
Citation: Hu, P.; Wang, X.; Zhang, X.;

Cang, Y.; Shi, L. OTNet: A Small

Object Detection Algorithm for Video

Inspired by Avian Visual System.

Mathematics 2022, 10, 4125. https://

doi.org/10.3390/math10214125

Academic Editors: Xunlin Zhu and

Lijun Pei

Received: 8 October 2022

Accepted: 31 October 2022

Published: 4 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

OTNet: A Small Object Detection Algorithm for Video Inspired
by Avian Visual System
Pingge Hu , Xingtong Wang , Xiaoteng Zhang, Yueyang Cang and Li Shi *

Department of Automation, Tsinghua University, Beijing 100084, China
* Correspondence: shilits@mail.tsinghua.edu.cn

Abstract: Small object detection is one of the most challenging and non-negligible fields in computer
vision. Inspired by the location–focus–identification process of the avian visual system, we present
our location-focused small-object-detection algorithm for video or image sequence, OTNet. The
model contains three modules corresponding to the forms of saliency, which drive the strongest
response of OT to calculate the saliency map. The three modules are responsible for temporal–spatial
feature extraction, spatial feature extraction and memory matching, respectively. We tested our model
on the AU-AIR dataset and achieved up to 97.95% recall rate, 85.73% precision rate and 89.94 F1 score
with a lower computational complexity. Our model is also able to work as a plugin module for other
object detection models to improve their performance in bird-view images, especially for detecting
smaller objects. We managed to improve the detection performance by up to 40.01%. The results
show that our model performs well on the common metrics on detection, while simulating visual
information processing for object localization of the avian brain.

Keywords: small object detection; bio-inspired algorithm; avian visual system; neural network; deep
learning; optic tectum

MSC: 68T07 Artificial neural networks and deep learning; 68U10 Computing methodologies for
image processing

1. Introduction

In recent years, significant progress has been made in the area of computer vision.
However, there are still limitations in current works. The goal of making computer vision
perform like an animal, such as birds, who excel in vision, is far from being achieved.
Small object detection (SOD) is one of the most challenging and non-negligible fields in
computer vision.

SOD is the fundamental base of multiple crucial computer vision tasks, including, but
not limited to, target tracking, object identification, etc. It has been widely used in remote
sensing image processing [1], intelligent transportation system [2], military reconnaissance
missions [3], etc.

To better understand the foundation as well as the difficulties of the SOD problem, we
must understand the most basic question of what defines a small object. Although multiple
geometric dimensions can be taken into consideration, we are focusing on the size of the
object in this case. A small object can be defined in following two ways: either the size of
the object is less than 32 × 32 pixels or 1% of the image [4]. This brings out the following
difficulties in SOD.

• The lack of information about the object due to the limited number of pixel points.
• The complex background, which might be confused with the object, interferes with

the process of key information extracting.

Mathematics 2022, 10, 4125. https://doi.org/10.3390/math10214125 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10214125
https://doi.org/10.3390/math10214125
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-5250-2788
https://orcid.org/0000-0002-6364-0772
https://orcid.org/0000-0003-0882-8243
https://doi.org/10.3390/math10214125
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10214125?type=check_update&version=2

Mathematics 2022, 10, 4125 2 of 18

• Current, SOD algorithms mostly adopt the small sliding window method to find the
object, which results in high computing cost, as we will introduce in the following
part of this paper.

Before deep learning showed its strength, studies involving SOD widely adopted
methods such as handcraft feature extraction and the fusion of local and global features
in order to separate the objects and the backgrounds [5–7]. One of the biggest downsides
of these research studies is that the features were too superficial to obtain a model with
promising generalization performance.

As the exponential growth of the data volume begins, deep learning models show
their dominance in the field of object detection. The major SOD algorithms can be grouped
into three categories: anchor-based two-stage object detectors, anchor-based one-stage
object detectors and anchor-free object detectors.

The most iconic two-stage detectors include RCNN [8], FastRCNN [9], FasterRCNN [10]
and MaskRCNN [11]. These models first generate the “potential object regions” in the
region proposal stage and then process these candidate regions to classify the object and
regress its bonding box during the detection stage. Two-stage detectors are currently the
state-of-the-art models in this field.

One-stage detectors are represented by the YOLO series [12], SSD [13] and Reti-
naNet [14]. These models take the two stages from the two-stage detectors and proceed
with them at the same time. These models densely predict the objects in the anchors. In
comparison to the two-stage detectors, one-stage detectors are usually faster but with
lower accuracy.

