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Abstract: This paper investigates the stability issues associated with neutral‑type delay systems.
Firstly, the delay‑partitioning method is employed to construct a brand‑new LK‑functional candi‑
date. The discrete delay and a neutral delay are divided into several piecewise points through a
relaxable sequence of constant numbers, are increasing at a steady rate and are not larger than 1.
Secondly, to fully use the interconnection information among the delayed state vectors, a new LK‑
functional is constructed. Thirdly, the recently published single/multiple integral inequalities are
employed to bound the derivative of the newly developed LK function. Finally, a novel stability
criterion for neutral systems is developed based on the above treatment. Furthermore, a new corol‑
lary is also proposed for the condition of τ = h. The benefits and productivities of our method are
demonstrated by numerical examples.

Keywords: stability analysis; neutral type; delay‑partitioning method; Lyapunov‑Krasovskii
(LK) functional

MSC: 93‑10

1. Introduction
There is a consensus that time‑delay is ubiquitous in natural control systems, and

that it typically stirs up the stability of the natural system [1,2]. A significant number of
researchers have shown interest in stability analysis of time‑delay systems, and plenty of
research papers have been reported in [1–21] and the references therein. There is a distinct
type of system inwhich the delays exist not only in the state but also in the derivative of the
state. Such a system is named a neutral type system [12–14,18]. The neutral type system
usually comes to light in engineering areas such as distributed networks, chemical reac‑
tors, population ecology, and partial element equivalent circuits in large‑scale integration
systems [1–4]. Although time‑delay may improve performance of an originally unstable
system [8], it affects the stability of the system in most cases. So, it is important to study
the stability problem with time‑delay systems.

For the stability analysis problem with time‑delay systems, the delay‑dependent cri‑
terion is supposed to be less conservative than the delay‑independent one. So, researchers
tend to propose delay‑dependent criteria in the form of linear matrix inequalities (LMI)
under the Lyapunov‑Krasovskii framework [8,9,18]. Therefore, the Lyapunov‑Krasovskii
method has become one of the most efficient approaches and has been widely used. Based
on this method, two essential points of work are needed to develop less conservative con‑
ditions [14,18]. The first and foremost work is to construct a resultful LK‑functional can‑
didate, and the subsequent work is to propose or introduce less conservative inequality
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techniques to bound the derivative of the LK‑functional. For the construction of an LK‑
functional, researchers have proposed plenty of methods in the past two decades: ear‑
lier examples include complete LK‑functional [22], discrete type LK‑functional [23], aug‑
mented LK‑functional [5,24,25], delay partition method [14–17,26,27] and matrix‑refined‑
functionals [28]; more recent examples include delay‑product‑type functionals [29,30] and
indefinite LK‑functionals [31]. On the other hand, since the bounding technique can derive
more accurate upper bounds, researchers have tended to propose less conservative integral
inequalities (IIs) in the last ten years. For example, on the consideration of introducing the
single integral term to employmore information for time‑delays and delayed state vectors,
Seuret et al. proposed the Wirtinger‑based inequality in [32], which can decrease more
of a gap than the Jensen inequality. After two years, Zeng et al. put forward the free‑
matrix‑based integral inequality in combination with a free matrix [33]. P. Park proposed
the auxiliary function‑based integral/summation inequalities and applied them to contin‑
uous and discrete systems [34]. Chen et al. put forward a series of single/multiple integral
inequalities in [6,7], including some anterior inequalities. After that, the Bessel‑Legendre
inequalities [35], Jacobi‑Bessel inequality [36], and other inequalities have been proposed
to bound the quadratic integral terms in the derivative of LK‑functionals [21,37–39]. Ad‑
ditionally, it is well known that the reciprocally convex combination lemmas (RCCLs) are
efficient to deal with reciprocally convex combination derived by the integral inequali‑
ties for time‑varying delay systems [40–44]. Recently, due to more and more augmented
LK‑functionals being introduced, the problem of estimating a quadratic function is often
encountered. Consequently, the so called quadratic negative‑definiteness lemma (QNDL)
had been extensively studied [45–48]. In summary, many excellent achievements in bound‑
ing techniques and other methods have emerged over the past decades. Those methods
have been introduced to analyze the stability of various time‑delay systems.

For the problem of stability analysis with neutral‑type systems, researches have also
done related studies and come up with some good results. For instance, He et al. used the
free‑weighting‑matrix approach to estimate the derivative of LK‑functional. Less conser‑
vative results were derived [10]. Liu et al. discussed the neutral systemswithmixed delays.
Some asymptotic and robust stability criteria were obtained in [11]. After that, Qian et al.
constructed a complete LK‑functional and introduced some free‑weightingmatrices to pro‑
pose the delay‑dependent robust stability criterion for neutral systems [12]. In [13], the
authors investigated uncertain linear neutral systems and proposed robust stability con‑
ditions with mixed delays. Ding et al. used the Wirtinger‑based integral inequality to
analyze the asymptotic stability problem. Improved results were obtained in [14]. In 2019,
Li et al. constructed a dynamic Lyapunov method to study the mixed‑delay‑dependent
stability of the time‑delay system. New criteria were obtained [18]. Among those results,
the authors have put forward many suitable methods to discuss the stability problems
with neutral‑type systems. It needs to be pointed out, in particular, that the authors used
the delay partitioning technique to construct some novel LK‑functional terms in [13,14],
respectively. Consequently, the information of neutral time‑delays was sufficiently used.

