and civil manufacturing due to
their outstanding multi-functionality, such as low specific weight, reduced thermal and
electrical conductivity, and efficient capacity for energy dissipation. Porous materials are
now commercially available for manufacturing lightweight sandwich structures. Com-
posite structures with porosity can resist bending and shear forces, alongside reducing
damping vibration; as a result, they have been greatly studied by many authors. Therefore,
it is important to consider the impact of porosity on the static and dynamic behavior of
FGM plates [17,18]. Sahmani et al. [19] illustrated the nonlinear bending response of FG
graphene-reinforced porous nanobeams. In addition, Amir et al. [20] have presented the
free vibration of porous three-layered annular and circular microplates reinforced with FG
carbon nanotubes. Furthermore, the free vibrational behavior of porous nanocomposite
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metal foam shells reinforced with GPLs has been demonstrated by Barati and Zenkour [21]
considering different porosity distributions, in which their outcomes were performed with
the help of first-order shear deformation theory together with Galerkin’s method. In their re-
search, it was obvious that the distribution of porosity did, in fact, greatly affect vibrational
frequencies. Furthermore, the hygrothermal buckling work of porous FGM microplates and
microbeams was analyzed in an article of Sobhy [22], depending on a new four-variable
shear deformation theory and the modified couple stress theory. Additional recent works
in the literature have discussed the various behaviors of porous FGGPLs-reinforced com-
posites, such as (Sahmani and Madyira [23], Zhao et al. [24], Ansari et al. [25], Zenkour
and Aljadani [26], and Raza et al. [27]).

As shown in previous studies, several investigations about the behavior of porous
polymer- or metal-GPLs-reinforced structures have been performed; nevertheless, there is
little research on piezoelectric materials reinforced with GPLs. There are no research studies
on the behavior of FG porous piezoelectric materials reinforced with GPLs. Therefore,
a new investigation depending on the Levy procedure and the DQM is introduced to
analyze the thermal bending of FG porous piezoelectric/GPLs plates. Moreover, increasing
temperature has significant effects on the behavior of the structures. The increase of
temperature negatively affects the mechanical properties of the panels. To reduce the
temperature effects, various types of porosity are considered in the present composed
plate. A refined four-variable shear deformation plate theory is presented to describe the
displacement components. The current plate consists of a piezoelectric material containing
internal pores and is supported by FG GPLs. Depending on the Halpin–Tsai model, the
effective Young’s modulus of the nanocomposite plate is evaluated. According to the
rule of the mixture, Poisson’s ratio, the thermal expansion coefficient and piezoelectric
properties are computed for four FG GPLs and porosity-distribution types. In addition,
according to modified distribution laws, the volume fraction of graphene and the porosity
vary continuously throughout the thickness of the plate. The differential equations are
deduced by using the principle of virtual work including thermal loads. Next, the accuracy
of the present formulations and theory is validated by comparison with some examples
from other research in the literature. Moreover, the influences of the GPLs volume fraction,
distribution types, external electric voltage and other parameters on thermal bending are
all investigated.

2. Mathematical Formulation

Consider a rectangular plate made of porous piezoelectric material reinforced with
GPLs. The geometry of this plate is prescribed by the Cartesian coordinate system x1, x2
and x3 placed in the mid-plane, with the origin positioned at the plate’s corner. As obvious
in Figure 1, the related dimensions are the plate length A, width B and thickness H.
Furthermore, the porosity and GPLs are continuously varied. Four different types of
porous plates are considered in this paper, as shown in Figure 2, depending on how the
interior pores are distributed throughout the thickness of the plate: (a) uniform porosity
distribution—the pores in this type are evenly distributed (Type I); (b) porosity distribution
Type II—the distribution of the pores is as small as possible at the top and bottom, and then
gradually increases until it reaches its highest value at the middle of the plate, (c) porosity
distribution Type III—in this type, we have the opposite of Type II; the distribution of the
pores is maximum at the top and bottom of the plate, and is minimum in the middle; (d)
porosity distribution Type IV—in the last case, the distribution of pores is maximum at the
bottom and gradually decreases until it reaches its smallest value at the top. The internal
porosities of Types II, III and IV vary in density along the plate thickness.



Mathematics 2022, 10, 4104 4 of 30

 

 

 

 

 

 

 

 

 

 

  

H 

 

x2 

x3 

A 

 

B 

 

x1  

Figure 1. Configuration and coordinates of a porous nanocomposite plate.
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Figure 2. Porosity distribution types.

The effective mechanical and piezoelectric characteristics of porous nanocomposite
plates as functions of x3 are given as follows by the closed-cell cellular solids [28,29]:

E(x3) = Ē[1− e0K(x3)],

α(x3) = ᾱ[1− e1K(x3)],

ζij(x3) = ζ̄ij[1− e0K(x3)], ij = 1, 2, 3, 4, 5,

fii(x3) = f̄ii[1− e0K(x3)], i = 1, 2, 3,

ν(x3) = ν̄
[
1− 1.21P̌ + 0.342P̌2

]
+ 0.221P̌,

(1)

in which Ē = Emax, ᾱ = αmax, ζ̄ij = ζmax
ij , f̄ii = f max

ii and ν̄ = νmax denote Young’s modulus,
the thermal expansion coefficient, the piezoelectric coefficients, the dielectric coefficients
and Poisson’s ratio of the nanocomposite structures without porosity, respectively. Further-
more, according to Kitipornchai et al. [29], the mass density coefficient e1 is presented in
terms of the porosity coefficient e0 as:

e1 =
P̌(x3)

K(x3)
, P̌(x3) = 1.121

{
1− [1− e0K(x3)]

1
2.3

}
, (2)
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and

K(x3) =



1 for Type I,

1−
(
2 x3

H
)2 for Type II,(

2 x3
H
)2 for Type III,(

1
2 −

x3
H

)
for Type IV.

(3)

The shear modulus of the plates with pores is

G(x3) =
E(x3)

2[1 + ν(x3)]
. (4)

Next, using the Halpin–Tsai micromechanics model and the mixture rule [30–33], it is
possible to predict the effective material properties of the FG GPLs-reinforced plates:

Ē =
Em

8

(
3

η1 + 2ξG
L vG

η1 − vG
+ 5

η2 + 2ξG
b vG

η2 − vG

)
,

ρ̄ = vGρG + (1− vG)ρm,

ν̄ = vGνG + (1− vG)νm,

ᾱ = vGαG + (1− vG)αm,

ζ̄ij = vGζG
ij + (1− vG)ζ

m
ij , ij = 1, 2, 3, 4, 5,

f̄ii = vG f G
ii + (1− vG) f m

ii , i = 1, 2, 3,

(5)

where EG(Em), ρG(ρm), νG(νm) and αG(αm) are Young’s modulus, mass density, Poisson’s
ratio and thermal expansion coefficient of the GPLs (piezoelectric material), respectively.
Moreover, the remaining properties, ζG

ij (ζ
m
ij ) and f G

ii ( f m
ii ) denote the piezoelectric coeffi-

cients and the dielectric of the GPLs (piezoelectric material), respectively. However, the
values for the parameters η1, η2, ξG

L and ξG
b are provided as [29]:

η1 =
EG + 2ξG

L Em

EG − Em
, ξG

L =
LG

hG ,

η2 =
EG + 2ξG

b Em

EG − Em
, ξG

b =
bG

hG ,

(6)

in which LG, bG and hG denote the length, width and thickness of the GPLs, respectively.
In addition, there are four different GPLs distribution patterns, created by altering

the volume fraction of the GPLs through the thickness of the plates according to a cosine
distribution rule. The GPLs are evenly dispersed throughout the thickness for Pattern A. In
contrast, the GPLs for Patterns B, C and D are functionally graded through the thickness,
as shown in Figure 3. As a result, the volume fraction vG(x3) of GPLs can be expressed as
follows [29]:

vG(x3) =


v1 for Pattern A,

v2 cos(πx3
H ) for Pattern B,

v3[1− cos(πx3
H )
]

for Pattern C,

v4[1− cos(πx3
2H + π

4 )
]

for Pattern D,

(7)

where vi are defined as the top values of GPLs volume fraction, which can be calculated
as [29]: ∫ H/2

