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Abstract: The polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP)
experiment has the characteristics of low-cost, rapidity, simplicity, convenience, high sensitivity and
high specificity; thus, many small and medium laboratories use it to perform all kinds of single
nucleotide polymorphisms (SNPs) genotyping works, and as a molecular biotechnology for disease-
related analysis. However, many single nucleotide polymorphisms lack available restriction enzymes
to distinguish the specific genotypes on a target SNP, and that causes the PCR-RFLP assay which is
unavailable to be called mismatch PCR-RFLP. In order to completely solve the problem of mismatch
PCR-RFLP, we have created a teaching–learning-based optimization (TLBO) multi-point mutagenic
primer design algorithm which, combined with REHUNT, provides a complete and specific restriction
enzyme mining solution. The proposed method not only introduces several search strategies suitable
for multi-point mutagenesis primers, but also enhances the reliability of mutagenic primer design.
In addition, this study is also designed for more complex SNP structures (with multiple dNTPs
and insertion and deletion) to provide specific solutions for SNP diversity. We tested against fifteen
mismatch PCR-RFLP SNPs in the human SLC6A4 gene on the NCBI dbSNP database as experimental
templates. The experimental results indicate that the proposed method is helpful for providing the
multi-point mutagenic primers that meet the constrain conditions of PCR experiments.

Keywords: polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP); single
nucleotide polymorphism (SNP); multiple-point mutagenic primer design; teaching–learning-based
optimization (TLBO); REHUNT

MSC: 92-08

1. Introduction

Polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP) has
the characteristics of low cost, rapidity, simplicity, convenience, sensitivity and high speci-
ficity. Therefore, many biological laboratories usually use PCR-RFLP for single nucleotide
polymorphisms (SNP) genotyping and as a molecular technique for disease association
studies. Before using PCR-RFLP experiments for SNP genotyping, available restriction en-
zymes must be available to identify the specific genotype of the target SNP, and the primers
used must meet the needs of various PCR experiments at the same time. Due to a large
number of restriction enzymes, a large number of primer pairing combinations, complex
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inter-primer annealing and strict experimental requirements, it is difficult to design usable
and specific restriction enzymes and ideal primers by manual methods. In addition, using
the PCR-RFLP experiments for SNP genotyping presents an extremely difficult problem,
that is, “among many SNPs, there is simply no restriction enzyme available to identify
the target SNP”, which makes PCR-RFLP experiments completely impossible, and this
problem is called “mismatch PCR-RFLP”.

In order to address the mismatch PCR-RFLP problem, mutagenic primers must be
designed for target SNPs which are not identified by restriction enzymes. The adjacent
nucleotides can be mutated by inducing mutation primers so that the restriction enzymes
can function to recognize the SNP, thereby performing the experimental effect of PCR-RFLP.
In the past, many studies and cases have confirmed that PCR experiments have been
verified to be feasible after nucleotides are mutagenic [1]. Therefore, with the support
of these experimental cases, this study proposes an innovative design of multi-point
mutagenesis primers, which help to make mutagenic primers more diverse and complete
works on restriction enzymes mining, so as to fully play the role of PCR-RFLP experiments.

Many factors need to be considered in the design of multi-point mutagenic primers. In
addition to specific primer design [2,3], these also include template sequence length, primer
length range, number of target SNP genotypes, target SNP position, multi-point mutagenic
nucleotide positions, number of multi-point mutagenic nucleotides, the available restriction
enzymes, etc., which make the solution space for the design of multi-point mutagenic
primers significantly large, and the design is extremely complex and challenging. In
addition, although there are a certain number of known restriction enzymes, complete and
specific restriction enzyme mining methods are extremely lacking, making it impossible
to comprehensively consider the available restriction enzymes. It can be seen that the
design of multi-point mutagenic primers has a significantly large solution space, and
coupled with the huge amount of data generated by the current High-Throughput Screening
(HTS) technology, it is necessary to provide high accuracy and efficiency high-throughput
computation (HTC) algorithms.

In the previous research, Camilo et al. created HTP-OligoDesigner to provide a simple
and intuitive online primer design tool for both laboratory-scale and high-throughput
projects of sequence-independent gene cloning and site-directed mutagenesis, as well as
a Tm calculator for quick queries [4]. Püllmann et al. developed Golden Mutagenesis
and proposed a software library and web application for automated primer design and
for the graphical evaluation of the randomization success based on the sequencing results
in 2019 [5]. In order to solve the problem of mismatch PCR-RFLP for SNP genotyping, it
is necessary to efficiently and accurately induce mutagenic nucleotides in the sequence
through primers so that the target SNP, which is not recognized by restriction enzymes, can
obtain usable restriction enzymes, so as to play the role of PCR-RFLP experiments. In order
to improve the efficiency of mutagenic primer design, we also applied the Genetic Algo-
rithm (GA) on the design of mutagenic primers in 2012 [6]. However, the genetic algorithm
has the disadvantage that it easily falls into the local optimal solution, and the designed
mutagenic primers cannot fully meet the restriction conditions of PCR experiments. This
serious shortcoming will affect the quality of high-throughput mutagenic primer design
in the future. Especially with the huge amount of data generated by the HTS technology,
a HTC algorithm with high quality and efficiency is required. Therefore, we continue to
invest in the research and development of more efficient and higher-quality algorithms for
mutagenic primer design, and have studied a set of novel computational intelligence (CI)
methods published by RV Rao for Teaching–Learning-Based Optimization (TLBO) [7,8]. In
order to ensure that the TLBO method can be effectively applied to the mutagenic primer
design, we had tested and applied it to the general PCR primer design. The results revealed
that the TLBO method could effectively improve the efficiency of primer design, and the
selected primers met the needs of PCR experiments. In addition, we used this method to
test the results of primers designed by different primer melting temperature equations, and
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applied statistical regression analysis to observe the changes in their parameter settings, so
as to evaluate the suitability of TLBO methods for primer design [9].