Anchor-based algorithms are heavily restricted by the parameters of the anchors. This
becomes even worse when facing SOD tasks. Therefore, researchers proposed anchor-free
algorithms, such as the CornerNet series [15,16], adopted the key-point detection methods,
FSAF [17], FCOS [18] and FoveaBox [19], using the idea of semantic segmentation, and
completed the task by dense prediction and regression.

After achieving satisfying results in the field of image object detection, researchers
began their attempts to adopt deep learning methods to make progress in video object
detection. The major video SOD algorithms can be divided into two categories: detecting-
and-tracking-based algorithms and temporal-information-based algorithms [20]. The
former algorithms first perform object detection to a single frame image and then track
the detected objects throughout the rest of the video. These algorithms are represented
by T-CNN [21]. The latter algorithms use temporal information to detect objects in the
video. The most commonly adopted temporal information is optical flow. The networks
calculate the optical flow information from the current and previous frames and extract the
spatial features. The similarity between the calculated combined features and the features
of the adjacent frames are then used to detect the moving object in the video. FlowNet [22],
FGFA [23], MEGA [24], MAMBA [25] and STMM [26] are the most accepted works using
this idea.

The downside of these methods is the enormous computation amount. However, the
basic idea of using temporal information for object detection is very similar to how animals’
visual system performs. This inspired us to combine the mechanism of animals’ visual
system and deep learning methods to propose our own algorithm for SOD tasks.

Animals have advantages when it comes to SOD, especially birds. Birds have the
capability to locate small objects, such as fish or rabbits, and even insects, from a complex
background at a high altitude. These abilities benefit from their advanced vision system.
Avian visual systems are highly developed and highly differentiated [27]. For a complex
biological system, such as a bird, object detection is a three-stage process, comprising
location, focus and identification. In this process, “location” and “identification” are the
two computing stages, and “focus” is the action stage [28]. Our model is inspired mainly
by the “location” stage, where the biological system computes spatial saliency and selects
a potential area exclusively and efficiently. The optic tectum (OT) is the key nucleus that
integrates and selects the visual stimulus saliency, which performs as the main spatial

Mathematics 2022, 10, 4125 3 of 18

saliency processing unit and object location unit in the visual system [29]. Additionally,
some of the OT neurons have different responses for different object sizes [30]. Therefore, it
can act as a size filter for potential targets at the same time. In the midbrain network, OT
has the strongest response of the small objects with saliency. This is the reason why we
choose to seek inspiration with this part in the visual system. The structure of OT is shown
in Figure 1.

Mathematics 2022, 10, x FOR PEER REVIEW 3 of 59

potential area exclusively and efficiently. The optic tectum (OT) is the key nucleus that

integrates and selects the visual stimulus saliency, which performs as the main spatial

saliency processing unit and object location unit in the visual system [29]. Additionally,

some of the OT neurons have different responses for different object sizes [30]. Therefore,

it can act as a size filter for potential targets at the same time. In the midbrain network,

OT has the strongest response of the small objects with saliency. This is the reason why

we choose to seek inspiration with this part in the visual system. The structure of OT is

shown in Figure 1.

Figure 1. The transverse section of midbrain showing the OT [31]

Visual saliency, according to Itti [32], “is the distinct subjective perceptual quality

which makes some items in the world stand out from their neighbors and immediately

grab our attention”. The thing worth mentioning is that visual saliency arises from low‐

level and stereotypical computations in the early stage of visual processing. Therefore, the

factors contributing to saliency are quite comparable between observers. This means that

visual saliency, despite its subjective nature, still has a certain level of objectivity. From

the biological standpoint, visual saliency is the certain information captured and filtered

by the biological visual system in order to stimulate the system to complete the object

detection process. The forms of saliency can be described as motion, pop‐out and memory

[32]. Motion refers to the relative movement of the object. Pop‐out refers to the feature

value that occurs rarely across space, such as different colors and textures. As for memory,

since memory always involves higher level neural activity, we simplify the memory fea‐

ture to be a template‐matching process.

Based on the OT selectivity of the stimulus, we propose a bio‐inspired anchor‐free

SOD algorithm that combines optical flow map, spatial saliency map and memory mod‐

ule. The three components refer to three mentioned forms of saliency, respectively. Our

algorithm provides a novel solution to the challenging problem of SOD as well as a bridge

connecting the avian vision system and computer vision system. Instead of artificially in‐

creasing the sample amount of the small objects like most other solutions, our model tries

to raise the relative size of the small objects by locating them first. The experiments show

that our algorithm is able to complete the SOD task with a satisfied result and has bio‐

interpretability at the same time.