−H/2
vG(x3)(1− P̌)dx3 =

W f

W f + ρG/ρm −W f ρG/ρm

∫ H/2

−H/2
(1− P̌)dx3, (8)
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where W f is the GPLs weight fraction.
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3. Constitutive Equations

The two-variable shear deformation plate theory was first established for isotropic pan-
els by Shimpi [34]. This theory has been extended for FG structures by many authors [35,36],
and contains four variables and various shape functions. This theory considers the trans-
verse shear effects and parabolic distribution of the transverse shear stresses through the
thickness. Since the transverse shear strains and stresses are correctly represented, it is
unnecessary to use shear correction factors. In addition, this theory satisfies the traction-free
boundary conditions at the panel faces. Accordingly, a modified refined four-variable shear
deformation theory [14,34,37] for FG porous GPLs-reinforced plates is presented to describe
the displacement components as follows:

U(x1, x2, x3) = u0(x1, x2)− x3
∂w1

∂x1
− f (x3)

∂w2

∂x1
,

V(x1, x2, x3) = v0(x1, x2)− x3
∂w1

∂x2
− f (x3)

∂w2

∂x2
,

W(x1, x2, x3) = w1(x1, x2) + w2(x1, x2),

(9)

where u0(x1, x2) and v0(x1, x2) represent the components of the mid-plane displacements
along the x1- and x2-axes, respectively. The deflection W(x1, x2, x3) is separated into two
components, w1(x1, x2) and w2(x1, x2), which specify, respectively, the bending and the
shear displacements, according to Shimpi’s theory [34] and f (x3) = x3− F(x3). In addition,
the shape function that describes the configuration of the shear stress along the thickness
of the plate can be demonstrated by [15,34]:

F(x3) =
x3

1 + (x3/H)2 −
5
8

x3
3

H2 . (10)

The components of the strains can be calculated using the displacements field (9)
as follows:
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ε11 =
∂U
∂x1

=
∂u0

∂x1
− x3

∂2w1

∂x2
1
− f (x3)

∂2w2

∂x2
1

,

ε22 =
∂V
∂x2

=
∂v0

∂x2
− x3

∂2w1

∂x2
2
− f (x3)

∂2w2

∂x2
2

,

ε33 =
∂W
∂x3

= 0,

ε12 =
∂U
∂x2

+
∂V
∂x1

=
∂u0

∂x2
+

∂v0

∂x1
− 2x3

∂2w1

∂x1∂x2
− 2 f (x3)

∂2w2

∂x1∂x2
,

ε13 =
∂U
∂x3

+
∂W
∂x1

= F′(x3)
∂w2

∂x1
,

ε23 =
∂V
∂x3

+
∂W
∂x2

= F′(x3)
∂w2

∂x2
.

(11)

In terms of the piezoelasticity theory [3,38,39], the constitutive relationship for the
components of the stresses σ can be described as follows :

σ11

σ22

σ23

σ13

σ12


=



R11 R12 0 0 0

R12 R22 0 0 0

0 0 R44 0 0

0 0 0 R55 0

0 0 0 0 R66





ε11 − αT

ε22 − αT

ε23

ε13

ε12


−



0 0 ζ31

0 0 ζ32

0 ζ24 0

ζ15 0 0

0 0 0




Ê1

Ê2

Ê3

, (12)

where (R11, R12, R22, R44, R55, R66) are the composite plate’s elastic coefficients, which are
written as:

R11 = R22 =
E

1− ν2 , R12 =
Eν

1− ν2 , R44 = R55 = R66 =
E

2(1 + ν)
, (13)

and T(x1, x2, x3) denotes the applied temperature, which is supposed to be vary along the
thickness of the plate according to the following law [32]:

T(x1, x2, x3) =
( x3

H
+

1
2

)k
T̄(x1, x2), k > 0, (14)

where k indicates the temperature exponent. Furthermore, the electric displacements Di
can be written as [38]:


D1

D2

D3

 =

 0 0 0 ζ15 0

0 0 ζ24 0 0

ζ31 ζ32 0 0 0




ε11 − αT

ε22 − αT

ε23

ε13

ε12


+

 f11 0 0

0 f22 0

0 0 f33




Ê1

Ê2

Ê3

. (15)

According to [38], the electric field Ê can be written as:

Ê = −∇Ψ, (16)

where Ψ represents the electric potential of the FG-GPLs/piezoelectric plate, which can be
described as [38]:

Ψ(x1, x2, x3) = −ψ(x1, x2) cos

(
πx3

H

)
+

2x3V̄0

H
, (17)

in which V̄0 is the external applied electric potential and ψ(x1, x2) denotes the electric
potential of the middle surface of the plate. Equation (17) is substituted into Equation (16)
to provide the components of the electric field as follows:
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Ê1

Ê2

Ê3

 =



∂ψ

∂x1
cos
(πx3

H

)
∂ψ

∂x2
cos
(πx3

H

)
− π

H
ψ sin

(πx3

H

)


−


0

0

2V̄0

H

. (18)

4. Governing Equations

To conclude the governing equations, we will use the principal of virtual work, which
can be expressed as:

δWS − δWE − δWF = 0, (19)

where the variation of the strain energy δWS and the variation of the work done by the
in-plane piezoelectric load δWE and the external loads δWF are given as follows:

δWS =
∫

V

(
σjkδε jk − DjδÊj

)
dV,

δWE =
∫

A
NE

(
∂2W
∂x2

1
+

∂2W
∂x2

2

)
δWdA,

δWF =
∫

A
qδWdA,

(20)

in which q denotes the vertical load applied to the plate and NE denotes the in-plane
piezoelectric load, which is defined as [38]:

NE =
∫ H/2

−H/2
ζ31

2V̄0

H
dx3. (21)

Inserting the equations of ε jk and Êj into the first equation of Equation (20) leads to

δWS =
∫

A

[
Ĉ11δ

∂u0

∂x1
− L̂11δ

∂2w1

∂x2
1
− Ô11δ

∂2w2

∂x2
1

+ Ĉ22δ
∂v0

∂x2
− L̂22δ

∂2w1

∂x2
2
− Ô22δ

∂2w2

∂x2
2

+ Ĉ12δ

(
∂u0

∂x2
+

∂v0

∂x1

)
− 2L̂12δ

∂2w1

∂x1∂x2
− 2Ô12δ

∂2w2

∂x1∂x2
+ Q13δ

∂w2

∂x1
+ Q23δ

∂w2

∂x2

− S1δ
∂ψ

∂x1
− S2δ

∂ψ

∂x2
+ S3δψ

]
dA,

(22)

where

{Ĉ11, Ĉ22, Ĉ12} =
∫ H/2

−H/2
{σ11, σ22, σ12}dx3,

{L̂11, L̂22, L̂12} =
∫ H/2

−H/2
x3{σ11, σ22, σ12}dx3,

{Ô11, Ô22, Ô12} =
∫ H/2

−H/2
f (x3){σ11, σ22, σ12}dx3,

{Q13, Q23} =
∫ H/2

−H/2
F′(x3){σ13, σ23}dx3,

S1 =
∫ H/2

−H/2
D1 cos

(πx3

H

)
dx3,

S2 =
∫ H/2

−H/2
D2 cos

(πx3

H

)
dx3,

S3 =
∫ H/2

−H/2
D3

π

H
sin
(πx3

H

)
dx3.