The biological experiments proved that the TLBO method was able to help with primer
design. Therefore, in 2015, this method was further applied to the design of mutagenic
primers, and compared with the method of mutagenic primer design in the previous lit-
erature, it did obtain better results than other methods [10]. However, after completing
the preliminary design and observation of the results, it was found that the developed
mutagenic primer design algorithm did not take into account the complex SNP sequence
structure, and did not introduce suitable search strategies, which both limit the method for
improvement. In 2018, we proposed REHUNT [11], which provides a complete application
programming interface for restriction enzyme mining, which can be effectively integrated
into various biological algorithms. REHUNT is a reliable and open source package imple-
mented in JAVA. It is able to provide all available restriction enzymes for the imported
biological sequences. It can also identify different genotypes combined with PCR-RFLP,
including SNPs, mutations and the other variations. Furthermore, classified restriction
enzymes, including IUPAC (International Union of Pure and Applied Chemistry chemical
nomenclature) and general sequence types, and commercial and non-commercial avail-
abilities, as well as HTS (high-throughput screening) analysis, are available in REHUNT.
Therefore, the design method of mutagenic primers is expected to be introduced into
systematic high-throughput computing. With the advancement of computing architecture
of computer hardware, the huge amount of data generated by high-throughput screening
technology can be effectively utilized. In order to improve the quality of designed muta-
genic primers in large-scale analysis, this study proposes the novel design technology of
multi-point mutagenic primers and introduces TLBO improved strategies to exactly match
the design of multi-point mutagenic primers, so as to help with biological practical use by
medical researchers.

2. Materials and Methods

When designing primers for multi-point mutagenic primers, the consideration of
primer constraints is an important key to the success or failure of the experiment. In PCR
experiments, people (operators), things (research projects), time (operation time), places
(location and environment) and objects (materials used) are often the reasons for different
experimental results.

In order to enable the designed multi-point mutagenic primers to successfully conduct
PCR-RFLP experiments during SNP genotyping, this study used the experience of the
single-point mutagenic primer design conditions used in [6,10] to improve them. At the
same time, it analyzes and evaluates the primer design conditions used in various actual
PCR-RFLP experiments, and finds the most necessary and most suitable elements for
designing multi-point mutagenic primers. Through in-depth discussion and analysis of
the factors affecting the PCR-RFLP experiment, the necessary conditions for the design of
multi-point mutagenic primers are improved in order to ensure their quality and the success
rate of the experiment. Then, the design conditions of these multi-point mutagenic primers
are functionalized and planned as an application programming interface (API) library in
order to provide relevant computational intelligence methods and reuse by researchers
in the future. In the design of the multi-point mutagenic primer design algorithm, the
TLBO method is mainly used for research, development and improvement, and suitable
multi-point mutagenic primer strategies are proposed to improve the quality of its multi-
point mutagenic primer. After completing the development of the algorithm, we tested
and analyzed the high-throughput SNP genotyping multi-point mutagenic primer design
method which we developed.
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2.1. In-Depth Discussion and Analysis of the Factors Affecting the Experiment, and Improvement
of the Design Conditions of the Necessary Multi-Point Mutagenic Primers

The primer conditions and factors that need to be considered in PCR experiments
are mostly derived by many researchers based on their accumulated experience in PCR
experiments in the past, including the quality of the template sequence, the primer length,
the length difference between the forward and reverse primers, ratio of primer ‘G/C’ nu-
cleotides, primer 3′ end restriction, melting temperature, melting temperature difference
among forward primer, reverse primer, template sequence, primer annealing position, the
duplication of nucleotides, the formation of dimerization of primers, the formation of hair-
pin of primers, the specificity of primers, the size of products, etc. The primer conditions
and factors to be considered are all mentioned in the literature related to biotechnology [12].
Therefore, this study uses the relevant primer design conditions suggested in the literature
to analyze and discuss, in order to improve and adjust the multi-point mutagenic primer
design conditions. Under the constraints of so many primer design conditions, not all
primer design conditions can be used to effectively design appropriate multi-point mu-
tagenic primers which can achieve a successful PCR-RFLP experiment. There are many
primer design conditions which are actually interrelated in nature and will affect each other;
for example, the primer length and the ‘G/C’ nucleotide ratio of the primer will affect
the melting temperature of the primer. When the primer length is too long, its melting
temperature will increase; when the ‘G/C’ nucleotide ratio of the primer is too high, its
melting temperature will also increase. In addition, the primer’s annealing position will
affect the size of the PCR product, mainly because the distance between the forward and
reverse primers is too long, and the amplicon size may be too big. If the distance between
both of the primers is too short, the length of the PCR product will be too short. Therefore,
when designing the weight of primer conditions, if only several primer conditions are used
as the evaluation basis, it is impossible to take into account the influence of the interaction
between the primer conditions on the design of the overall multi-point mutagenic primers,
and it is difficult to achieve an effective balance.