However, for those LK‑functional termswith the delay partitioningmethod, the piece‑
wise points of time‑delay are of fixed length. Those piecewise points that are proper for
obtaining a less conservative criterion are unknown. Consequently, the fixed delay parti‑
tioning method is not fit for finding the optimal delayed piecewise points, which may lead
to less conservative criteria. In factor, if one sets some relaxable delay piecewise points to
construct a more relaxed LK‑functional, then one may obtain some less conservative crite‑
ria. So, there is still room for us to improve the results with stability analysis for neutral‑
type systems, which motivates us to carry out this research.

This paper examines the stability analysis of neutral‑type delay systems in light of
the above discussion. Firstly, the delay partitioning technique is employed to construct a
new LK‑functional. In this functional, two relaxable delay piecewise points are set. Then,
some summation integral terms are appended to this LK‑functional. Based on this LK‑
functional, the interconnect information among the delayed state vectors is fully employed.
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Furthermore, due to the relaxable delay piecewise points, one can optimize the conclusion
by changing the value of the delay piecewise points, which surpass the fixed delay parti‑
tioning method. So, the proposed LK‑functional may lead to less conservative results. Sec‑
ondly, the single/multiple integral inequalities are introduced to estimate the derivative of
the LK‑functional. Some new less conservative criteria are proposed. The numerical cases
are used to express the superiority of our method.

Notations. For the entire document, Rn denotes the n‑dimensional Euclidean space,
Rn×m is the set of all n × m real matrices. The notation P > 0, for P ∈ Rn×n, means that
P is symmetric and positive definite matrix. The symmetric term in a symmetric matrix is
denoted by ∗. I is an appropriately dimensioned identity matrix.

2. Related Works
In this section, for the sake of discussion, some preliminary works are first proposed.
Let us consider the systems with the following neutral type:{ .

Dx(t, t − τ) = Ax(t) + Bx(t − h)
x(t) = φ(t), ∀t ∈ [−δ, 0]

(1)

where Dx(t, t − τ) = x(t)− Cx(t − τ), δ = max{τ, h}. x(t) is the state vector, h and τ are
the positive and greater than zero, and present the discrete and neutral time‑delay, respec‑
tively. The matrices A, B, C are constant matrices with appropriate dimensions. φ(t) is an
continuous initial vector‑valued condition that at the time meets the following conditions
t ∈ [−δ, 0].

In order to deal with the derivative of LK‑functional, the single/multiple integral in‑
equalities are firstly proposed.

Lemma 1. For a matrix R > 0 and a differentiable function {x(s), s ∈ [a, b]}, the following
inequalities hold [6]:

L1(xs) ⪰
1

b − a

3

∑
i=0

γiΩT
i RΩi (2)

L2(xs) ⪰
3

∑
i=1

γ̃iΛT
i RΛi (3)

where γi = 2i + 1, γ̃1 = 2i, and Ωi, Λi are defined as the following:

L1(xs) =
∫ b

a

.
xT

(s)R
.

(s)ds

L2(xs) =
∫ b

a

∫ t

t+ϑ

.
xT

(s)R
.

(s)dsdϑ

Ω0 = x(b)− x(a)
Ω1 = x(b) + x(a)− 2

b−a
∫ b

a x(s)ds
Ω2 = x(b)− x(a) + 6

b−a
∫ b

a x(s)ds − 12
(b−a)2

∫ b
a
∫ t

t+ϑ x(s)dsdϑ

Ω3 = x(b) + x(a)− 12
b−a

∫ b
a x(s)ds + 60

(b−a)2

∫ b
a
∫ t

t+ϑ x(s)dsdϑ − 120
(b−a)3

∫ b
a
∫ t

ν

∫ t
ϑ xT(s)dsdϑdν

Λ1 = x(b)− 1
b−a

∫ b
a x(s)ds

Λ2 = x(b) + 2
b−a

∫ b
a x(s)ds − 6

(b−a)2

∫ b
a

∫ t
t+ϑ x(s)dsdϑ

Λ3 = x(b)− 3
b−a

∫ b
a x(s)ds + 24

(b−a)2

∫ b
a

∫ t
t+ϑ x(s)dsdϑ − 60

(b−a)3

∫ b
a

∫ t
ν

∫ t
ϑ xT(s)dsdϑdν

To facilitate follow‑up research, some nomenclatures with constants and vectors are
first defined.
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Let 0 = σ0 < σ1 < σ2 < σ3 = 1 be a constant sequence, and set σi,j = σj − σi, 1 ≤ i <
j ≤ 3.