(23)
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By substituting σjk and Di into Equation (23), one obtains the following:

Ĉ11 = N11
∂u0

∂x1
− N12

∂2w1

∂x2
1
− N13

∂2w2

∂x2
1

+ Z11
∂v0

∂x2
− Z12

∂2w1

∂x2
2
− Z13

∂2w2

∂x2
2

− CT
11 + B1ψ + CE

11,

Ĉ22 = Z11
∂u0

∂x1
− Z12

∂2w1

∂x2
1
− Z13

∂2w2

∂x2
1

+ N11
∂v0

∂x2
− N12

∂2w1

∂x2
2
− N13

∂2w2

∂x2
2

− CT
11 + B2ψ + CE

22,

Ĉ12 = A11

(∂u0

∂x2
+

∂v0

∂x1

)
− 2A12

∂2w1

∂x1∂x2
− 2A13

∂2w2

∂x1∂x2
,

L̂11 = N12
∂u0

∂x1
− N22

∂2w1

∂x2
1
− N23

∂2w2

∂x2
1

+ Z12
∂v0

∂x2
− Z22

∂2w1

∂x2
2
− Z23

∂2w2

∂x2
2

− LT
11 + B3ψ + LE

11,

L̂22 = Z12
∂u0

∂x1
− Z22

∂2w1

∂x2
1
− Z23

∂2w2

∂x2
1

+ N12
∂v0

∂x2
− N22

∂2w1

∂x2
2
− N23

∂2w2

∂x2
2

− LT
11 + B4ψ + LE

22,

L̂12 = A12

(∂u0

∂x2
+

∂v0

∂x1

)
− 2A22

∂2w1

∂x1∂x2
− 2A23

∂2w2

∂x1∂x2
,

Ô11 = N13
∂u0

∂x1
− N23

∂2w1

∂x2
1
− N33

∂2w2

∂x2
1

+ Z13
∂v0

∂x2
− Z23

∂2w1

∂x2
2
− Z33

∂2w2

∂x2
2

−OT
11 + B5ψ + OE

11,

Ô22 = Z13
∂u0

∂x1
− Z23

∂2w1

∂x2
1
− Z33

∂2w2

∂x2
1

+ N13
∂v0

∂x2
− N23

∂2w1

∂x2
2
− N33

∂2w2

∂x2
2

−OT
11 + B6ψ + OE

22,

Ô12 = A13

(∂u◦
∂x2

+
∂v◦
∂x1

)
− 2A23

∂2w1

∂x1∂x2
− 2A33

∂2w2

∂x1∂x2
,

Q13 = K13
∂w2

∂x1
−QE

13
∂ψ

∂x1
, Q23 = K13

∂w2

∂x2
−QE

23
∂ψ

∂x2
,

S1 = QE
13

∂w2

∂x1
+ SE

12
∂ψ

∂x1
, S2 = QE

23
∂w2

∂x2
+ SE

22
∂ψ

∂x2
,

S3 = B1
∂u0

∂x1
− B3

∂2w1

∂x2
1
− B5

∂2w2

∂x2
1

+ B2
∂v0

∂x2
− B4

∂2w1

∂x2
2
− B6

∂2w2

∂x2
2

− ST
3 − B7ψ− SE

3 ,

(24)
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where

{
N11, N12, N13, N22, N23, N33

}
=
∫ H/2

−H/2
R11
{

1, x3, f , x2
3, f x3, f 2}dx3,

{
Z11, Z12, Z13, Z22, Z23, Z33

}
=
∫ H/2

−H/2
R12
{

1, x3, f , x2
3, f x3, f 2}dx3,

{
A11, A12, A13, A22, A23, A33

}
=
∫ H/2

−H/2
R44
{

1, x3, f , x2
3, f x3, f 2}dx3,

{
CT

11, LT
11, OT

11} =
∫ H/2

−H/2
α(R11 + R12)T

{
1, x3, f

}
dx3,

{
B1, B2, B3, B4, B5, B6, B7

}
=
∫ H/2

−H/2

π

H
sin
(πx3

H

){
ζ31, ζ32, ζ31x3, ζ32x3,

ζ31 f , ζ32 f , f33
π

H
sin
(πx3

H

)}
dx3,

{
CE

11, CE
22, LE

11, LE
22, OE

11, OE
22
}
=
∫ H/2

−H/2

2V̄0

H
{

ζ31, ζ32, ζ31x3, ζ32x3, ζ31 f , ζ32 f
}

dx3,

{
K13, QE

13, QE
23
}
=
∫ H/2

−H/2
F′
{

F′R44, ζ15 cos
(πx3

H

)
, ζ24 cos

(πx3

H

)}
dx3,

{
SE

12, SE
22
}
=
∫ H/2

−H/2
cos2

(πx3

H

){
f11, f22

}
,

ST
3 =

∫ H/2

−H/2
α

π

H
(ζ31 + ζ32)T sin

(πx3

H

)
dx3,

SE
3 =

∫ H/2

−H/2
f33

π

H
sin
(πx3

H

)2V̄0

H
dx3.

(25)

By inserting Equations (20) and (22) into Equation (19) and applying integration by
parts, one obtains the governing equations as follows:

∂Ĉ11

∂x1
+

∂Ĉ12

∂x2
= 0,

∂Ĉ12

∂x1
+

∂Ĉ22

∂x2
= 0,

∂2 L̂11

∂x2
1

+ 2
∂2 L̂12

∂x1∂x2
+

∂2 L̂22

∂x2
2

+ q + NE

(
∂2(w1 + w2)

∂x2
1

)
+ NE

(
∂2(w1 + w2)

∂x2
2

)
= 0,

∂2Ô11

∂x2
1

+ 2
∂2Ô12

∂x1∂x2
+

∂2Ô22

∂x2
2

+
∂Q13

∂x1
+

∂Q23

∂x2
+ q + NE

(
∂2(w1 + w2)

∂x2
1

)
+ NE

(
∂2(w1 + w2)

∂x2
2

)
= 0,

∂S1

∂x1
+

∂S2

∂x2
+ S3 = 0.

(26)

5. Solution Procedure
5.1. Levy-Type Solution

In this section, the Levy-type approach [32,40] is employed here with respect to the
variety of boundary conditions to reduce governing Equation (26) to a system of ordinary
differential equations that can be solved exactly or approximately. However, Levy-type
solution can be developed for rectangular nanoplates with at least two opposite edges that
are simply supported, while the remaining two edges can have any possible combination of
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boundary conditions: free, simply supported or clamped. In accordance with this approach,
the edges parallel to the x2-axis are assumed to be simply supported, given as:

v0 = w1 = w2 = Ĉ11 = L̂11 = 0, at x1 = 0, A. (27)

The boundary conditions of the edges parallel to the x1-axis can have a combination
of simply supported, clamped or free conditions, which can be expressed as [32]:

Simply supported (S):

u0 = w1 = w2 = Ĉ22 = L̂22 = 0, at x2 = 0, B. (28)

Clamped (C):

u0 = v0 = w1 = w2 = ψ = 0, at x2 = 0, B. (29)

Free (F):

Ĉ22 = L̂22 = 2
∂L̂12

∂x1
+

∂L̂22

∂x2
= 2

∂Ô12

∂x1
+

∂2Ô22

∂x2
+ Q23 = 0, at x2 = 0, B. (30)

The simply supported boundary conditions can be fulfilled by trigonometric functions
in x1, and the resulting ordinary differential equations in x2 can be solved by applying the
state-space method or the differential quadrature method. According to the Levy solution
process, we consider the following representation of the displacements and loading as
follows [32]:

v0(x1, x2)

w1(x1, x2)

w2(x1, x2)