2.2. Functionalization of Multi-Point Mutagenic Primers and Design of API Library for
Computational Intelligence Methods

In order to provide future research and development of multi-point mutagenic primer
design algorithms, and to facilitate the continuous use of these improved multi-point
mutagenic primer design conditions, this study functionalized these improved multi-
point mutagenic primer design conditions and planned them in the API (Application
Programming Interface) library to provide relevant computational intelligence methods
and reuse by researchers in the future. The API function library of these related definitions
includes primer length function, length difference function between forward and reverse
primer, ratio function of primer ‘G’ and ‘C’ nucleotides, primer 3′ end function, melting
temperature calculation function, melting temperature difference function of forward and
reverse primer to template sequence, repeat calculation function of the same nucleotide in
primer, primer dimer evaluation function, primer hairpin evaluation function, specificity
evaluation function, product length calculation function, etc. In defining these functions,
first, the solution of the mutagenic primer design problem is represented by s. The overall
template sequence is mainly based on the nucleotide base composition of ‘A’, ‘T’, ‘C’ and
‘G,’ and considers the inclusion of multiple SNPs. It is defined as formula (1):

TD =
{

Bi
∣∣∀Bi ∈ ‘A’ or ‘T’ or ‘C’ or ‘G’ or IUPAC format, i ∈ Z+

}
(1)

where TD represents the template sequence; B is the nucleotide base; i represents the
position of the nucleotide base.
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The forward primer Pf , i.e., the mutagenic primer, and the reverse primer Pr are
defined as the following Formulas (2) and (3), respectively.

Pf = {Bi |∀Bi ∈ ‘A’ or ‘T’ or ‘C’ or ‘G’ and ∃Bi ∈ SNP, i ∈ the index of TD, Fs ≤ i ≤ Fe} (2)

Pr =
{

Bi
∣∣∀Bi ∈ ‘A’ or ‘T’ or ‘C’ or ‘G’, i ∈ the index of TD, Rs ≤ i ≤ Re

}
(3)

where Pf represents the forward primer; Pr represents the reverse primer; Fs and Fe repre-
sent the starting position and end position of the forward primer, respectively; Rs and Re
represent the starting position and end position of the reverse primer. Here, it should be
noted that the forward primer mainly contains the subsequence of the SNP’s base at the 3′

end, and the reverse primer does not contain the subsequence of the SNP’s base.
The following defines the conditional functions for the design of mutagenic primers:

(1) Primer length function

The primer length will cause the melting temperature between the primer and the
template sequence to increase or decrease, and it will also indirectly affect the generation of
secondary structure and the specificity of the primer. Therefore, this study functionalizes
the primer length function, which is expressed as follows:

Plen_min ≤ Plen(s) ≤ Plen_max (4)

where the Plen represents the length of the forward and reverse primers; the Plen_min
represents the minimum primer length designed; the Plen_max represents the maximum
primer length designed.

(2) Primer length difference function

The designed lengths of the forward and reverse primers are not necessarily the same.
Many studies have found that a length difference between both of the primers of less than
3 nt is the most ideal state, but due to some special requirements, the length difference must
be made within a certain length. In order to allow the function to flexibly adjust the length
difference, the length difference is represented by n here, and the function is expressed
as follows:

Plen_di f f (s) =
∣∣∣Pf _len − Pr_len

∣∣∣ ≤ n (5)

where the Plen_di f f represents the length difference between primers; the Pf _len represents
the forward primer length; the Pr_len represents the reverse primer length; n represents the
length difference.

(3) The ratio function of primer ‘G’ and ‘C’ nucleotides

The ratio of ‘G/C’ nucleotides in primers is generally found in the literature to be
between 40% and 60% for optimal adhesion. In order to allow users to adjust according to
their needs, we provide the ratio function of primer ‘G’ and ‘C’ nucleotides as follows:

GCmin ≤ PGC(s) ≤ GCmax (6)

where the GCmin is the minimum G/C ratio value; the GCmax is the maximum G/C ratio
value; the PGC function represents the proportion of ‘G/C’ nucleotides in the forward and
reverse primers.

(4) The 3′ end function

Usually the 3′ end of a primer is designed with ‘G’ or ‘C’ nucleotides, because ‘G’ or ‘C’
nucleotides have a stronger bond than ‘A’ or ‘T’ nucleotides in DNA structure. Considering
the nucleotides at the primer 3′ end, the function is expressed as follows:

P3end(s) ∈ ‘G’ or ‘C’ (7)
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where the P3end function represents the nucleotides at the 3′ end of the forward and
reverse primers.

(5) Melting temperature calculation function

The melting temperature (Tm) is the temperature at which the primer separates from
the template. In this study, the thermodynamics theory proposed by SantaLucia [13] is
functionalized, which is also the most accurate melting temperature equation identified by
researchers, as follows:

TmSAN(s) = ∆H◦(predicted)/(∆S◦(salt_correction) + R× ln(C/4)) (8)

where ∆H◦(predicted) is enthalpy; ∆S◦(salt_correction) is entropy correction; R is gas
constant (1.987 cal/Kmol); C is DNA concentration.

(6) The melting temperature difference function

The difference of Tm between the forward and reverse primers and the template
sequence is generally considered to be no more than 55 ◦C; otherwise, the primer will not
be properly attached to the template sequence. In order to allow users to set flexibly, the
function of the Tm difference between both of the primers and the template sequence is
expressed as follows:

Ptm_di f f (s) =
∣∣∣Pf _tm − Pr_tm

∣∣∣ ≤ n (9)

where the Ptm_di f f function represents the Tm difference between the forward and reverse
primers and the template sequence; the Pf _tm represents the Tm difference between the
forward primer and the template sequence; the Pr_tm represents the Tm difference between
the reverse primer and the template sequence; n represents the maximum difference of Tm.

(7) Repeat calculation function of identical nucleotides in primers

When a specific nucleotide within a forward or reverse primer is repeated multiple
times, such as ATATATAT, this situation may result in errors in annealing to the template
sequence. Therefore, the repetition calculation function for the same nucleotide within a
primer is expressed as follows:

Prepeat(s) ≤ r (10)

where the Prepeat function is the evaluation function of repeated nucleotides in the primer; r
represents the maximum allowable number of repetitions.