2. Materials and Methods

Objectively, a small scale alone is not a necessary feature to trigger the saliency re‐

sponse. As discussed before, certain information must be captured and processed to make

the object easier to detect. Therefore, we bring out this theory:

Figure 1. The transverse section of midbrain showing the OT [31].

Visual saliency, according to Itti [32], “is the distinct subjective perceptual quality
which makes some items in the world stand out from their neighbors and immediately grab
our attention”. The thing worth mentioning is that visual saliency arises from low-level
and stereotypical computations in the early stage of visual processing. Therefore, the
factors contributing to saliency are quite comparable between observers. This means that
visual saliency, despite its subjective nature, still has a certain level of objectivity. From the
biological standpoint, visual saliency is the certain information captured and filtered by the
biological visual system in order to stimulate the system to complete the object detection
process. The forms of saliency can be described as motion, pop-out and memory [32].
Motion refers to the relative movement of the object. Pop-out refers to the feature value
that occurs rarely across space, such as different colors and textures. As for memory, since
memory always involves higher level neural activity, we simplify the memory feature to be
a template-matching process.

Based on the OT selectivity of the stimulus, we propose a bio-inspired anchor-free SOD
algorithm that combines optical flow map, spatial saliency map and memory module. The
three components refer to three mentioned forms of saliency, respectively. Our algorithm
provides a novel solution to the challenging problem of SOD as well as a bridge connecting
the avian vision system and computer vision system. Instead of artificially increasing the
sample amount of the small objects like most other solutions, our model tries to raise the
relative size of the small objects by locating them first. The experiments show that our
algorithm is able to complete the SOD task with a satisfied result and has bio-interpretability
at the same time.

2. Materials and Methods

Objectively, a small scale alone is not a necessary feature to trigger the saliency re-
sponse. As discussed before, certain information must be captured and processed to make
the object easier to detect. Therefore, we bring out this theory:

When OT is facing SOD tasks, it integrates some other feature dimensions with the
small object to make the object salient, as this equation shows:

f (Object, small, X) = Saliency

Mathematics 2022, 10, 4125 4 of 18

The f stands for the integration process of the features. The X, as previously mentioned,
are features that contribute to visual saliency, including motion, pop-out and memory.

Our model integrates the saliency computing mechanism of OT and artificial neural
network methods to complete the SOD tasks. The structure of the model is shown in
Figure 2. The model contains three modules, and each module represents the computing
process of a feature dimension. The temporal–spatial feature extraction module extracts
and processes the motion feature of the object. The spatial feature extraction module mainly
focusses on the pop-out feature. For the memory, as we mentioned before, the template-
matching process is covered by a memory-based template-matching strategy. Other than
the three modules, we also designed a novel loss function and the training strategy to
maximize the performance of our model. A detailed description of the model is presented
in the subsections below.

Mathematics 2022, 10, x FOR PEER REVIEW 5 of 59

 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape

 GaamOzaaaa@36F4@

 </annotation>

 </semantics>

</math>

<!‐‐ MathType@End@5@5@ ‐‐>

 stands for the integration process of the features. The <!‐‐ MathType@Transla‐

tor@5@5@MathML2 (no namespace).tdl@MathML 2.0 (no namespace)@ ‐‐>

<math>

 <semantics>

 <mi>X</mi>

 <annotation encoding=ʹMathType‐MTEFʹ>MathType@MTEF@5@5@+=

 feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn

 hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr

 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb

 a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr

 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape

 Gaamiwaaaa@36E6@

 </annotation>

 </semantics>

</math>

<!‐‐ MathType@End@5@5@ ‐‐>

, as previously mentioned, are features that contribute to visual saliency, including

motion, pop‐out and memory.

Our model integrates the saliency computing mechanism of OT and artificial neural net‐

work methods to complete the SOD tasks. The structure of the model is shown in Figure 2.

The model contains three modules, and each module represents the computing process of a

feature dimension. The temporal–spatial feature extraction module extracts and processes the

motion feature of the object. The spatial feature extraction module mainly focusses on the pop‐

out feature. For the memory, as we mentioned before, the template‐matching process is cov‐

ered by a memory‐based template‐matching strategy. Other than the three modules, we also

designed a novel loss function and the training strategy to maximize the performance of our

model. A detailed description of the model is presented in the subsections below.

Optical
Flow

Vector

⊕
Global
Conv
Block

DeConv
Block

Optical
Flow
Map

⊙ Conv
Block

Shape
Filter

Feature
Maps

T-1

T

Car
(615, 540,
642, 596)

Car
(467, 1152,
492, 1203)

Saliency Map

Focus
(Fovea)

Identification

OT
Saliency

Computing

Biological Mechanism

OTNet

Figure 2. The structure of our algorithm. Figure 2. The structure of our algorithm.