ψ(x1, x2)

q(x1, x2)

T̄(x1, x2)


=

∞

∑
n=1



vn(x2)

w1n(x2)

w2n(x2)

ψn(x2)

q̂n(x2)

T̂n(x2)


sin(µx1), u0(x1, x2) =

∞

∑
n=1

cos(µx1)un(x2) (31)

where µ = nπ/A. For the sinusoidal load, the functions q̂n(x2) and T̄n(x2) are expressed
as: {

q̂n(x2)

T̂n(x2)

}
=

{
q0

T0

}
sin
(πx2

B

)
. (32)

Incorporating Equation (31) into Equation (26) subject to Equation (24) provides the
following ordinary differential equations

e14un + e12w1n + e13w2n + e17ψn + e18T̂n(x2) + e11v′n + e21u′′n + (e15 + e19)w′′1n + (e16 + e20)w′′2n = 0,

e22vn + e66T̂′n(x2) + e23u′n + e24w′1n + e25w′2n + e26ψ′n + e27v′′n + e28w′′′1n + e29w′′′2n = 0,

e30un + e31w1n + e32w2n + e33ψn + e38T̂n(x2) + e34v′n + e35u′′n + e36w′′1n + e37w′′2n + e39ψ′′n + e40v′′′n

+ e41w′′′′1n + e42w′′′′2n + e422T̂′′n (x2) + q̂n(x2) = 0,

e43un + e44w1n + e45w2n + e46ψn + e55T̂n(x2) + e47v′n + e48u′′n + e49w′′1n + e50w′′2n + e54ψ′′n + e65T̂′′n (x2)

+ e53v′′′n + e51w′′′′1n + e52w′′′′2n + q̂n(x2) = 0,

e56un + e57w1n + e58w2n + e59ψn + e60v′n + e61w′′1n + e62w′′2n + e63ψ′′n + e64T̂n(x2) + e67 = 0,

(33)

where the derivation is denoted by ()
′
= d()/dx2 and
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e11 = µ(A11 + Z11), e12 = N12µ3, e13 = N13µ3, e14 = −N11µ2, e15 = −2A12µ,

e16 = −2A13µ, e17 = B1µ, e18 = −CT
11µ, e19 = −Z12µ, e20 = −Z13µ, e21 = A11,

e22 = −A11µ2, e23 = −µ(A11 + Z11), e24 = (2A12 + Z12)µ
2, e25 = (2A13 + Z13)µ

2, e26 = B2, e27 = N11,

e28 = −N12, e29 = −N13, e30 = N12µ3, e31 = −(N22µ2 + NE)µ2, e32 = −(N23µ2 + NE)µ
2,

e33 = −B3µ2, e34 = −(2A12 + Z12)µ
2, e35 = −(2A12 + Z12)µ, e36 = 4A22µ2 + 2Z22µ2 + NE,

e37 = 4A23µ2 + 2Z23µ2 + NE, e38 = LT
11µ2, e39 = B4, e40 = N12, e41 = −N22, e42 = −N23, e422 = −LT

11,

e43 = N13µ3, e44 = −(N23µ2 + NE)µ2, e45 = −(N33µ2 + K13 + NE)µ2, e46 = −(−QE
13 + B5)µ

2,

e47 = −(Z13 + 2A13)µ
2, e48 = −(Z13 + 2A13)µ, e49 = 4A23µ2 + 2Z23µ2 + NE,

e50 = 4A33µ2 + 2Z33µ2 + K13 + NE, e51 = −N23, e52 = −N33, e53 = N13, e54 = B6 −QE
23,

e55 = OT
11µ2, e56 = −B1µ, e57 = B3µ2, e58 = (−QE

13 + B5)µ
2, e59 = −SE

12µ2 − B7, e60 = B2,

e61 = −B4, e62 = −B6 + QE
23, e63 = SE

22, e64 = −ST
3 , e65 = −OT

11, e66 = −CT
11, e67 = −AESE

3 ,

AE =

∫ A
0 sin(µx1)dx1∫ A

0 sin2(µx1)dx1
.

(34)

5.2. Differential Quadrature Solution

In this section, Equation (33) is solved using the differential quadrature approach.
The DQM is a common numerical method that has been implemented to solve initial and
boundary value problems by many authors (see, e.g., [33,41]). In particular, the DQM
predicts precise results using significantly fewer grid points when compared to traditional-
order finite difference and finite element analysis (FEM) [42,43]. In accordance with the
DQM, the sth-order partial derivatives of a function F(x2) at a given discrete point i are
approximated by putting a weighted linear sum of the function’s values over the entire
domain; the nanocomposite plate is discretized by M mesh points. In particular, the sth-
order derivative of a function F(x2) at a given discrete point i can be given for M discrete
grid points as follows [42]:

dsF(x2)

dxs
2

∣∣∣∣
x2=x2i

=
M

∑
j=1

P(s)
ij Fj, Fj = F(x2j), i = 1, 2, . . . M, (35)

in which P(s)
ij are the weighting coefficients associated with the sth derivative, which can

be written for higher-order derivatives (s > 1) as [42]:

P(s)
ij =

M

∑
k=1

P(1)
ik P(s−1)

kj , i, j = 1, 2, . . . M. (36)

In contrast, the weighting coefficients associated with the first-order derivative (s = 1)
is written as [42]:

P(1)
ij =

R(x2i)

(x2i − x2j)R(x2j)
, i, j = 1, 2, . . . M; i 6= j,

P(1)
ii = −

M

∑
k=1

P(1)
ki , i = 1, 2, . . . M; k 6= i,

R(x2i) =
M

∏
k=1

(x2i − x2k), i 6= k.

(37)
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Furthermore, in accordance with the Gauss–Chebyshev–Lobatto method, the dis-
tributed grid points x2i are generated as follows [42]:

x2i =
B
2

[
1− cos

(
π

i− 1
M− 1

)]
. (38)

By applying the DQ approximation formulas (35)–(38) into Equation (33), the govern-
ing equations can be discretized and converted to (M− 2) linear algebraic equations as
follows:

e14uni + e12w1ni + e13w2ni + e17ψni + e18T̂ni + e11

M

∑
j=1

P(1)
ij vnj + e21

M

∑
j=1

P(2)
ij unj + (e15 + e19)

M

∑
j=1

P(2)
ij w1nj

+ (e16 + e20)
M

∑
j=1

P(2)
ij w2nj = 0,

e22vni + e66T̂′ni + e23

M

∑
j=1

P(1)
ij unj + e24

M

∑
j=1

P(1)
ij w1nj + e25

M

∑
j=1

P(1)
ij w2nj + e26

M

∑
j=1

P(1)
ij ψnj + e27

M

∑
j=1

P(2)
ij vnj

+ e28

M

∑
j=1

P(3)
ij w1nj + e29

M

∑
j=1

P(3)
ij w2nj = 0,

e30uni + e31w1ni + e32w2ni + e33ψni + e38T̂ni + e34

M

∑
j=1

P(1)
ij vnj + e35

M

∑
j=1

P(2)
ij unj + e41

M

∑
j=1

P(4)
ij w1nj

+ e36

M

∑
j=1

P(2)
ij w1nj + e37

M

∑
j=1

P(2)
ij w2nj + e39

M

∑
j=1

P(2)
ij ψnj + e40

M

∑
j=1

P(3)
ij vnj + e42

M

∑
j=1

P(4)
ij w2nj + e422T̂′′ni + q̂ni = 0,

e43uni + e44w1ni + e45w2ni + e46ψni + e55T̂ni + e47

M

∑
j=1

P(1)
ij vnj + e48

M

∑
j=1

P(2)
ij unj + e49

M

∑
j=1

P(2)
ij w1nj

+ e50

M

∑
j=1

P(2)
ij w2nj + e54

M

∑
j=1

P(2)
ij ψnj + e65T̂′′ni + e53

M

∑
j=1

P(3)
ij vnj + e51

M

∑
j=1

P(4)
ij w1nj + e52

M

∑
j=1

P(4)
ij w2nj + q̂ni = 0,

e56uni + e57w1ni + e58w2ni + e59ψni + e60

M

∑
j=1

P(1)
ij vnj + e61

M

∑
j=1

P(2)
ij w1nj + e62

M

∑
j=1

P(2)
ij w2nj

+ e63

M

∑
j=1

P(2)
ij ψnj + e64T̂ni + e67 = 0, i = 2, 3, . . . , (M− 1).