(8) Primer dimer assessment function

When both of the forward and reverse primers are in a dimer structure due to the
composition of nucleotides, it can easily cause the primer to fail to bind to the template
sequence. Here, the primer dimer evaluation function is expressed as follows:

Pdimer(s) /∈ cross dimer &self dimer (11)

where the Pdimer function is to evaluate the dimer of the forward and reverse primers; the
cross dimer is the mutual adhesion of the forward and reverse primers; the self dimer is the
mutual adhesion of the forward and forward primers or the reverse and reverse primers.

(9) Hairpin evaluation function

The main reason for the formation of hairpin bends is that the nucleotide structure
of the forward primer or the nucleotide structure of the reverse primer are polymerized
before and after each other, which easily leads to the failure of the primer to adhere to the
template sequence and, thus, the failure of the PCR experiment. The evaluation function
for the formation of primer hairpin bends is expressed as follows:

Phairpin(s) /∈ hairpin (12)
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where the Phairpin function is to evaluate the hairpin bending situation of the forward primer
and the reverse primer itself.

(10) Specificity assessment function

Specificity is a very important property in primer design. Primers with specificity
can bind to specific template sequence positions in order to generate desired products.
Therefore, this study includes the introduction specificity evaluation function, which is
expressed as follows:

Pspeci f icity(s) = Pf and Pr repear in the specific position of TD (13)

where the Pspeci f icity function evaluates that the forward and reverse primers must be able
to bind to a specific template sequence position.

(11) Product length function

The length of the product is the key to identifying the success or failure of a PCR
experiment. Usually, the length of the product that can be recognized at present is about
150 bp. However, in order to provide researchers with flexible settings, the product length
calculation function is expressed as follows:

Pproduct(s) ≥ n (14)

where the Pproduct function represents the PCR product length formed by the forward and
reverse primers; n represents the size of the product.

2.3. Developing a Search Strategy for Primers Suitable for Multi-Point Mutagenic, Importing
High-Throughput Computing and Improving Computing Efficiency

This research develops a search strategy suitable for multi-point mutagenic primers
and integrates it into the TLBO method in order to improve the quality of multi-point
mutagenic primer design. At the same time, high-throughput computing processing is
introduced in order to improve computational efficiency of multi-point mutagenic primer
design. Teaching–learning-based optimization, an algorithm inspired by the teaching and
learning process, is proposed by Rao et al. [7,8,14]. This method is mainly based on the
teacher’s role in influencing learners’ effectiveness in the classroom and the concept of
learners’ mutual self-learning. There are two main basic learning modes: (1) teaching
through teachers (teaching phase) and (2) interacting with other learners (learning phase).
In the solution process of this method, the subjects studied by each learner are regarded
as different design variables of the optimization problem, and the learning outcomes of
the learners are similar to fitness values of the optimization problem. In order to make this
method more effective in the design of multi-point mutagenic primers, this study develops
a search strategy suitable for multi-point mutagenic primers to help this method more
effectively escape the shortcomings of the genetic algorithm falling into the optimal solution,
and it can also effectively improve the quality of multi-point mutagenic primer design.

(1) Multi-point mutagenic primer design

Figure 1 is a conceptual diagram of multi-point mutagenic primer design. Firstly,
according to the multi-point mutagenic primer design, the solution should be solved by
the teaching–learning-based optimization method. In this study, M, Fl, Pl, Rl, Fm and Σ are
used as learner codes to design multi-point mutagenic primers. The symbol M represents
the mutagenic nucleotide number; Fl represents the mutagenic primer length; Pl represents
the product size; Rl represents the reverse primer length; Fm represents the mutagenic
nucleotide position, and its position index can be from 1 to max-M; max-M represents the
maximum number of mutagenic nucleotides; Σ represents an integer value of 0, 1, 2 or 3,
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and its individual meaning represents the mutagenic nucleotides ‘A’, ‘T’, ‘C’ or ‘G’. The
learner is coded as follows:

s = (M, Fl, Pl, Rl, Fm1, Σ1, Fm2, Σ2, . . . . . . , Fm max-M, Σmax-M) (15)

Figure 1. Conceptual diagram of multi-point mutagenic primer design.

In order to improve the design efficiency of multi-point mutagenic primers, we de-
veloped REHUNT (Restriction Enzymes HUNTing) API [11], using JAVA to carry out
complete and specific restriction enzymes mining work.

In addition, we also applied the technology of the single-point mutagenic matrix [6,10]
to propose a multi-point mutagenic matrix to completely record the restriction enzymes
mining results of the target SNP. The single-point mutagenic matrix contains a total of
(Fm_max − Fm_min + 1) × 4 elements, while the multi-point mutagenic matrix contains
Fm max-M single-point mutagenic matrices, as shown in Figure 2. The row indicates the
mutagenic position, which is between (SNP—Fm_max + 1) and (SNP—Fm_min + 1). The
column represents the four bases of the single-point mutagenic nucleotides ‘A’, ‘T’, ‘C’
and ‘G’. In the single-point mutagenic matrix, the internal element values are 0, 1, 2 or 3,
respectively, and their meanings are expressed as follows:

0: Restriction enzymes available on both strands that can distinguish the target SNP
when the single-point mutagenic nucleotide is determined.

1: Restriction enzymes available only on one of the double strands that can distinguish
the target SNP when the single-point mutagenic nucleotide is determined.

2: No restriction enzyme available on either strand that can distinguish the target SNP
when the single-point mutagenic nucleotide is determined.