2.1. Temporal–Spatial Feature Extraction (Motion Module)

To capture the motion information of the object, we adopted the optical flow method in
this module. Optical flow is used to describe the motion attributes of the feature points on
the images. When a biological visual system observes a moving object, the object’s image
forms a series of continuous frames on the retina. This continuous changing information
constantly “flows” through the retina, just like a “flow” of light. Therefore, it is called
optical flow.

To calculate the optical flow, we need to find the relation between the current and
previous frames based on the temporal changes of the pixels in the image sequence and
the correlation of the consecutive frames. With this relation, we can calculate the motion
information of the objects in consecutive frames. In our case, the objects are sparse and
the objects between the current and previous frames have a certain level of spatial consis-
tency and brightness invariance. Therefore, we have a choice between the Lucas–Kanade
optical flow method [33] (LK below) and the Kanade–Lucas–Tomasi tracking method [34]
(KLT below).

The LK as the following assumptions:

• Grayscale invariance assumption: For a point in the real world, its grayscale is invari-
ant on the pixel level.

• Perturbation invariance assumption: Any temporal-level perturbation will not cause
drastic changes in the pixel level.

• Spatial consistency assumption: Adjacent points on the same surface will have similar
motion, and this rule applies to the points at the pixel level as well.

Mathematics 2022, 10, 4125 5 of 18

Based on the first two assumptions, we have the following constraint equation as
Equation (1):

I(x, y, z) = I(x + δx, y + δy, z + δz) (1)

I(x, y, z) means at moment z, the grayscale of point (x, y).
Apply first-order Taylor expansion to the constraint equation, and we can obtain

I(x + δx, y + δy, z + δz) = I(x, y, z) +
∂I
∂x

δx +
∂I
∂y

δy +
∂I
∂z

δz + R (2)

R is the higher-level remainder and can be considered 0 in this case.
Therefore, it is easy to obtain

∂I
∂x

δx +
∂I
∂y

δy +
∂I
∂z

δz = 0 (3)

Divide by δz for both sides, and we obtain

∂I
∂x

δx
δz

+
∂I
∂y

δy
δz

+
∂I
∂z

= 0 (4)

As we can see, δx
δz and δy

δz are both the derivatives of distance with respect to time.
By definition, δx

δz and δy
δz are the speed of the pixel point alone in the directions of x and y,

respectively. Therefore, we can simplify the equation to

Ixvx + Iyvy + Iz = 0 (5)

Convert the equation to the matrix form,

(
Ix Iy

)(vx
vy

)
= −Iz (6)

Based on the third assumption, we can assume that in a m×m window, the optical
flow value is a consistent value, that is

Ix1 vx + Iy1 vy = −Iz1

. . .
Ixm2 vx + Iym2 vy = −Izm2

(7)

The KLT method is composed of two steps:

• A so-called GoodFeaturesToTrack (GFT) feature detection step. It detects features at
positions in the image with edge-like or texture-rich structures.

• Apply the LK method for these detected feature points.

The idea behind KLT is that the LK accuracy is in theory better at edge-like locations
in the image sequence. Therefore, with the GFT, it is more likely to obtain accurate feature
tracks and is able to reduce the number of features to process in advance. We performed
experiments on both methods and chose to adopt KLT due to the better performance.

Then we applied the least square method to obtain the optical flow vector. Multiplying
the optical flow vector and the original image, we obtained the final optical flow map. This
step adds spatial information to the calculated temporal information. In the next step, we
used convolution and maxpooling to process the temporal–spatial map to the same size as
the spatial feature map.

2.2. Spatial Feature Extraction (Network) (Pop-Out Module)

The “pop-out”, as the other important form of visual saliency, is more about spatial
features instead of temporal features. In order to properly extract and process the spatial

Mathematics 2022, 10, 4125 6 of 18

feature, we chose to adopt artificial neural network algorithms. As one of the most iconic
deep learning methods, the convolutional neural network (CNN) has shown its strength
in the image-processing area. The basic mechanisms of the CNN have the capability to
extract and preserve the spatial features, especially for small objects. On the one hand,
most “pop-out” spatial features, such as color, shape or orientation are easily extracted
by the convolution process. On the other hand, the convolution process is more likely to
preserve local features, while many other methods, such as visual transformer, focus more
on the global features. This makes it more suitable for SOD tasks, where local features
weigh much more than global features.