(39)

Furthermore, the boundary conditions can be expressed as follows in a discretization
form:
Simply supported:
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uni = w1ni = w2ni = 0,

Z12µ2w1ni + Z13µ2w2ni − Z11µuni + B2ψni − CT
11T̂ni + N11

M

∑
j=1

P(1)
ij vnj

− N12

M

∑
j=1

P(2)
ij w1nj − N13

M

∑
j=1

P(2)
ij w2nj + CE

22 AE = 0,

Z22µ2w1ni + Z23µ2w2ni − Z12µuni + B4ψni − LT
11T̂ni + N12

M

∑
j=1

P(1)
ij vnj

− N22

M

∑
j=1

P(2)
ij w1nj − N23

M

∑
j=1

P(2)
ij w2nj + LE

22 AE = 0, i = 1, M.

(40)

Clamped:
uni = vni = w1in = w1ni = ψni = 0, i = 1, M. (41)

Free:

Z12µ2w1ni + Z13µ2w2ni − Z11µuni + B2ψni − CT
11T̂ni + N11

M

∑
j=1

P(1)
ij vnj

− N12

M

∑
j=1

P(2)
ij w1nj − N13

M

∑
j=1

P(2)
ij w2nj + CE

22 AE = 0,

Z22µ2w1ni + Z23µ2w2ni − Z12µuni + B4ψni − LT
11T̂ni + N12

M

∑
j=1

P(1)
ij vnj

− N22

M

∑
j=1

P(2)
ij w1nj − N23

M

∑
j=1

P(2)
ij w2nj + LE

22 AE = 0,

Z23µ2w1ni + Z33µ2w2ni − Z13µuni + B6ψni −OT
11T̂ni + N13

M

∑
j=1

P(1)
ij vnj

− N23

M

∑
j=1

P(2)
ij w1nj − N33

M

∑
j=1

P(2)
ij w2nj + OE

22 AE = 0,

2A12

(
− µ2vni − µ

M

∑
j=1

P(1)
ij unj

)
+ 4A22µ2

M

∑
j=1

P(1)
ij w1nj + 4A23µ2

M

∑
j=1

P(1)
ij w2nj

− Z12

M

∑
j=1

P(1)
ij unj + Z22µ2

M

∑
j=1

P(1)
ij w1nj + Z23µ2

M

∑
j=1

P(1)
ij w2nj + N12

M

∑
j=1

P(2)
ij vnj

− N22

M

∑
j=1

P(3)
ij w1nj − N23

M

∑
j=1

P(3)
ij w2nj − LT

11T̂′ni + B4

M

∑
j=1

P(1)
ij ψnj = 0,

2A13

(
− µ2vni − µ

M

∑
j=1

P(1)
ij unj

)
+ 4A23µ2

M

∑
j=1

P(1)
ij w1nj + 4A33µ2

M

∑
j=1

P(1)
ij w2nj

− Z13µ
M

∑
j=1

P(1)
ij unj + Z23µ2

M

∑
j=1

P(1)
ij w1nj + Z33µ2

M

∑
j=1

P(1)
ij w2nj + N13

M

∑
j=1

P(2)
ij vnj

− N23

M

∑
j=1

P(3)
ij w1nj − N33

M

∑
j=1

P(3)
ij w2nj −OT

11T̂′ni + B6

M

∑
j=1

P(1)
ij ψnj

+ K13

M

∑
j=1

P(1)
ij w2nj −QE

23

M

∑
j=1

P(1)
ij ψnj = 0, i = 1, M.

(42)
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6. Numerical Results

Various numerical examples are introduced in the current section to illustrate the
influences of different parameters such as porosity factor, porosity distribution types, GPLs
weight fraction, GPLs distribution patterns, side-to-thickness ratio, temperature parameter,
temperature exponent, external electric voltage and boundary conditions on the deflection
and stresses of the FG porous piezoelectric plate reinforced with GPLs. For this purpose,
the following quantities are defined:

W∗ =
10−3WEm

q0
, σ∗11 =

102H
A2Emq0

σ11

(
A
2

,
B
2

, Z
)

,

σ∗13 = − 104H
A2Emq0

σ13

(
0,

B
2

, Z
)

, σ∗12 = − 102H
A2Emq0

σ12(0, 0, Z),

V0 =
V̄0

H2EG
, Z =

x3

H
.

The material properties of the piezoelectric matrix and GPLs are given in Table 1,
noting that the parameter S0 is named as the piezoelectric multiple [44].

Table 1. Material properties of the piezoelectric matrix and GPLs [44].

Materials Piezoelectric GPLs

E(GPa) 1.4 1010
ν 0.29 0.186

ρ(g/cm3) 1.92 1.06
α(10−6K−1) 60 5

ζ31 = ζ32 (10−3 C/m2) 50.535 50.535 S0
ζ24 = ζ15 (10−3 C/m2) −15.93 −15.93 S0
f11 = f22 (10−9C/Vm) 0.5385 0.5385 S0

f33 (10−9C/Vm) 0.59571 0.59571 S0

The following fixed data (unless otherwise declared) are used in the numerical ex-
amples: A/H = 10, B/A = 1, S0 = 100, e0 = 0.2, n = 1, W f = 0.1, k = 1, V0 = 0.1,
q0 = 10 Pa, H = 0.002 m, LG = 2.5µm, bG = 1.5µm, hG = 1.5 nm.

Firstly, Table 2 displays a convergence study for the present results of the FG porous
piezoelectric plate reinforced with GPLs. In this table, we determine the minimum number
of mesh points required for converged solutions in the DQM. It is notable that 15 mesh
points are sufficient to achieve a converged solution.

Table 2. Convergence of the results of FG porous nanocomposite piezoelectric square plates.

M W∗ σ∗
11 σ∗

13 σ∗
12

7 7.047371446 3.769956328 12.185145430 5.930577935
9 7.047291563 3.770929050 12.159459440 5.931145760
11 7.047291007 3.771028796 12.160105040 5.931197603
13 7.047291003 3.771028832 12.160092250 5.931196924
15 7.047291003 3.771028839 12.160092460 5.931196935
17 7.047291003 3.771028839 12.160092460 5.931196931

Secondly, in order to check the accuracy of the results obtained by the current formula-
tions, the present deflection (W̄ = 10WEc H3/(q0 A4)) of an FG square plate is compared
with those provided by Thai and Kim [45], as shown in Table 3. The FG plate is composed
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of ceramic (c) and metal (m) with the following properties: Ec = 380 GPa, Em = 70 GPa,
νc = νm = 0.3. The effective Young’s modulus Ee f f is calculated as:

Ee f f = Em + (Ec − Em)

(
x3

H
+

1
2

)κ

.

Moreover, the results in this table are given for different values of the side-to-thickness
ratio A/H and power law index κ. From Table 3, the present deflection W̄ is in good
agreement with that obtained by Thai and Kim [45].

Table 3. Comparison of the central deflection W̄ of an FGM square plate.