3: No single-point mutagenic nucleotide, and the original nucleotide is still maintained.
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Figure 2. Single- and multi-point mutagenic matrices.

(2) Search strategies

In terms of search strategies, local search, elite search and interactive learning are
added to the TLBO method [14]. The purpose of adding the local search strategy is to
find better learners near the original learners. The knowledge of the original learner is
improved by learning the knowledge of the better nearby learner, so the local optimal
solution centered on the learner can be obtained. In order Tt have a better solution for
the learners when first using the TLBO method, a local search of adjacent learners is first
performed for the learners in the initial learning group. Afterwards, local searches are also
performed after subsequent learner-interactive learning phases. In each iteration of the
local search process, all children of the learners will participate in the local search; thus,
the local optimal solution of each learner is continuously retained, and finally, the global
optimal solution is obtained. The pseudo code (Algorithm 1) of the learner’s local search
strategy used in this study is shown below. In this pseudo code, S represents a group, and
d is used to assist learners to search for their neighbors. Before calculating d, the constant
a must be determined for the variable values of the different problems. In this study, the
constant a of the local search will be determined by the length difference between the
maximum and minimum primer length in order to obtain a better range.

The pseudo code of the local search:

Algorithm 1 Local search [3]

1 Begin;
2 Select an incremental value d = a × Rand();
3 For a given learner i ∈ S: calculate achievement(i);
4 For j = 1 to number of variables in learner i
5 value(j) = value(j) + d;
6 If achievement(i) in learner i is not improved then
7 value(j) = value(j) − d;
8 Else if achievement(i) in learner i is improved then
9 Retain value(j);
10 Next j;
11 Next i;
12 End;

Where d is the search range; a is a variable that is dependent on the problem; S
represents the entire learning group; achievement is the learning outcome.
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In addition, the purpose of adding the elite search is to provide a higher probability of
being a teacher to teach the rest of the learners through several excellent learners, and to
use n elite learners as auxiliary teachers at the same time in order to promote convergence
of learning process and achieve better learning outcomes. Therefore, before and during
the iteration of the TLBO method, the elite learners in the learning group will be given
priority to serve as teachers with a higher probability, so as to obtain better results in the
learning process. The pseudo code (Algorithm 2) for the elite search used in this study is
shown below.

The pseudo code of elite search:

Algorithm 2 Elite search

1 Begin;
2 For i = 1 to number of learners
3 Initialize teach_rate(i) = 0;
4 For j = i + 1 to number of learners
5 If achievement(i) < achievement(j) then
6 teach_rate(i) = teach_rate(i) + (1/number of learners);
7 Next j;
8 Next i;
9 Find n better learner according to teach_rate(i) from learners;
10 Set n better learner as the assistant teachers;
11 End;

Where teach_rate is the probability of being selected as a teacher; n is the number of
auxiliary teachers.

Finally, the interactive learning helps learners to interact with others in the learning
group. If the learners who want to interact have more knowledge than they themselves
do, the learners will acquire new knowledge by learning with them. This strategy takes
into account real-life peer learning and is ideal for TLBO methods. By interacting with
learners in other overall groups, learners can avoid being limited to only acquiring regional
knowledge, and can acquire global knowledge centered on this learner. The pseudo code
(Algorithm 3) proposed in this study to conduct an interactive search is shown as follows:

The pseudo code of the interactive search:

Algorithm 3 Interactive learning

1 Begin;
2 For a random learner P ∈ S: calculate achievement(P);
3 For j = 1 to number of variables in learner i
4 Randomly select a learner Q ∈ S and Q 6= P;
5 Temp = value(P, j);
6 If achievement(P) < achievement(Q)
7 value(P, j) = value(P, j) + ri (value(P, j) − value(Q, j));
8 Else
9 value(P, j) = value(P, j) + ri (value(Q, j) − value(P, j));
10 If achievement(P) in learner P is not improved then
11 value(P, j) = temp;
12 Else if achievement(P) in learner i is improved then
13 Retain value(P, j);
14 Next j;
15 End;

Where k represents the learners who want to interact; S represents the whole learn-
ing group.

(3) High-throughput computing

The steps of high-throughput computing are described as follows:
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Step 1. Learner code for mutagenic primer solution.
First, learner coding is performed for the problem of mutagenic primer design. Each

learner represents the solution of a mutagenic primer, and each variable in the learner
represents the subject it learns.

Step 2. Import the high-throughput target SNP template sequence.
Next, the template sequences of the high-throughput target SNPs must be imported

to be used as primers for designing high-throughput multi-point mutagenic primers. The
template sequence of the imported high-throughput target SNP is recommended to be at
least 250 bps adjacent to the target SNP, and the full length must be at least 501 bps to
provide sufficient sequence for the selection of optimized primer fragments.

Step 3. High-throughput computational analysis processing.
In order to allow subsequent algorithms to process the template sequences of high-

throughput target SNPs, this study uses a distributed programming framework to design
and build a computing cluster system for analysis and processing.

Step 4. Calculate the multi-point mutagenic matrix.
First, the developed REHUNT of restriction enzyme mining API is used to search for

target SNP restriction enzymes in order to generate a multi-point mutagenic matrix, so
that the mutagenic restriction enzyme information can be efficiently and directly accessed
during the iteration of the algorithm.