ξ(t) = [xT(t) xT(t − σ1h) xT(t − σ2h) xT(t − h) xT(t − σ1τ)

xT(t − σ2τ) x(t − τ)
.
xT

(t − τ)
1

σ1h

∫ t

t−σ1h
xT(s)ds

1
σ1,2h

∫ t−σ1h

t−σ2h
xT(s)ds

1
σ2,3h

∫ t−σ2h

t−σ3h
xT(s)ds

1
σ1τ

∫ t

t−σ1τ
xT(s)ds

1
σ1,2τ

∫ t−σ1τ

t−σ2τ
xT(s)ds

1
σ2,3τ

∫ t−σ2τ

t−σ3τ
xT(s)ds

1

(σ1h)2

∫ 0

−σ1h

∫ t

t+ϑ
xT(s)dsdϑ

1

(σ1,2h)2

∫ −σ1h

−σ2h

∫ t

t+ϑ
xT(s)dsdϑ

1

(σ2,3h)2

∫ −σ2h

−σ3h

∫ t

t+ϑ
xT(s)dsdϑ

1

(σ1τ)2

∫ 0

−σ1τ

∫ t

t+ϑ
xT(s)dsdϑ

1

(σ1,2τ)2

∫ −σ1τ

−σ2τ

∫ t

t+ϑ
xT(s)dsdϑ

1

(σ2,3τ)2

∫ −σ2τ

−σ3τ

∫ t

t+ϑ
xT(s)dsdϑ

1

(σ1h)3

∫ 0

−σ1h

∫ t

ν

∫ t

ϑ
xT(s)dsdϑdν

1

(σ1,2h)3

∫ −σ1h

−σ2h

∫ ν

t

∫ t

ϑ
xT(s)dsdϑdν

1

(σ2,3h)3

∫ −σ2h

−σ3h

∫ t

ν

∫ t

ϑ
xT(s)dsdϑdν

1

(σ1τ)3

∫ 0

−σ1τ

∫ t

ν

∫ t

ϑ
xT(s)dsdϑdν

1

(σ1,2τ)3

∫ −σ1τ

−σ2τ

∫ ν

t

∫ t

ϑ
xT(s)dsdϑdν

1

(σ2,3τ)3

∫ −σ2τ

−σ3τ

∫ t

ν

∫ t

ϑ
xT(s)dsdϑdν]T

ei = [0 · · · I
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Let 0 1 2 30 1σ σ σ σ= < < < =  be a constant sequence, and set , ,1 3i j j i i jσ σ σ= − ≤ < ≤ . 

1 2 1( ) [ ( ) ( ) ( ) ( ) ( )T T T T Tt x t x t h x t h x t h x tξ σ σ σ τ= − − − −  

1
2

1

1( ) ( ) ( ) ( )
tT T T

t h
x t x t x t x s ds

h σ
σ τ τ τ

σ −
− − −   

1 2

2 3 11,2 2,3 1

1 1 1( ) ( ) ( )
t h t h tT T T

t h t h t
x s ds x s ds x s ds

h h
σ σ

σ σ σ τσ σ σ τ
− −

− − −    

1 2

2 3 1

0

2
1,2 2,3 1

1 1 1( ) ( ) ( )
( )

t t tT T T

t t h t
x s ds x s ds x s dsd

h
σ τ σ τ

σ τ σ τ σ ϑ
ϑ

σ τ σ τ σ
− −

− − − +     

1 2

2 3
2 2

1,2 2,3

1 1( ) ( )
( ) ( )

h t h tT T

h t h t
x s dsd x s dsd

h h
σ σ

σ ϑ σ ϑ
ϑ ϑ

σ σ
− −

− + − +     

1

1 2

0

2 2
1 1,2

1 1( ) ( )
( ) ( )

t tT T

t t
x s dsd x s dsd

σ τ

σ τ ϑ σ τ ϑ
ϑ ϑ

σ τ σ τ
−

− + − +     

2

3 1

0

2 3
2,3 1

1 1( ) ( )
( ) ( )

t t tT T

t h
x s dsd x s dsd d

h
σ τ

σ τ ϑ σ ν ϑ
ϑ ϑ ν

σ τ σ
−

− + −      

1 2

2 3
3 3

1,2 2,3

1 1( ) ( )
( ) ( )

h t h t tT T

h t h
x s dsd d x s dsd d

h h
σ ν σ

σ ϑ σ ν ϑ
ϑ ν ϑ ν

σ σ
− −

− −       

1

1 2

0

3 3
1 1,2

1 1( ) ( )
( ) ( )

t t tT T

t
x s dsd d x s dsd d

σ τ ν

σ τ ν ϑ σ τ ϑ
ϑ ν ϑ ν

σ τ σ τ
−

− −       

2

3
3

2,3

1 ( ) ]
( )

t t T Tx s dsd d
σ τ

σ τ ν ϑ
ϑ ν

σ τ
−

−    

[0 0], (1 26)i
i

e I i= ≤ ≤   
i

· · · 0], (1 ≤ i ≤ 26)

3. Main Results
This section discusses the problem of asymptotical stability for neutral time‑delay sys‑

tems. First, the delay partitioning technique is applied to construct a new LK‑functional,
in which the delay piecewise points are relaxable. So, the interconnect information with
delayed state vectors is fully used. Then, the single/multiple integral inequalities are em‑
ployed to estimate the derivative of LK‑functional, and the main criterion is proposed.