The deeper layers in the CNN contain more higher-level semantic information instead
of spatial distribution information. The information it provides cannot directly contribute
to the location task. Therefore, after merging the spatial and temporal features, we use
three de-convolution blocks in our model. Each block consists of a convolution layer and
a transpose convolution layer. These three blocks restore the feature map to 1/4 of the
original image. The main goal of this process is to restore the spatial information as well
as the distribution information of the objects. The network then marks the objects with
calculated spatial saliency on the feature map in order to predict the location of the targets.
The thing worth mentioning is that we chose to use a pre-trained model to finetune our
dataset in order to lower the training difficulties of the network.

The backbone we used for this module is Resnet50 [35]. At the same time, to make
a lite version of the backbnone, we simplified the Resnet50 by removing the last two
of the four layers. Correspondingly, the last de-convolution block was also removed
in order to keep the consistency of the size of the output feature map. We named the
simplified backbone Resnet50-Lite and the model that adopted it, OTNet-Lite. By adopting
a simplified backbone, we were able to reduce the trainable parameters by 15.31% and
the floating-point operations per second (FLOPs) by 17.37%. Such a simplification led
to different final performance in the experiments. The detailed results are shown in the
Section 3.

2.3. Memory-Based Template Matching Strategy (Memory Module)

While animals hunt or avoid predators, they rely heavily on natural instinct and
memory. As the model brought up by Lovett shows [36], a previous stimulus will continue
to affect the later detection process. The bottom-up saliency information is modulated by
the top-down information in birds’ memory during its object-detection process [37]. In
this paper, we consider the modulation of the memory information as a template-matching
process. At the same time, there are neurons selective to object size in OT [30], that is to
say, OT is able to pre-classify the object based on the different size of the objects at the
earlier stage of the neural response, and different results may refer to a class of objects
with a similar size. Since this process itself has very low computational complexity and
fast responding time, it is able to lower the difficulties and the complexity of the whole
identification tasks without adding any additional workload.

In this module, we divide the objects into two different classes by their average size:
tiny and small. These two classes refer to the objects with x < 0.6%, and x > 0.6%, where x
stands for the proportion of the object in the image. For these two sizes, we designed the
template with the object’s center point as the center and the radius of [θ1, θ2], where θi is the
average length for the corresponding object categories. In this module, we take the feature
map obtained in the previous module and map it into two heatmaps by a convolution
operation, corresponding to the estimation of the two size categories. We assume that the
heatmap, which the predicted object appears on, indicates the size of the predicted object.
The thing worth noticing is that in order to improve the template matching accuracy as
much as possible while ensuring a certain level of redundancy, all of the template size is
larger than the average size of the corresponding category of the objects but not exceeding
1.3 times the average object size.

Mathematics 2022, 10, 4125 7 of 18

To make better use of the ground truth (GT) in the training phase, we obtained our idea

from CornerNet [15]. For an input I ∈ RW×H×2, the corresponding GT is Y ∈ [0, 1]
W
R ×

H
R×C.

Since we have three different size categories, we set C = 2. We consider the GT point as a
key point and calculate the relative position of the key point on the feature map p̃ =

⌊ p
R
⌋
.

We then map all the key points to the heatmap using a Gaussian kernel.

Yxyc = exp

(
−
(x− p̃x)

2 +
(
y− p̃y

)2

2σ2

)
(8)

When the same class Gaussian overlaps, we choose the element-wise maximum.
Since we are achieving fuzzy location and pre-classification in this step, with these

two different size-classes, the standard deviation σ is the constant value corresponding to
the template size [θ1, θ2].

In the inference stage, the Laplacian filter is applied to each feature map output by the
model. For the points (x, y) on the feature map, the Laplacian transformed values are

Laplacian(f) = ∂2 f
∂x2 +

∂2 f
∂y2 where

∂2 f
∂x2 = f [x + 1, y]− 2 f [x, y] + f [x− 1, y]
∂2 f
∂y2 = f [x, y + 1]− 2 f [x, y] + f [x, y− 1]

(9)

The above transformation can increase the contrast between the saliency areas and the
neighbor so that we can find the saliency areas more easily. The points with higher values on
the processed feature maps are selected as the candidates of the center points of the saliency
areas, and such areas are finally determined after global non-maximum suppression (NMS).
For OTNet-C, which is able to perform fuzzy classification, it is necessary to further compare
the values on the two feature maps at the same location and select the one with higher
values as the class of the corresponding saliency area.

2.4. Version Setup

Based on the above modules, we divided the OTNet into three versions: OTNet,
OTNet-C and OTNet-Lite. The setups for the three versions are as follows:

• OTNet: Drop the memory module and all the objects are considered to be in the same
size-class. These are our original thoughts of a location-focused object detection model.