A/H Source κ = 0 κ = 1 κ = 2 κ = 5 κ = 10

5 Ref. [45] 0.3433 0.6688 0.8671 1.0885 1.2276
Present 0.3511 0.6844 0.8872 1.1122 1.2536

10 Ref. [45] 0.2961 0.5890 0.7573 0.9114 1.0087
Present 0.3038 0.6046 0.7773 0.9350 1.0347

20 Ref. [45] 0.2842 0.5689 0.7298 0.8669 0.9538
Present 0.2920 0.5846 0.7498 0.8906 0.9798

100 Ref. [45] 0.2804 0.5625 0.7209 0.8527 0.9362
Present 0.2882 0.5782 0.7410 0.8764 0.9622

Tables 4–7 depict the effects of the side-to-thickness ratio A/H and GPLs weight
fraction W f on the dimensionless central deflection W∗, the normal stress σ∗11, the transverse
shear stress σ∗13 and the in-plane shear stress σ∗12 of FG porous nanocomposite piezoelectric
square plates under various boundary conditions. It is observed that regardless of the
type of boundary conditions, central deflection W∗ gradually increases with increasing
side-to-thickness ratio A/H. On the other hand, it decreases as the GPLs weight fraction
W f increases. Furthermore, the sensitivity of the deflection to variations of the boundary
conditions is very noticeable. It is notable that the plates with clamped edges have minimum
values of normal and transverses stresses, while plates with free and clamped edges suffer
more deflection and stresses. It can be also observed that the stresses σ∗11, σ∗13 and σ∗12
decrease as the side-to-thickness ratio A/H increases. They increase as the GPLs weight
fraction W f increases, except the in-plane shear stress σ∗12, which no longer increases as W f
increases.

The effect of the porosity factor e0 on the central deflection W∗ of FG porous nanocom-
posite piezoelectric square plates is plotted in Figure 4. Four different porosity distribution
types—I, II, III and IV—are illustrated in the corresponding figures (a), (b), (c) and (d),
respectively. The effect of the porosity factor e0 on the central deflection W∗ is more pro-
nounced for small values of q0, especially for Type I and IV. In contrast, the effect of e0 on
W∗ is minimum for large values of q0, especially for porosity Type II, since the thermal
conductivity of the porosity is much lower than that of the composite materials. Therefore,
increasing the porosity reduces the thermal effects on the plate. Subsequently, a noticeable
reduction in the deflection occurs as the porosity factor increases, especially for Types I and
III. However, for Type IV, the deflection behaves in an opposite manner to the variation
of the porosity factor. Note that, at the top surface of the plate (Type IV), there is no
porosity and the temperature is maximum (see, Equation (14)); then, the porosity linearly
increases through the thickness; while the temperature linearly decreases (k = 1) in the
same direction. Therefore, the role of pores in reducing the effects of the temperature
on the plate stiffness are very weak or may be missed because the temperature naturally
decreases in the direction of increasing pores. Subsequently, the deflection increases as the
porosity factor increases. This also explains the weak role of pores to reduce the deflection
for Type II.



Mathematics 2022, 10, 4104 17 of 30

Table 4. Dimensionless central deflection W∗ of FG porous nanocomposite piezoelectric square plates
under various boundary conditions and for different values of side-to-thickness ratio A/H and GPLs
weight fraction W f .

A/H Wf SS SC CC FS FC

5 0.1 1.9502024 1.9502248 1.9502472 2.2611658 2.2612573
0.2 1.6322019 1.6322216 1.6322414 1.8975372 1.8976191
0.3 1.3590695 1.3590865 1.3591035 1.5833144 1.5833859
0.4 1.1226046 1.1226191 1.1226335 1.3101761 1.3102377

10 0.1 7.0473344 7.0473355 7.0473365 7.7182566 7.7182636
0.2 5.9247160 5.9247169 5.9247178 6.5231102 6.5231166
0.3 4.9475774 4.9475782 4.9475790 5.4679584 5.4679640
0.4 4.0963349 4.0963356 4.0963363 4.5414866 4.5414915

15 0.1 13.6580812 13.6580816 13.6580819 13.8244905 13.8244918
0.2 11.5497255 11.5497258 11.5497261 11.7910596 11.7910611
0.3 9.6816468 9.6816470 9.6816473 9.9431761 9.9431777
0.4 8.0407740 8.0407742 8.0407744 8.2987022 8.2987037

20 0.1 20.3341739 20.3341741 20.3341743 18.8196737 18.8196646
0.2 17.2976822 17.2976824 17.2976825 16.2053831 16.2053769
0.3 14.5566201 14.5566203 14.5566204 13.7525487 13.7525442
0.4 12.1282823 12.1282824 12.1282826 11.5374732 11.5374700

30 0.1 31.2422929 31.2422930 31.2422931 23.7936452 23.7934750
0.2 26.8380929 26.8380930 26.8380931 20.8718941 20.8717673
0.3 22.7327667 22.7327668 22.7327669 17.9352086 17.9351111
0.4 19.0428742 19.0428742 19.0428743 15.2002292 15.2001539

Table 5. Dimensionless normal stress σ∗11 of FG porous nanocomposite piezoelectric square plates
under various boundary conditions and for different values of side-to-thickness ratio A/H and GPLs
weight fraction W f (x3/H = 0.5).

A/H Wf SS SC CC FS FC

5 0.1 17.9083147 14.2299878 8.6026809 22.0421057 17.6169790
0.2 39.7862064 32.7299747 21.9766406 46.2524481 37.9476666
0.3 66.0203904 55.6527912 39.9056717 73.4591357 61.5069862
0.4 95.0825801 81.4973138 60.9227184 102.4762900 87.0968504

10 0.1 3.7706838 2.8510300 1.4441312 4.4323964 3.3258352
0.2 8.8800785 7.1159003 4.4274463 9.9192326 7.8425622
0.3 15.2775451 12.6854970 8.7485686 16.4571412 13.4685088
0.4 22.5133983 19.1169208 13.9731110 23.6512968 19.8057824

15 0.1 1.2687137 0.8599784 0.2346896 1.3957948 0.9039876
0.2 3.3256340 2.5415543 1.3466853 3.5225628 2.5995945
0.3 6.0703433 4.9183212 3.1685746 6.2782875 4.9500017
0.4 9.2648491 7.7553028 5.4691644 9.4364205 7.7272979

20 0.1 0.4823713 0.2524577 −0.0992672 0.4856278 0.2089857
0.2 1.5136873 1.0726425 0.4005286 1.5134553 0.9942848
0.3 2.9977062 2.3496937 1.3654612 2.9799047 2.2327430
0.4 4.7794906 3.9303708 2.6444179 4.7316853 3.7703029

30 0.1 0.0464381 −0.0557457 −0.2120679 0.0200638 −0.1028896
0.2 0.4094121 0.2133922 −0.0853251 0.3621829 0.1314385
0.3 1.0215842 0.7335787 0.2961420 0.9549210 0.6228470
0.4 1.7994355 1.4220489 0.8505143 1.7139098 1.2866266
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Table 6. Dimensionless transverse shear stress σ∗13 of FG porous nanocomposite piezoelectric square
plates under various boundary conditions and for different values of side-to-thickness ratio A/H
and GPLs weight fraction W f (x3/H = 0).