Theorem 1. For given constant scalars h, τ, the neutral type system (1) is asymptotically sta‑
ble, if there exist suitable dimensions matrices P ∈ R20n×20n ≥ 0, E ∈ R2n×2n ≥ 0 and
Fi, Gi, Hi, Ji, Ki, Li, Mi ∈ Rn×n ⪰ 0, (i = 1, 2, 3), such that the following LMI holds:

Ξ = Θ1 + Θ2 − Y ≤ 0 (4)

where
Θ1 = ΠT

1 PΠ2 + ΠT
2 PΠ1 + ΠT

3 EΠ3 − ΠT
4 EΠ4

Θ2 = Π5 + Π6 + Π7

Y = Y1 + Y2 + Y3 + Y4

Y1 = ΠT
8 H1Π8 + ΠT

9 H2Π9 + ΠT
10H3Π10

Y2 = ΠT
11 J1Π11 + ΠT

12 J2Π12 + ΠT
13 J3Π13

Y3 = ΠT
14K1Π14 + ΠT

15K2Π15 + ΠT
16K3Π16

Y4 = ΠT
17L1Π17 + ΠT

18L2Π18 + ΠT
19L3Π19
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Π1 = [eT
1 eT

7 σ1heT
9 σ12heT

10 σ23heT
11 σ1τeT

12 σ12τeT
13 σ23τeT

14

(σ1h)2eT
15 (σ12h)2eT

16 (σ23h)2eT
17 (σ1τ)2eT

18 (σ12τ)2eT
19 (σ23τ)2eT

20

(σ1h)3eT
21 (σ12h)3eT

22 (σ23h)3eT
23 (σ1τ)3eT

24 (σ12τ)3eT
25 (σ23τ)3eT

26]
T

Π2 = [(Ae1 + Be4 + Ce8)
T eT

8 eT
1 − eT

2 eT
2 − eT

3 eT
3 − eT

4 eT
1 − eT

5

eT
5 − eT

6 eT
6 − eT

7 σ1h(eT
1 − eT

9 ) σ12h(eT
2 − eT

10) σ23h(eT
3 − eT

11)

σ1τ(eT
1 − eT

12) σ12τ(eT
5 − eT

13) σ23τ(eT
6 − eT

14) (σ1h)2(
1
2

eT
1 − eT

15)

(σ12h)2(
1
2

eT
2 − eT

16) (σ23h)2(
1
2

eT
3 − eT

17) (σ1τ)2(
1
2

eT
1 − eT

18)

(σ12τ)2(
1
2

eT
5 − eT

19) (σ23τ)2(
1
2

eT
6 − eT

20)]
T

Π3 = [eT
1 (Ae1 + Be4 + Ce8)

T ]
T

Π4 = [eT
7 eT

8 ]
T

Π5 = (eT
1 (F1 + G1)e1 − eT

2 (F1 − F2)e2 − eT
3 (F2 − F3)e3 − eT

4 F3e4

+ δ2(τ − h)(eT
3 M2e3 − eT

6 M2e6) + (τ − h)(eT
4 M3e4 − eT

7 M3e7)

Π6 = (Ae1 + Be4 + Ce8)
T(

3

∑
i=1

σ2
i−1,i(h

2Hi + τ2 Ji))(Ae1 + Be4 + Ce8)

Π7 = (Ae1 + Be4 + Ce8)
T(

3

∑
i=1

σ2
i−1,i

2
(h2Ki + τ2Li))(Ae1 + Be4 + Ce8)

Π8 = eT
1 − eT

2 + 3(eT
1 + eT

2 − 2eT
9 ) + 5(eT

1 − eT
2 + 6eT

9 − 12eT
15)

+ 7(eT
1 + eT

2 − 12eT
9 + 60eT

15 − 120eT
21)

Π9 = eT
2 − eT

3 + 3(eT
2 + eT

3 − 2eT
10) + 5(eT

2 − eT
3 + 6eT

10 − 12eT
16)

+ 7(eT
2 + eT

3 − 12eT
10 + 60eT

16 − 120eT
22)

Π10 = eT
3 − eT

4 + 3(eT
3 + eT

4 − 2eT
11) + 5(eT

3 − eT
4 + 6eT

11 − 12eT
17)

+ 7(eT
3 + eT

4 − 12eT
11 + 60eT

17 − 120eT
23)

Π11 = eT
1 − eT

5 + 3(eT
1 + eT

5 − 2eT
12) + 5(eT

1 − eT
5 + 6eT

12 − 12eT
18)

+ 7(eT
1 + eT

5 − 12eT
12 + 60eT

18 − 120eT
24)

Π12 = eT
5 − eT

6 + 3(eT
5 + eT

6 − 2eT
13) + 5(eT

5 − eT
6 + 6eT

13 − 12eT
19)

+ 7(eT
5 + eT

6 − 12eT
13 + 60eT

19 − 120eT
25)