• OTNet-C: Apply the memory module. This is our approach to further shrink the size
of the output box and make the relative size of the tiny objects larger.

• OTNet-Lite: Based on OTNet_3, simplify the backbone and the transpose convolution
layers. This is the lite version with less parameter count and less computational
complexity.

The detailed structures of our models are shown in Figure 3.

2.5. Loss Function and Training Strategy

When completing the model, we faced two kinds of imbalances in the sample: positive
and negative sample imbalance, and class imbalance. We tried to eliminate the influence of
the imbalance as much as possible by designing the loss function and the training strategy.

For the imbalance of positive and negative samples, we were inspired by the loss
function in CenterNet [16] and modified it to fit our tasks. While training the model, we
calculate the pixel wise loss for every predicted result as

Lk =
1
N ∑

xyc

{ (
1− Ŷxyc

)αlog
(
Ŷxyc

)
i f Yxyc > Ŷxyc(

1−Yxyc
)β(Ŷxyc

)αlog
(
1− Ŷxyc

)
otherwise

(10)

The positive samples are defined as the center of the ground truth, that is, a pixel
will only be considered to be a positive sample if Yxyc = 1. However, in our case, the

Mathematics 2022, 10, 4125 8 of 18

distribution of small objects in the bird view from a high altitude is sparse. In an image
of 128 × 128, only 10 pixels can be considered positive samples at most. This will make it
difficult for the model to obtain enough information about the positive samples.

Mathematics 2022, 10, x FOR PEER REVIEW 36 of 59

 </semantics>

</math>

<!‐‐ MathType@End@5@5@ ‐‐>

The above transformation can increase the contrast between the saliency areas and

the neighbor so that we can find the saliency areas more easily. The points with higher

values on the processed feature maps are selected as the candidates of the center points of

the saliency areas, and such areas are finally determined after global non‐maximum sup‐

pression (NMS). For OTNet‐C, which is able to perform fuzzy classification, it is necessary

to further compare the values on the two feature maps at the same location and select the

one with higher values as the class of the corresponding saliency area.

2.4. Version Setup

Based on the above modules, we divided the OTNet into three versions: OTNet, OT‐

Net‐C and OTNet‐Lite. The setups for the three versions are as follows:

 OTNet: Drop the memory module and all the objects are considered to be in the same

size‐class. These are our original thoughts of a location‐focused object detection

model.

 OTNet‐C: Apply the memory module. This is our approach to further shrink the size

of the output box and make the relative size of the tiny objects larger.

 OTNet‐Lite: Based on OTNet_3, simplify the backbone and the transpose convolu‐

tion layers. This is the lite version with less parameter count and less computational

complexity.

The detailed structures of our models are shown in Figure 3.

Image
512⨯512⨯3

L1 - Conv
128⨯128⨯256

L2 - Conv
64⨯64⨯512

Spatial

Saliency

Encoder

Merge

Merge Map
128⨯128⨯64

Saliency Map - Conv
128⨯128⨯N

Optical Flow Map - LK
512⨯512⨯3

Encoded Optical Flow
Map - Conv
128⨯128⨯1

Motion Encoder

L3 - Conv
32⨯32⨯1024

L4 - Conv
16⨯16⨯2048

L5 - DeConv
32⨯32⨯256

L6 - DeConv
64⨯64⨯128

L7 - DeConv
128⨯128⨯64

L1 - Conv
128⨯128⨯256

L2 - Conv
64⨯64⨯512

L3 - DeConv
128⨯128⨯256

L4 - DeConv
256⨯256⨯128

L5 - Conv
128⨯128⨯64

(a) (b)

Spatial Saliency Encoder

OTNet OTNet-Lite

Figure 3. The detailed structures of the models. (a) The overall structure of the model. (b) The dif‐

ference between OTNet and OTNet‐Lite.

2.5. Loss Function and Training Strategy

When completing the model, we faced two kinds of imbalances in the sample: posi‐

tive and negative sample imbalance, and class imbalance. We tried to eliminate the

Figure 3. The detailed structures of the models. (a) The overall structure of the model. (b) The
difference between OTNet and OTNet-Lite.

Under our definition, points around the center of the ground truth can also be con-
sidered positive samples. Combining with modification to the focal loss [14], which
uses Gaussian distribution to add location information to the negative samples near the
ground truth, our loss function is able to make the model converge faster without loss
in performance.