A/H Wf SS SC CC FS FC

5 0.1 27.5725468 27.5728630 27.5731795 35.5991272 35.6004401
0.2 41.8047883 41.8052929 41.8057982 54.0959779 54.0981093
0.3 48.3696904 48.3702947 48.3708997 62.7064278 62.7090189
0.4 49.7835309 49.7841707 49.7848114 64.6427662 64.6455467

10 0.1 12.4811878 12.4811896 12.4811915 15.6183845 15.6183973
0.2 19.0079651 19.0079681 19.0079710 23.8609151 23.8609361
0.3 22.0559114 22.0559150 22.0559185 27.7532155 27.7532413
0.4 22.7531791 22.7531828 22.7531866 28.6890691 28.6890970

15 0.1 7.1699769 7.1699770 7.1699772 8.6438176 8.6438183
0.2 10.9833193 10.9833196 10.9833199 13.2912633 13.2912648
0.3 12.7930095 12.7930099 12.7930102 15.5239358 15.5239380
0.4 13.2383284 13.2383288 13.2383292 16.1019428 16.1019454

20 0.1 4.5039926 4.5039926 4.5039926 5.2462239 5.2462218
0.2 6.9405200 6.9405200 6.9405201 8.1157913 8.1157887
0.3 8.1156866 8.1156866 8.1156867 9.5164542 9.5164516
0.4 8.4250986 8.4250987 8.4250988 9.9026979 9.9026956

30 0.1 2.0506008 2.0506008 2.0506008 2.2739293 2.2739175
0.2 3.1909701 3.1909701 3.1909701 3.5497144 3.5496984
0.3 3.7556360 3.7556360 3.7556360 4.1872969 4.1872798
0.4 3.9198921 3.9198922 3.9198922 4.3788605 4.3788441

Table 7. Dimensionless in-plane shear stress σ∗12 of FG porous nanocomposite piezoelectric square
plates under various boundary conditions and for different values of side-to-thickness ratio A/H
and GPLs weight fraction W f (x3/H = 0.5).

A/H Wf SS SC CC FS FC

5 0.1 25.3738484 19.5453075 31.9011320 11.1960158 11.1960758
0.2 38.5561770 27.5053073 51.5049609 18.1304595 18.1305722
0.3 42.7533121 26.6810333 62.3163630 22.0082296 22.0083827
0.4 40.3460882 19.4731472 66.5907895 23.5899193 23.5900995

10 0.1 5.9309953 4.4738289 7.5626158 3.0122594 3.0122599
0.2 8.9985189 6.2357483 12.2353733 4.8493441 4.8493449
0.3 9.9328869 5.9147504 14.8232207 5.8603925 5.8603936
0.4 9.2961913 4.0778823 15.8568939 6.2585055 6.2585067

15 0.1 2.3982223 1.7505927 3.1233861 1.4290626 1.4290626
0.2 3.6262604 2.3983621 5.0648607 2.2915821 2.2915822
0.3 3.9716420 2.1858032 6.1451217 2.7601589 2.7601590
0.4 3.6656777 1.3464290 6.5815433 2.9392490 2.9392491

20 0.1 1.2139283 0.8496366 1.6218329 0.8331441 0.8331440
0.2 1.8253245 1.1346317 2.6345371 1.3343452 1.3343451
0.3 1.9774569 0.9729225 3.2000390 1.6048102 1.6048101
0.4 1.7903302 0.4857528 3.4305045 1.7065881 1.7065880

30 0.1 0.4414378 0.2795304 0.6227287 0.3670740 0.3670736
0.2 0.6530614 0.3460869 1.0127115 0.5888630 0.5888625
0.3 0.6876045 0.2411448 1.2309744 0.7083674 0.7083669
0.4 0.5914927 0.0116805 1.3204590 0.7532405 0.7532400
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Figure 4. Influence of the porosity factor e0 on the central deflection W∗ of GPLs Pattern A of FG
porous nanocomposite piezoelectric square plates for different porosity distribution types: (a) Type I,
(b) Type II, (c) Type III and (d) Type IV.

For different porosity distribution Types I, II, III and IV, the impact of the porosity
factor e0 on the normal stress σ∗11, transverse shear stress σ∗13 and in-plane shear stress σ∗12
through the thickness of FG porous nanocomposite piezoelectric square plates is illustrated
in Figures 5–7, respectively. It is obvious that, generally, for all porosity distribution types,
the impact of the porosity factor e0 on the normal stress σ∗11 , transverse shear stress σ∗13
and in-plane shear stress σ∗12 is significantly dependent on the porosity type. Moreover,
for Type I, the porosity is uniformly distributed through the thickness; therefore, the plate
becomes an isotropic structure. Accordingly, the normal stress and in-plane shear stress
are linearly varied through the thickness of the plate, whereas the transverse shear stress
is parabolically changed. It is found that the maximum normal stress σ∗11 decreases as the
porosity factor e0 increases. Note that for porosity distribution Types I and II, the maximum
stress σ∗11 occurs at the bottom surface of the plate, while it occurs near the bottom surface
for Types III and IV, as shown in Figure 5.
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Figure 5. Influence of the porosity factor e0 on the normal stress σ∗11 in FG porous nanocomposite
piezoelectric square plates for different porosity distribution types: (a) Type I, (b) Type II, (c) Type III
and (d) Type IV.
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Figure 6. Cont.
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Figure 6. Influence of the porosity factor e0 on the transverse shear stress σ∗13 in FG porous nanocom-
posite piezoelectric square plates for different porosity distribution types: (a) Type I, (b) Type II,
(c) Type III and (d) Type IV.
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Figure 7. Influence of the porosity factor e0 on the in-plane shear stress σ∗12 in FG porous nanocompos-
ite piezoelectric square plates for different porosity distribution types: (a) Type I, (b) Type II, (c) Type
III and (d) Type IV.

In Figure 6a,c, the maximum transverse shear stress σ∗13 occurs at the mid-plane of
the plate for all values of porosity factor e0. However, for Type IV, it occurs near the mid-
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plane of the plate, as shown in Figure 6d, because this type has an asymmetric porosity
distribution. Since the volume fraction of porosity in Type II is maximum at the mid-plane
(x3 = 0), the shear stress σ∗13 at x3 = 0 is very sensitive to the variation of the porosity factor
e0. Therefore, the stress σ∗13 has non-parabolic shapes for the largest values of e0. Note
that for porosity distribution Types I, II and III, the maximum stress σ∗13 decreases with
increasing e0, while for Type IV, it increases with the increase of e0.

It can be observed that for porosity distribution Types I, II and IV, the maximum
in-plane shear stress σ∗12 occurs at the top surface of the plate, as shown in Figure 7, while
for Type III, the maximum σ∗12 occurs near the top surface of the plate. Furthermore, for
Types I, II and III, the maximum stress σ∗12 is decreased as the porosity factor e0 increases.
However, this trend is reversed for Type IV; increasing e0 leads to the increase of the
maximum stress σ∗12.