Π13 = eT
6 − eT

7 + 3(eT
6 + eT

7 − 2eT
14) + 5(eT

6 − eT
7 + 6eT

14 − 12eT
20)

+ 7(eT
6 + eT

7 − 12eT
14 + 60eT

20 − 120eT
26)

Π14 = 2(eT
1 − eT

9 ) + 4(eT
1 + 2eT

9 − 6eT
15) + 6(eT

1 − 3eT
9 + 24eT

15 − 60eT
21)

Π15 = 2(eT
2 − eT

10) + 4(eT
2 + 2eT

10 − 6eT
16) + 6(eT

2 − 3eT
10 + 24eT

16 − 60eT
22)

Π16 = 2(eT
3 − eT

11) + 4(eT
3 + 2eT

11 − 6eT
17) + 6(eT

3 − 3eT
11 + 24eT

17 − 60eT
23)

Π17 = 2(eT
1 − eT

12) + 4(eT
1 + 2eT

12 − 6eT
18) + 6(eT

1 − 3eT
12 + 24eT

18 − 60eT
24)

Π18 = 2(eT
5 − eT

13) + 4(eT
5 + 2eT

13 − 6eT
19) + 6(eT

5 − 3eT
13 + 24eT

19 − 60eT
25)

Π19 = 2(eT
6 − eT

14) + 4(eT
6 + 2eT

14 − 6eT
20) + 6(eT

6 − 3eT
14 + 24eT

20 − 60eT
26)
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Proof. Firstly, the following LK‑functional candidate is constructed:

V(xt) =
4

∑
i=1

Vi(xt) (5)

where
V1(xt) = ζT

1 (t)Pζ1(t) +
∫ t

t−τ
ζT

2 (s)Eζ2(s)ds

V2(xt) =
3

∑
i=1

∫ t−σi−1h

t−σih
xT(s)Fix(s)ds +

3

∑
i=1

∫ t−σi−1τ

t−σiτ
xT(s)Gix(s)ds +

3

∑
i=1

δi(τ − h)
∫ t−σih

t−σiτ
xT(s)Mix(s)ds

V3(xt) =
3

∑
i=1

σi−1,ih
∫ −σi−1h

−σih

∫ t

t+ϑ

.
xT

(s)Hi
.
x(s)dsdϑ +

3

∑
i=1

σi−1,iτ
∫ −σi−1τ

−σiτ

∫ t

t+ϑ

.
xT

(s)Ji
.
x(s)dsdϑ

V4(xt) =
3

∑
i=1

∫ −σi−1h

−σih

∫ t

ν

∫ t

ϑ

.
xT

(s)Ki
.
x(s)dsdϑdν +

3

∑
i=1

∫ −σi−1τ

−σiτ

∫ t

ν

∫ t

ϑ

.
xT

(s)Li
.
x(s)dsdϑdν

ζ1(t) = [xT(t) xT(t − τ)
∫ t

t−σ1h
x(s)ds

∫ t−σ1h

t−σ2h
x(s)ds

∫ t−σ2h

t−σ3h
x(s)ds

∫ t

t−σ1τ
x(s)ds

∫ t−σ1τ

t−σ2τ
x(s)ds

∫ t−σ2τ

t−σ3τ
x(s)ds

∫ 0

−σ1h

∫ t

t+ϑ
x(s)dsdϑ

∫ −σ1h

−σ2h

∫ t

t+ϑ
x(s)dsdϑ

∫ −σ2h

−σ3h

∫ t

t+ϑ
x(s)dsdϑ

∫ 0

−σ1τ

∫ t

t+ϑ
x(s)dsdϑ

∫ −σ1τ

−σ2τ

∫ t

t+ϑ
x(s)dsdϑ

∫ −σ2τ

−σ3τ

∫ t

t+ϑ
x(s)dsdϑ

∫ 0

−σ1h

∫ t

ν

∫ t

ϑ
x(s)dsdϑdν

∫ −σ1h

−σ2h

∫ ν

t

∫ t

ϑ
x(s)dsdϑdν

∫ −σ2h

−σ3h

∫ t

ν

∫ t

ϑ
x(s)dsdϑdν

∫ 0

−σ1τ

∫ t

ν

∫ t

ϑ
x(s)dsdϑdν

∫ −σ1τ

−σ2τ

∫ ν

t

∫ t

ϑ
x(s)dsdϑdν

∫ −σ2τ

−σ3τ

∫ t

ν

∫ t

ϑ
x(s)dsdϑdν]T

ζ2(s) = [x(s)
.
x(s)]T

For the above LK‑functional, calculating the derivative along the solutions of sys‑
tem (1), it yields:

.
V1(xt) = ξT(t)(ΠT

1 PΠ2 + ΠT
2 PΠ1 + ΠT

3 EΠ3 − ΠT
4 EΠ4)ξ(t) (6)

.
V2(xt) = xT(t)F1x(t)− xT(t − σ1h)(F1 − F2)x(t − σ1h)
−xT(t − σ2h)(F2 − F3)x(t − σ2h)− xT(t − σ3h)(F3)x(t − σ3h)
+xT(t)G1x(t)− xT(t − σ1τ)(G1 − G2)x(t − σ1τ)
−xT(t − σ2τ)(G2 − G3)x(t − σ2τ)− xT(t − σ3τ)(G3)x(t − σ3τ)
+σ1(τ − h)(xT(t − σ1h)M1x(t − σ1h)− xT(t − σ1τ)M1x(t − σ1τ))
+σ2(τ − h)(xT(t − σ2h)M2x(t − σ2h)− xT(t − σ2τ)M2x(t − σ2τ))
+(τ − h)(xT(t − h)M3x(t − h)− xT(t − τ)M3x(t − τ))
= ξT(t)Π5ξ(t)

(7)

.
V3(xt) =

.
xT

(t)
3
∑

i=1
σ2

i−1,i(h
2Hi + τ2 Ji)

.
x(t)−

3
∑

i=1
σi−1,ih

∫ t−σi−1h
t−σih

.
xT

(s)Hi
.
x(s)ds

−
3
∑

i=1
σi−1,iτ

∫ t−σi−1τ
t−σiτ

.
xT

(s)Ji
.
x(s)ds

= ξT(t)Π6ξ(t)−
3
∑

i=1
σi−1,i(h

∫ t−σi−1h
t−σih

.
xT

(s)Hi
.
x(s)ds + τ

∫ t−σi−1τ
t−σiτ

.
xT

(s)Jix(s)ds)

(8)
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.
V4(xt) =

.
xT

(t)
3
∑

i=1

σ2
i−1,i
2 (h2Ki + τ2Li)

.
x(t)−

3
∑

i=1

∫ −σi−1h
−σih

∫ t
ν

.
xT

(ϑ)Ki
.
x(ϑ)dϑdν

−
3
∑

i=1

∫ −σi−1τ
−σiτ

∫ t
ν

.
xT

(ϑ)Li
.
x(ϑ)dϑdν

= ξT(t)Π7ξ(t)−
3
∑

i=1

∫ −σi−1h
−σih

∫ t
ν

.
xT

(ϑ)Ki
.
x(ϑ)dϑdν −

3
∑

i=1

∫ −σi−1τ
−σiτ

∫ t
ν

.
xT

(ϑ)Li
.
x(ϑ)dϑdν

(9)

For the single integral terms in (8), applying the single integral inequality of (2), the
following results can be obtained.

−
3

∑
i=1

σi−1,ih
∫ t−σi−1h

t−σih

.
xT

(s)Hi
.
x(s)ds ≤ −ξT(t)Y1ξ(t) (10)

−
3

∑
i=1

σi−1,iτ
∫ t−σi−1τ

t−σiτ

.
xT

(s)Jix(s)ds) ≤ −ξT(t)Y2ξ(t) (11)

Similarly, for the double integral terms in (9), applying the double integral inequality
of (3), the following results can be obtained.

−
3

∑
i=1

∫ −σi−1h

−σih

∫ t

ν

.
xT

(ϑ)Ki
.
x(ϑ)dϑdν ≤ −ξT(t)Y3ξ(t) (12)

−
3

∑
i=1

∫ −σi−1τ

−σiτ

∫ t

ν

.
xT

(ϑ)Li
.
x(ϑ)dϑdν ≤ −ξT(t)Y4ξ(t) (13)

To sum up, if Ξ < 0, it will hold
.

V(xt) ≤ ε∥x(t)∥2 for any ξ(t) ̸= 0 with a sufficiently
small scalar ε ≥ 0. So, system (1) is asymptotically stable if the LMI (14) holds. This
completes the proof. □

Remark 1. In the process of constructing the LK‑functional, some positive constants such as
0 = σ0 < σ1 < σ2 < σ3 = 1 are firstly selected, in which σ1 and σ2 are alterable. Then, the
delay‑partitioning approach is employed to construct a series of delayed piecewise points with neu‑
tral delays. A new LK‑functional in (5) is then proposed based on those treatments. In the early
literature, the authors mainly constructed some simple integral terms in their LK‑functionals in
which the interconnect information was not fully used, such as [10–12]. Consequently, the pro‑
posed results were not good. Later, in order to sufficiently use the information with neutral delays,
the authors Chen and Ding proposed some new LK‑functionals combined with delay‑decomposition
in [13,14], respectively, in which some infinite delayed piecewise points were proposed. However,
the delayed piecewise points were equal to each other. This is not conducive to finding the optimal
segmentation point. Contrarily, the delayed piecewise points in this paper are alterable. Conse‑
quently, it is easy to change the value to get the optimal delayed piecewise points, indicated in the
next section. Furthermore, for the consideration of the interconnect information between neutral

delays, the interconnect integral terms
3
∑

i=1
σi(τ − h)

∫ t−σih
t−σiτ

xT(s)Mix(s)ds are also added to the

new LK‑functional. So, the interconnect information is further employed.