Class imbalance is a common issue for object-detection tasks. The class imbalance not
only exists between the sparsely distributed target pixels with a smaller total amount and an
enormous amount of background pixels, but also exists between the fewer smaller objects
and more larger objects because of the difficulties of sampling and labeling. Therefore,
when training our model, to avoid the information of the smaller objects lost in the training
process, we first train the model using the loss function mentioned above for 10 epochs.
After this stage, we add different weights to the two heatmap, which represent objects with
different sizes and then continue the training. With this stage-wise training method, the
model is able to learn the location information before learning the category information.

3. Experiments and Results
3.1. Dataset and Training Parameters

We chose to train and test our model on the AU-AIR dataset [38]. The dataset was shot
by an unmanned drone. The whole dataset contains 32,823 labeled video frames, including
8 different scenes and 8 different categories of vehicles. On the premise of retaining the
ratio of every object type, we then removed some of the scenes whose object size did not
meet the requirements, namely the scenes which only contained larger objects.

After cleaning, the dataset had 17,908 video frames left, while the average size of the
objects was 1% of the image size. For each scene, we divided the dataset at a ratio of 9 to
1 as the training set and the test set, while maintaining consecutive frames. By this process,
we retained the features of the original dataset to some extent. The amount and the average
size of object types are shown in Table 1.

Mathematics 2022, 10, 4125 9 of 18

Table 1. The amount and average size of every object type.

Human Car Truck Van Motorbike Bicycle Bus Trailer

Amount 3178 46341 5174 5056 77 321 294 1050
Avg. size (%) 0.4276 0.7248 2.1832 1.0874 0.3601 0.5390 2.3758 2.5178

The dataset we chose contains 8 video clips, such as crossroads, parking lots and a
small number of highway scenes, from multiple orientations, heights and angles. For each
scene, we randomly selected 50–100 consecutive frames as the test set and the rest as the
training set. In these images, we faced challenges, such as extremely small objects, occlu-
sions, and viewpoint transitions, due to the different flight heights and angles. Moreover,
the videos cover various lighting conditions due to the time of the day and the weather
conditions (e.g., sunny, partly sunny, and cloudy) [36]. This also bring the challenge of
objects with different colors and contrasts.

We padded the frames and resized them into 512 × 512 pixels as the model input. All
of the data are free from additional augmentation. We set the batch size to be 32 and used
Adam as an optimizer. The initial learning rate was set to be 1 × 10−4 and dropped to 90%
for the next epoch. We trained our model on one NVDIA GeForce RTX 3090.

Something worth mentioning is that Resnet50 and Resnet50-Lite in our model are
initialized with a dataset finetuned by pre-trained ImageNet. At the same time, for our
2-stage training method, after training using our loss function for 10 epochs, we used
the ratio of [1, 0.3] to add weight to the positive samples in the two heatmaps and then
continued to train the model for another 10 epochs. The weight ratio was determined based
on the distribution of the object classes among the dataset in order to avoid the influence
of the class imbalance. The lower the number of objects in a class, the higher the weight
assigned for this class.

3.2. Metrics

In our experiments, we used recall, precision, average location precision, F1 score and
mean average precision (mAP) to evaluate our model. Before viewing the result, we need
to clarify the definitions of the metrics.

• IoU: The full name of IoU is intersection over union, which is a concept widely used
in object-detection tasks. IoU calculates the overlap rate of the “prediction box” and
“ground truth box”, that is, the ratio of their intersection and union. We did not
directly use IoU as one of the metrics. However, the IoU value helps us to determine
whether the results can be considered positive or negative. Details are shown in the
next bullet point.

• Recall, precision, average location precision and F1 score: For the output patches of the
model, we define the true positive (tp) as the predicted result, which has the IoU to the
ground truth larger than the threshold γ, false positive (fp) to be the result which has
IoU less than γ, and false negative (fn) to be the ground truth, which is not predicted.
Therefore, we can have the recall rate as

R =
tp

tp + f n
(11)

and the precision as

P =
tp

tp + f p
(12)

Since we have the location result on three heatmaps corresponding to different object
sizes, we calculated the average precision for every heatmap and defined it as the
average location precision in order to further evaluate the model’s classification ability.

Mathematics 2022, 10, 4125 10 of 18

F1 score, also called the balanced F score, is defined as the harmonic mean of the
precision and recall rate:

F1 = 2× precision× recall
precision + recall

(13)

• Mean average precision (mAP): The mAP was first brought up by the PASCAL visual
Object Classes challenge. It is one of the most commonly used and accepted metrics in
the field of object detection. The calculation of the mAP is based on the precision and
recall rate. However, while the precision and recall rates focus more on the model’s
performance for single class, the mAP takes the average precision for all the classes
and calculates the mean. The average precision (AP) is defined as

AP =
∫ 1

0
P(R)dR (14)

where P stands for the precision rate, R stands for the recall rate and P is a function that
takes R as a parameter. Geometrically, this means the area under the curve. However,
in the actual practice, an additional step to smoothen the curve is necessary, that is

P(R) = max
r̃≥r

P
(

R̃
)

(15)

This means to take the largest precision rate P when the recall rate is larger than R.