To explain the impact of the GPLs weight fraction W f on the obtained results, the
central deflection W∗ of FG porous nanocomposite piezoelectric square plates against
transverse load q0 is plotted in Figure 8 for various values of W f and for different graphene
distribution patterns. In agreement with the review of the literature, the proportion of
graphene in the plates greatly improves the mechanical properties of the plates and en-
hances their stiffness. Therefore, we notice a successive decreasing of the central deflection
W∗ as the weight fraction W f increases.
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Figure 8. Influence of the GPLs weight fraction W f on the central deflection W∗ of FG porous
nanocomposite piezoelectric square plates for different graphene distribution patterns: (a) Pattern A,
(b) Pattern B, (c) Pattern C and (d) Pattern D.
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The Influence of the GPLs weight fraction W f on the normal stress σ∗11, transverse shear
stress σ∗13 and in-plane shear stress σ∗12 through the thickness of FG porous nanocomposite
piezoelectric square plates is plotted in Figures 9–11, respectively, for different graphene
distribution patterns. We can clearly observe from Figure 9 that the maximum stress σ∗11
increases as the GPLs weight fraction W f increases. For more clarity, σ∗11 is linearly varied
through the thickness of the plate for GPLs Pattern A (see Figure 9a), indicating the even
distribution of GPLs through the plate thickness. In particular, for GPLs pattern B (see
Figure 9b), the normal stress σ∗11 is nearly zero at the top and bottom surfaces of the plate,
and the maximum σ∗11 occurs nearly at the mid-plane of the plate, because the GPLs weight
fraction is maximum at the middle plane of the plate and equals to zero at the upper and
lower faces. It is also notable that the normal stress σ∗11 in the upper part of the plate of
Pattern B has extremums at the large values of W f (as shown in Figure 9b) due to the
sensitivity of graphene to temperature, which has a maximum value at the top surface (see
Equation (14)). Furthermore, since the temperature has small values in the lower part of
the plate, the stress σ∗11 has no extremums in this part. Moreover, due to the asymmetric
distribution of GPLs through the thickness of the plate of Pattern D (see, Figure 9d), the
normal stress σ∗11 is zero at the bottom surface of the plate and is maximum at the top
surface of the plate.
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Figure 9. Influence of the GPL weight fraction W f on the normal stress σ∗11 in FG porous nanocompos-
ite piezoelectric square plates for different graphene distribution patterns: (a) Pattern A, (b) Pattern B,
(c) Pattern C and (d) Pattern D.
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Figure 10. Influence of the GPL weight fraction W f on the transverse shear stress σ∗13 in FG porous
nanocomposite piezoelectric square plates for different graphene distribution patterns: (a) Pattern A,
(b) Pattern B, (c) Pattern C and (d) Pattern D.
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Figure 11. Influence of the GPL weight fraction W f on the in-plane shear stress σ∗12 in FG porous
nanocomposite piezoelectric square plates for different graphene distribution patterns: (a) Pattern A,
(b) Pattern B, (c) Pattern C and (d) Pattern D.

It can be seen from Figure 10 that the stress σ∗13 of all GPL distribution patterns has
the same behavior with the variation of W f . It increases to reach its maximum and then
decreases as W f increases. These maximums depend on the GPL distribution pattern. This
means that, adding more graphene to the structures makes the stress σ∗13 behave in an
opposite sense, especially with considering the thermal load, since graphene possesses
high thermal conductivity.

In addition, owing to the same reasons discussed in Figure 9b, the maximum stress
σ∗12 in the upper part of the plate has the same distribution with the variation of W f for all
patterns (see Figure 11); it no longer increases as the weight fraction W f increases, while,
the maximum σ∗12 in the lower part of the plate increases monotonically as W f increases.
Note that the positive and negative signs indicate the tensile and compressive stresses,
respectively.

It is noteworthy that the stresses σ∗11, σ∗13 and σ∗12 significantly depend on the volume
fraction of GPLs vG, they equal zero when vG is equal to zero. Note that the volume fractions
of GPLs patterns B, C and D are equal to zero at x3 = ±H/2, x3 = 0 and x3 = −H/2,
respectively.

Figure 12 depicts the variation of the temperature parameter T0 on the central de-
flection W∗, normal stress σ∗11, transverse shear stress σ∗13 and in-plane shear stress σ∗12
of FG porous nanocomposite piezoelectric square plates. As is well known, an increase
in temperature weakens the structures, so the deflection W∗ and the shear stresses σ∗13
and σ∗12 increase monotonically as the temperature parameter T0 increases. Moreover, the
normal and shear stresses may be equal to zero at the top and bottom surfaces of the plate,
indicating the significant dependence of the stresses on the GPLs volume fraction. Since the
normal stress σ∗11 is directly dependent on the temperature (see Equation (12)), it is more
sensitive to variation of the temperature and behaves differently from the shear stresses.
Note that the temperature is maximum at the top surface of the plate and then decreases
gradually to its minimum at the lower surface. Therefore, for small values of temperature
(T0 = 50,100 or in the lower part of the plate), the maximum tensile stress σ∗11 decreases
as the temperature parameter increases, while for large values of temperature (that occur
in the upper part of the plate), the maximum compressive stress σ∗11 increases with the
increase in temperature.
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Figure 12. Influence of the temperature parameter T0 on the (a) central deflection W∗, (b) normal
stress σ∗11, (c) transverse shear stress σ∗13 and (d) in-plane shear stress σ∗12 of FG porous nanocomposite
piezoelectric square plates.

In Figure 13, the impact of the temperature exponent k on the central deflection W∗,
normal stress σ∗11, transverse shear stress σ∗13 and in-plane shear stress σ∗12 of FG porous
nanocomposite piezoelectric square plates is investigated. It can be observed that the
temperature exponent k has a hardening effect. Accordingly, the deflection W∗ is decreased
as k and q0 increase. Furthermore, it is seen that for linear variation of the temperature
(k = 1), the normal stress σ∗11 is also linearly changed through the thickness of the plate.
The in-plane shear stress σ∗12 is linearly varied with respect to Z for all values of k. The
shear stresses σ∗13 and σ∗12 decrease with increasing k, while this trend may be reversed for
the normal stress, especially for −0.35 ≤ Z ≤ 0.35.

The influence of the applied electric voltage V0 on the central deflection W∗, the normal
stress σ∗11, the transverse shear stress σ∗13 and the in-plane shear stress σ∗12 of FG porous
nanocomposite piezoelectric square plates is illustrated in Figure 14. The deflection W∗

decreases gradually as the electric voltage V0 increases. This is reversed for the stresses;
they increase as V0 increases.
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Figure 13. Influence of the temperature exponent k on (a) the central deflection W∗, (b) the normal
stress σ∗11, (c) the transverse shear stress σ∗13 and (d) the in-plane shear stress σ∗12 of FG porous
nanocomposite piezoelectric square plates.
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Figure 14. Cont.
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Figure 14. Influence of the applied electric voltage V0 on (a) the central deflection W∗, (b) the normal
stress σ∗11, (c) the transverse shear stress σ∗13 and (d) the in-plane shear stress σ∗12 of FG porous
nanocomposite piezoelectric square plates.

7. Conclusions

Levy-type solution and the DQM are utilized here to analyze the thermo-piezoelectric
bending of FG porous piezoelectric plates reinforced with GPLs. The displacement field
is formulated based on a refined four-variable shear deformation plate theory. To reduce
the temperature effects, various types of porosity are considered in the present composite
plate. This plate is composed of a piezoelectric material containing internal pores and is
supported by FG GPLs. The differential equations are deduced by using the principle
of virtual work including thermal, mechanical and electrical loads. These equations are
converted to ordinary systems by using the Levy procedure and then discretized by the
DQ method. The present formulations and theory are examined by comparing them to
some examples from other research in the literature. Additional numerical results are
presented to explain the effects of various parameters on the bending of the reinforced
composite plates. Moreover, it is concluded that a considerable effect on the deflection
and stresses is seen with variation of the edge boundary conditions. The deflection and
stresses monotonically increase as the temperature parameter increases because elevated
temperature leads to a reduction in the plate stiffness. The deflection decreases as the
porosity factor, temperature exponent, transverse load, electric voltage and GPLs weight
fraction increase. In addition, the maximum normal stresses decrease as the porosity
factor increases. Increasing the electric voltage and the GPLs weight fraction leads to an
increase in the shear stresses. The variation of the stresses through the thickness of the plate
depends considerably on the porosity and GPLs distribution type. Furthermore, it can be
concluded that with presence of a thermal load, adding a certain amount of graphene to
structures enhances their toughness; consequently, a decrease in the deflection occurs. By
adding more graphene, the structures become more flexible; accordingly, the deflection
increases. To reduce the deformation of engineering structures caused by temperature, it
is recommended to use structures reinforced with GPLs containing porosity, especially
porosity Types I and III. However, it is not recommended to use porosity Type II or IV
to reduce the thermal effect. The present results can be used as a benchmark for future
investigations.
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