Remark 2. When estimating the derivative of the LK‑functional, the single/multiple integral in‑
equalities in [6] are adopted to bound the single and double integral terms obtained by the derivative
of the LK‑functional candidate. Those inequalities provide a more accurate estimate for the single
and double integral terms than Wirtinger‑based integral inequality [32] and free‑weight‑based in‑
tegral inequality [21,33]. Consequently, those inequalities could reduce the conservative quality of
the obtained results.

For the case h = τ, the following corollary can easily be obtained by setting some
matrix to zero in Theorem 1.
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Corollary 1. For given constant scalars τ, the neutral type system (1) is asymptotically sta‑
ble, if there exist suitable dimensions matrices P ∈ R11n×11n ≥ 0, E(∈ R2n×2n) ≥ 0, and
Gi, Ji, Li(∈ Rn×n) ⪰ 0, (i = 1, 2, 3), such that the following LMI holds:

Ξ = Θ1 + Θ2 − Y ≤ 0 (14)

where
Θ1 = ΠT

1 PΠ2 + ΠT
2 PΠ1 + ΠT

3 EΠ3 − ΠT
4 EΠ4

Θ2 = Π5 + Π6 + Π7

Y = Y1 + Y2

Y1 = ΠT
8 J1Π8 + ΠT

9 J2Π9 + ΠT
10 J3Π10

Y2 = ΠT
11L1Π11 + ΠT

12L2Π12 + ΠT
13L3Π13

Π1 = [eT
1 eT

4 σ1τeT
6 σ12τeT

7 σ23τeT
8 (σ1τ)2eT

9 (σ12τ)2eT
10 (σ23τ)2eT

11

(σ1τ)3eT
12 (σ12τ)3eT

13 (σ23τ)3eT
14]

T

Π2 = [(Ae1 + Be4 + Ce5)
T eT

5 eT
1 − eT

2 eT
2 − eT

3 eT
3 − eT

4 σ1τ(eT
1 − eT

6 )

σ12τ(eT
2 − eT

7 ) σ23τ(eT
3 − eT

8 ) (σ1τ)2(
1
2

eT
1 − eT

9 ) (σ12τ)2(
1
2

eT
2 − eT

10)

(σ23τ)2(
1
2

eT
3 − eT

11)]
T

Π3 = [eT
1 (Ae1 + Be4 + Ce5)

T ]
T

Π4 = [eT
4 eT

5 ]
T

Π5 = eT
1 G1e1 − eT

2 (G1 − G2)e2 − eT
3 (G2 − G3)e3 − eT

4 G3e4

Π6 = (Ae1 + Be4 + Ce5)
T(

3

∑
i=1

σ2
i−1,iτ

2 Ji)(Ae1 + Be4 + Ce5)

Π7 = (Ae1 + Be4 + Ce5)
T(

3

∑
i=1

σ2
i−1,i

2
(τ2Li))(Ae1 + Be4 + Ce5)

Π8 = eT
1 − eT

2 + 3(eT
1 + eT

2 − 2eT
6 ) + 5(eT

1 − eT
2 + 6eT

6 − 12eT
9 )

+ 7(eT
1 + eT

2 − 12eT
6 + 60eT

9 − 120eT
12)

Π9 = eT
2 − eT

3 + 3(eT
2 + eT

3 − 2eT
7 ) + 5(eT

2 − eT
3 + 6eT

7 − 12eT
10)

+ 7(eT
2 + eT

3 − 12eT
7 + 60eT

10 − 120eT
13)

Π10 = eT
3 − eT

4 + 3(eT
3 + eT

4 − 2eT
8 ) + 5(eT

3 − eT
4 + 6eT

8 − 12eT
11)

+ 7(eT
3 + eT

4 − 12eT
8 + 60eT

11 − 120eT
14)

Π11 = 2(eT
1 − eT

6 ) + 4(eT
1 + 2eT

6 − 6eT
9 ) + 6(eT

1 − 3eT
6 + 24eT

9 − 60eT
12)

Π12 = 2(eT
2 − eT

7 ) + 4(eT
2 + 2eT

7 − 6eT
10) + 6(eT

2 − 3eT
7 + 24eT

10 − 60eT
13)

Π13 = 2(eT
3 − eT

8 ) + 4(eT
3 + 2eT

8 − 6eT
11) + 6(eT

3 − 3eT
8 + 24eT

11 − 60eT
14)

Since one can use the LK‑functional of (5) and set Fi = Mi = Hi = Ki = 0, i = 1, 2, 3,
and follow the similar line of the proof for Theorem 1, corollary 1 could be easy derived.
The proof is omitted here.
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4. Numerical Examples
In this section, two numerical examples are employed to analyze the numerical va‑

lidity for neutral system (1). So, the following classical example with the parameters of
A, B, C is selected.

Example 1.

A =

[
−0.9 0.2
0.1 −0.9

]
, B =

[
−1.1 −0.2
−0.1 −1.1

]
, C =

[
−0.2 0
0.2 −0.1

]
Example 2.