Step 5. Determine the presence or absence of restriction enzymes.
After judging whether the target SNP is subjected to multi-point mutagenic design,

the available restriction enzyme is determined for identification of the target SNP position.
Step 6. Initialize the learning population.
If the target SNP has available restriction enzymes, tens to hundreds of s learners

are randomly generated as the initial learning population. The value of Fm is randomly
generated between (SNP—Fm_max + 1) and (SNP—Fm_min + 1). The value of Fl is randomly
generated between the minimum and maximum primer lengths, according to common
primer length constraints. In addition, in order to limit the PCR amplicon size, the value
of Pl is randomly generated between the minimum and maximum product length. The
value of Rl is generated in the same way as for Fl. The value of Σ is randomly generated
between 0, 1, 2 or 3, and its individual meaning represents the mutagenic nucleotide ‘A’,
‘T’, ‘C’ or ‘G’.

Step 7. Do a local search.
In order to enable the learners at the beginning to have good quality, the initial local

search will be carried out for the learners in the initial learning group. Afterwards, a local
search will also be performed after subsequent learner-interactive learning phases. Through
the iterative process, all children’s learners will participate in the local search, so that the
local optimal solution of each learner is continuously retained, and thus, the global optimal
solution is determined.

Step 8. Perform an elite search.
Before and during the iteration of the teach-learning optimization method, the algo-

rithm will seek out elite learners in the learning population and provide a high probability
of becoming teachers to teach the rest of the learners. With elite learners as auxiliary
teachers, the convergence of the learning process will be promoted and better learning
outcomes will be achieved.

Step 9. Teach Phase.
During this phase, teachers try to increase the average learning outcomes of learners

in the subject courses they teach according to their abilities. At any iteration i, assume
there are m number of subjects (i.e., design variables), n number of learners (i.e., learning
population size, k = 1, 2, . . . , n) and Mj,i for learners with an average learning outcome for a
particular subject j (j = 1, 2, . . . , m). The best overall learning outcome Xtotal-kbest,i considers
the best learning outcomes of the entire learner group in all subjects, and takes kbest as the
best learner. Under normal circumstances, a teacher is usually considered a person with a
high learning ability to train learners for better learning outcomes. The differences between



Mathematics 2022, 10, 4105 12 of 18

the existing average learning outcomes for each subject and the corresponding learning
outcomes for teachers in each subject are given as follows:

Difference_Meanj,k,i = ri (Xj,kbest,i − TFMj,i) (16)

where Xj,kbest,i are the learning results of the best learner (i.e., teacher) in subject j; TF is the
teaching factor, which determines the change in the mean; ri is a random number in the
interval [0, 1]. The TF value can be 1 or 2, randomly determined with equal probability
as follows:

TF = round [1 + rand(0,1){2 − 1}] (17)

Here, the TF value is not used as an input to the algorithm, and its value is randomly
determined by Equation (17). It is pointed out in the literature that the TLBO algorithm is
superior in performing many benchmark function simulation experiments with TF values
between 1 and 2. However, in the simulation experiment, it was found that a TF value of 1
or 2 is more suitable for solving the algorithm. Therefore, in order to simplify the algorithm,
it is recommended to use 1 or 2 for the teaching factor.

Step 10. Update Learning Outcomes.
Based on Difference_Meanj,k,i, the existing solution is updated in the teach phase ac-

cording to the following formula:

X’j,k,i = Xj,k,i + Difference_Meanj,k,i (18)

where X’j,k,i is the updated value of Xj,k,i. The algorithm accepts X’j,k,i if it provides a
better function value. All accepted function values are retained at the end of the teaching
phase, and these values become the learner’s input to the interactive learning phase, which
depends on the teaching phase.

Step 11. Interactive learning phase.
After a certain period of iteration, the learner can randomly interact with the learners

in the learning group in order to improve the learner’s own knowledge and escape from
the optimal solution in the region. We express the learning phenomenon in this stage
as follows:

Randomly select two learners P and Q such that X’total-P,i 6= X’total-Q,i, where X’total-P,i
and X’total-Q,i are the updated values of Xtotal-P,i and Xtotal-Q,i at the end of the teacher phase.
The interactive learning update is shown in Equations (19) and (20).

X”j,P,i = X’j,P,i + ri (X’j,P,i − X’j,Q,i), if X’total-P,i < X’total-Q,i (19)

X”j,P,i = X’j,P,i + ri (X’j,Q,i − X’j,P,i), if X’total-P,i > X’total-Q,i (20)

Step 12. Assessment of Learning Outcomes.
Through the designed learning outcome function, each learner will be evaluated,

and each learner will have a corresponding learning outcome value. Here, the learn-
ing outcome function was evaluated based on the design conditions of the multi-point
mutagenic primers.

Step 13. Terminate condition judgment.
During the iteration process, the algorithm will determine whether the current learner’s

learning outcome value has been minimized, that is, a learning outcome value of 0 indi-
cates that the optimal learning outcome value has been reached, or the calculation process
reaches the preset number of iterations, and the calculation is stopped.

3. Results
3.1. Dataset

In order to evaluate the proposed method for mutagenic primer design, we used
the fifteen mismatch PCR-RFLP SNPs in the human SLC6A4 gene from the NCBI dbSNP
database [15,16] to take 250 bps from the left and right sides. The human gene, SLC6A4, is
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related to autism spectrum disorders (ASD) [17], psychosis [18] and bipolarity [19]. The
fifteen mismatch PCR-RFLP SNPs are shown in Table 1.

Table 1. Fifteen mismatch PCR-RFLP SNPs in the SLC6A4 gene.

No.
Results

rs# Remark

1 rs12150096 The iteration number is set to 500, and the primers cannot be designed.
2 rs2020932 -
3 rs28441519 -
4 rs34185064 -
5 rs3783594 -
6 rs41274280 The iteration number is set to 100, and the primers cannot be designed.
7 rs45541837 -
8 rs56082703 -
9 rs56162408 -
10 rs7217065 -
11 rs73987804 The iteration number is set to 400, and the primers cannot be designed.
12 rs8071583 -
13 rs8080561 -
14 rs9652882 The iteration number is set to 100, and the primers cannot be designed.
15 rs9916159 The iteration number is set to 400, and the primers cannot be designed.