A = 100 ∗

θ 1 2
3 −9 0
1 2 −6

, B = 100 ∗

 1 0 −3
−0.5 −0.5 −1
−0.5 −1.5 0

, C =
1

172
∗

−1 5 2
4 0 3
−2 4 1


For Example 1, the maximum upper bounds of h for different τ are listed in Table 1

for the conditions of σ1 = 0.25, σ2 = 0.75 and σ1 = 0.4, σ2 = 0.6. In order to obtain the
maximum upper bounds of h, the neutral time‑delay is set firstly. Then, the parameter
σ1, σ2 need to be selected. The method to choose the values of σ1, σ2 is to set σ1 from 0 to 0.5
in an increasing way, and set σ2 from 1 to 0.5 in a decreasing way until the optimal results
are derived. The numerical results demonstrate that as σ1 increases and σ2 decreases, the
maximum upper bounds of h increase. When σ1 = 0.4, σ2 = 0.6, the optimal results for
maximum upper bounds of h are achieved.

Table 1. Maximum Upper Bounds of h for Different τ.

Method τ 0.1 0.5 1 Nv

[10] h 1.7100 1.6781 1.6543 114
[11] h 1.7884 1.7495 1.7201 129
[12] h 1.8307 1.7755 1.7213 96

[13], Theorem 3 (N = 5) h 2.2137 2.3210 2.3588 113
[14], Theorem 2 (N = 5) h 2.2181 2.3331 2.3636 120

[21], Theorem 3.1 h 2.2961 2.3491 2.3773 268
Theorem 1 σ1= 0.25, σ2 = 0.75 h 2.2950 2.3478 2.3759 893
Theorem 1 σ1= 0.4, σ2 = 0.6 h 2.2963 2.3481 2.3775 893

Analytical bounds h 2.2963 2.3491 2.3775

On the other hand, it is easy to see that the results derived by our method are much
better than [10–14] when the delayed piecewise are 3. This could be due to the delay par‑
titioning method having established more interconnected information with the delayed
state vectors. Compared to the results in [21], the results are little better when τ = 0.1 and
τ = 1. However, the analytical bounds are also listed in the table for this example. One
can see that as τ = 0.1 and τ = 1, the maximum upper bounds obtained in this paper
achieved analytical bounds as σ1 = 0.4, σ2 = 0.6. So, from this point of view, the results
obtained by our method are more effective.

It should be pointed out that the number of decision vectors Nv will rise by multi‑
ple as the delayed piecewise points increase. However, in order to obtain less conserva‑
tive criteria, there must be a trade‑off between the decision vectors and less backward
results. For this consideration, we only divide the time‑delays into three segments. So,
it not only avoids too many decision vectors but also obtains a stability criterion with
low conservatism.

For Example 2, the maximum upper bounds of τ for different θ as h = τ are showing
in Table 2. It is clear that the results obtained in this paper are much better than [19,20].
Comparing to [21], it is shown that not all the results are better than results in [21] when
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σ1 = 0.1, σ2 = 0.9. However, as σ1 = 0.33, σ2 = 0.67, the results derived by this paper are
better than [21]. So, it demonstrates the efficiency of the proposed method in this paper.

Table 2. Maximum Upper Bounds of τ for Different θ.

θ −2.105 −2.103 −2.1
[19] 1.1413 0.3892 0.2533
[20] 1.6978 0.5747 0.3749

[21], Theorem 3.3 1.7837 0.6030 0.3933
Theorem 1 σ1 = 0.1, σ2 = 0.9 1.8687 0.5872 0.3846
Theorem 1 σ1 = 0.33, σ2 = 0.67 1.9374 0.6199 0.4021

In order to show the effectiveness, the state trajectory simulation result for the sys‑
tem with neutral time‑delays is shown in Figures 1 and 2. For Example 1, under the ini‑
tial condition φ(t) = [8,−8]T , the state vectors are asymptotically approaching zero as
τ = 0.1, h = 2.2963 and τ = 1, h = 2.3775, respectively. The state variables are waving in
the first 40 s, and then converge to 0 which means the system needs a long time to keep
stable with a large time‑delay. It indicates that the upper bound of the time‑delay we ob‑
tain is close to the maximum value, which demonstrates the efficiency of our criteria. For
Example 2, Figure 2 shows the stability of systems with initial condition φ(t) = [1,−1]T ,
and time‑delay τ = 0.6199 with parameter θ = −2.103. One can see that the state trajec‑
tory of the system for Example 2 converge to 0 in a short time. The simulation results have
denoted the validity of the asymptotical stability criterion proposed in this paper.
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5. Conclusions
This paper investigated the problem of stability with neutral time‑delay systems. The

variable delayed piecewise points were chosen by setting some alterable constants. Con‑
sequently, the interconnect information of the neutral time‑delays was sufficiently consid‑
ered, respectively. Then, a new LK‑functional was constructed with the delay partitioning
method. Since the delayed piecewise points are variable, the optimal delay points could
be arrived at by changing the number of δ1, δ2. Further, some integral terms containing
neutral delays as upper and lower bounds are posed. Hence, the interconnect information
between neutral time‑delays was also sufficiently considered. The single/multiple integral
inequalities were employed to estimate the derivative of LK‑functional. New criteria for
neutral‑type delay systems are obtained. Finally, the numerical examples have shown the
effectiveness of the method proposed in this paper.
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