3.2. Design of Parameters

The parameters of the method used in this study were set to 100, 200, 300, 400 and 500
iterations in order to observe the primer design and convergence of the mismatch PCR-
RFLP SNPs. The population size was set to 50. The length of the primers to be designed
was between 16 bps and 28 bps; the length difference between the primers of forward and
reverse was 3 bps; the ratio of ‘G/C’ nucleotides of primers was between 40% and 60%;
the primer melting temperature was between 45 ◦C and 62 ◦C; the melting temperature
difference between the forward and reverse primer to the template sequence was 5 ◦C and
the product length was between 150 and 300. The remaining primer conditions, including
primer 3′ end restriction, repeated counting of identical nucleotides in primers, primer
dimers, primer hairpin and primer specificity, were all tested.

3.3. REHUT and Primer Results

Through the proposed method, 15 SNPs with mismatch PCR-RFLP in the SLC6A4
gene were tested. It was found that the SNPs rs41274280, rs9652882 and rs9916159 could not
design mutagenic primers when the iteration number was set to 100. The SNPs rs73987804
and rs9916159 failed to design mutagenic primers when the iteration number was set
to 400, and the SNP rs12150096 could not design mutagenic primers when the iteration
number was set to 500. When 100 was set for the iteration number, a total of 12 pairs of
primers were generated, with a total of 24 primers. Among them, all primers met the
primer length; only 4 pairs of primers meet the primer length difference; 13 primers met
the ratio of ‘G/C’ nucleotides; 5 primers met the ratio of ‘G/C’ nucleotides at 3′ end;
19 primers met the primer melting temperature; 6 pairs of primers met the primer melting
temperature difference; 24 primers met the product length; 12 primers avoided cross-dimer;
24 primers avoided self-dimer; 18 primers avoided hairpin. Finally, 24 primers met the
primer specificity. Table 2 shows the results.

As shown in Table 3, when the number of iterations was set to 200, a total of 15 pairs of
primers were generated, with a total of 30 primers. Among them, all primers met the primer
length; only 6 pairs of primers met the primer length difference; 15 primers met the ratio
of ‘G/C’ nucleotides; 10 primers met the ratio of ‘G/C’ nucleotides at 3′ end; 22 primers
conformed to the primer melting temperature; 11 pairs of primers met the primer melting
temperature difference; 30 primers met the product length; 15 primers avoided cross-dimer;
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30 primers avoided self-dimer; 25 primers avoided hairpin. Finally, 30 primers met the
primer specificity.

Table 2. Design results of mutagenic primers combined with REHUNT. The number of iterations was
set to 100 and the population size was set to 50.

Primer Info. *
Results

Number of Eligible Number of Violations

Primer length 24 0
Length difference of forward and reverse

primer 4 8

Ratio of primer ‘G’ and ‘C’ nucleotides 13 11
Primer 3′ end 5 19

Primer Tm 19 5
Tm difference between the forward and

reverse primers in the template sequence 6 6

Amplicon size 24 12
Cross-dimer 12 0
Self-dimer 24 0

Hairpin 18 6
Specificity 24 0

* Tm: melting temperature.

Table 3. Design results of mutagenic primers combined with REHUNT. The number of iterations and
population size were set to 200 and 50, respectively.

Primer Info. *
Results

Number of Eligible Number of Violations

Primer length 30 0
Length difference of forward and reverse

primer 6 9

Ratio of primer ‘G’ and ‘C’ nucleotides 15 15
Primer 3′ end 10 20

Primer Tm 22 8
Tm difference between the forward and

reverse primers in the template sequence 11 4

Amplicon size 30 15
Cross-dimer 15 0
Self-dimer 30 0

Hairpin 25 0
Specificity 30 0

* Tm: melting temperature.

When the iteration number was set to 300, a total of 15 primer pairs were generated, for
a total of 30 primers. Among them, all primers met the primer length; only 6 pairs of primers
met the primer length difference; 16 primers conformed to the ratio of ‘G/C’ nucleotides;
10 primers met the ratio of ‘G/C’ nucleotides at 3′ end; 22 primers met the primer melting
temperature; 11 pairs of primers met the primer melting temperature difference; 30 primers
met the product length; 15 primers avoided cross-dimer; 30 primers avoided self-dimer;
23 primers avoided hairpin. Finally, 30 primers met the primer specificity. The results are
presented in Table 4.

As shown in Table 5, when the number of iterations was set to 400, a total of 13 pairs
of primers were generated, for a total of 26 primers. Among them, all primers met the
primer length; only 4 pairs of primers met the primer length difference; 15 primers fit the
ratio of ‘G’ and ‘C’ nucleotides; 8 primers fit the ‘G’ and ‘C’ nucleotide ratio at 3′ end;
22 primers met the primer melting temperature; 10 pairs of primers met the primer melting
temperature difference; 26 primers met the product length; 13 primers avoided cross-dimer;
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26 primers avoided self-dimer; 22 primers avoided hairpin. Finally, 26 primers met the
primer specificity.

Table 4. Design results of mutagenic primers combined with REHUNT. The number of iterations and
population size were set to 300 and 50, respectively.

Primer Info. *
Results

Number of Eligible Number of Violations

Primer length 30 0
Length difference of forward and reverse

primer 6 9

Ratio of primer ‘G’ and ‘C’ nucleotides 16 14
Primer 3′ end 10 20

Primer Tm 22 8
Tm difference between the forward and

reverse primers in the template sequence 11 4

Amplicon size 30 15
Cross-dimer 15 0
Self-dimer 30 0

Hairpin 23 7
Specificity 30 0

* Tm: Melting temperature.

Table 5. Design results of mutagenic primers combined with REHUNT. The number of iterations and
population size is set to 400 and 50, respectively.

Primer Info. *
Results

Number of Eligible Number of Violations

Primer length 26 0
Length Difference of forward and reverse

primer 4 9

Ratio of primer ‘G’ and ‘C’ nucleotides 15 11
Primer 3′ end 8 18

Primer Tm 22 4
Tm difference between the forward and

reverse primers in the template sequence 10 3

Amplicon size 26 13
Cross-dimer 13 0
Self-dimer 26 0

Hairpin 22 4
Specificity 26 0

* Tm: melting temperature.

Finally, when the iteration number was set to 500, a total of 14 pairs of primers were
generated, for a total of 28 primers. Among them, all primers met the primer length; only
5 pairs of primers met the primer length difference; 18 primers met the ‘G’ and ‘C’ nucleotide
ratio; 7 primers fit the ‘G’ and ‘C’ nucleotide ratio at 3′ end; 22 primers met the primer
melting temperature; 8 pairs of primers met the primer melting temperature difference;
28 primers met the product length; 14 primers avoided cross-dimer; 28 primers avoided
self-dimer; 23 primers avoided hairpin. Finally, 28 primers met the primer specificity. The
results are shown in Table 6.



Mathematics 2022, 10, 4105 16 of 18

Table 6. Design results of mutagenic primers combined with REHUNT. The number of iterations and
population size were set to 500 and 50, respectively.

Primer Info. *
Results

Number of Eligible Number of Violations

Primer length 28 0
Length difference of forward and reverse

primer 5 9

Ratio of primer ‘G’ and ‘C’ nucleotides 18 0
Primer 3′ end 7 21

Primer Tm 22 6
Tm difference between the forward and

reverse primers in the template sequence 8 6

Amplicon size 28 14
Cross-dimer 14 0
Self-dimer 28 0

Hairpin 23 5
Specificity 28 0

* Tm: melting temperature.

4. Discussion and Conclusions

We have found that the introduction of innovative TLBO combined with REHUNT
can indeed assist in the design of multi-point mutagenic primers. However, there are still a
few issues that need attention in practice, which are explained as follows:

(1) Restriction enzyme data issues: REHUNT is based on the REBASE database, so if
there is a new restriction enzymes update in the REBASE database, it may happen that
the new restriction enzymes cannot be found. In order to resolve related issues, simply
update REBASE to the latest version according to the REHUNT update method.

(2) Restriction enzymes are not necessarily available: Although the method of this study
can help design primers for multi-point mutagenic primers, the provided restriction
enzymes may be practically difficult to obtain due to non-commercial restriction
enzymes. Therefore, it is necessary to select practical restriction enzymes among the
provided multiple restriction enzymes to facilitate PCR experiments.

The primer design needs to adjust the parameters according to the actual experimental
environment: Although the TLBO can design feasible PCR experimental primers, the
parameters of the primers are provided with preset values according to the standard primer
parameters in the literature. The primers required for the experiment should be adjusted
according to different experimenters, environments and hardware in order to design
feasible primers suitable for PCR experiments. Different experimenters, environments and
hardware may affect the success rate of PCR experiments. No matter what kind of primer
design algorithm or software is used, it is an auxiliary function, not for all PCR experiments.

Many factors need to be considered in the design of multi-point mutagenic primers,
including template sequence length, primer length range, number of target SNP genotypes,
target SNP position, multi-point mutagenic position, number of multi-point mutagenic
nucleotides, the available restriction enzymes, etc. These make the solution space for
the design of mutagenic primers extremely large, and the design is extremely complex
and challenging. A complete and specific restriction enzyme mining method is extremely
lacking, making it impossible to comprehensively consider the available restriction enzymes
on the sequence. Furthermore, due to the huge amount of data generated by today’s
high-throughput screening technology, accurate and efficient high-throughput computing
algorithms are required. This study discusses the key factors for designing a complete
and rigorous multi-point mutagenic primer, and proposes an innovative, accurate and
efficient teaching–learning optimized multi-point mutagenic primer design algorithm. It
also combines REHUNT in order to provide a complete and accurate solution for restriction
enzyme mining. The proposed method not only introduces a search strategy suitable
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for multi-point mutagenic primers, but also enhances the reliability of mutagenic primer
design. The following summarizes the contributions of this study:

(1) Integrate REHUNT to provide a complete and specific restriction enzyme mining
solution.

(2) Research and discuss the key factors for the complete and rigorous design of multi-
point mutagenic primers, develop a search strategy suitable for multi-point mutagenic
primers and enhance the reliability of mutagenic primer design.

(3) Design for more complex SNP structures (with multiple dNTPs and insertion and
deletion), and provide specific solutions for SNP diversity.

(4) Research and discuss the design of different target SNP positions, positions of multi-
point mutagenic nucleotides and multi-point mutagenic number, and analyze their in-
fluence.

(5) Develop an accurate, efficient and practical multi-point mutagenic primer design
algorithm to completely solve the mismatch PCR-RFLP problem. The source code
is available at https://sites.google.com/site/yhcheng1981/downloads (accessed on
8 September 2022).

(6) Import high-throughput calculation, reduce the search time of the huge and com-
plex solution space, improve the efficiency of high-throughput analysis and provide
practical high-throughput analysis.
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