3.3. Complexity and Location Performance Experiment

In this experiment, we mainly tested the complexity and location performance of our
models. For the complexity, we examined the training difficulty and computation complex-
ity of our models. For the location performance, the metrics we used are precision rate,
recall rate, average location precision rate, F1 score and processed frames per second (FPS).

This is to better examine the effectiveness of our memory-based template-matching
strategy at the same time. The test set we used was extracted from the AU-AIR dataset as
mentioned above.

3.3.1. Training Difficulty

The changing of the precision and recall rate through the training process is shown in
Figure 4.

Mathematics 2022, 10, x FOR PEER REVIEW 49 of 59

 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape

 Gaamiuamaabmaapaqaa8qacaWGsbaacaGLOaGaayzkaaGaeyypa0Zd

 amaaxababaWdbiGac2gacaGGHbGaaiiEaaWcpaqaa8qaceWGYbWday

 aaiaWdbiabgwMiZkaadkhaa8aabeaak8qacaWGqbWaaeWaa8aabaWd

 biqadkfapaGbaGaaa8qacaGLOaGaayzkaaaaaa@453B@

 </annotation>

 </semantics>

</math>

<!‐‐ MathType@End@5@5@ ‐‐>

This means to take the largest precision rate P when the recall rate is larger than R.

3.3. Complexity and Location Performance Experiment

In this experiment, we mainly tested the complexity and location performance of our

models. For the complexity, we examined the training difficulty and computation com‐

plexity of our models. For the location performance, the metrics we used are precision

rate, recall rate, average location precision rate, F1 score and processed frames per second

(FPS).

This is to better examine the effectiveness of our memory‐based template‐matching

strategy at the same time. The test set we used was extracted from the AU‐AIR dataset as

mentioned above.

3.3.1. Training Difficulty

The changing of the precision and recall rate through the training process is shown

in Figure 4.

C C

(a) (b)

Figure 4. The changing of the precision and recall rate through the training process. (a) The precision

rate changing. (b) The recall rate changing.

As shown, all three versions of the OTNet only require relatively few epochs to

achieve satisfying results with the highest precision rate reaching 85.73% and the highest

recall rate reaching 97.95%. This indicates that the model is able to massively save the time

cost of training.

The thing worth noticing during the training process is that OTNet‐C has better lo‐

cation performance than OTNet. This may be due to the fact that it takes time for the

Figure 4. The changing of the precision and recall rate through the training process. (a) The precision
rate changing. (b) The recall rate changing.

As shown, all three versions of the OTNet only require relatively few epochs to achieve
satisfying results with the highest precision rate reaching 85.73% and the highest recall
rate reaching 97.95%. This indicates that the model is able to massively save the time cost
of training.

Mathematics 2022, 10, 4125 11 of 18

The thing worth noticing during the training process is that OTNet-C has better
location performance than OTNet. This may be due to the fact that it takes time for the
network to learn the features of all the objects when all the objects are considered as one
category. However, in OTNet-C, due to the addition of the memory module, features are
more concentrated among the same category objects, and learning them is easier. This
proves the effectiveness of the memory module.

3.3.2. Computation Complexity

We measured the computation complexity of our models by counting the amount of
total parameters, trainable parameters, FLOPs and the parameter size.

For the sake of comparison, we chose two of the most commonly used and widely
accepted object detection models, MaskRCNN [11], and the location module of FCOS [18]
which also known as the anchor proposal network. We set the input image size to be
512 × 512 and counted the mentioned indices on those two models. The result is shown in
Table 2.

Table 2. The computation complexity results.

Model Total Params Trainable
Params FLOPs Params Size

OTNet 30.01 M 6.50 M 27.17 114.48 MB
OTNet-C 30.01 M 6.50 M 27.17 114.48 MB

OTNet-Lite 28.45 M 2.89 M 22.45 107.24 MB
MaskRCNN [11] 27.39 M 27.37 M 134.42 177.61 MB

FCOS [18] 30.01 M 29.78 M 128.24 129.08 MB
When calculating FLOPs, we set the input size to be 512 × 512.

Since we only use the ResNet as the feature extractor, we did not train it. Therefore, as
the table shows, the trainable parameter is significantly less than the total parameters. On
the contrary, OTNet and OTNet-C have less differences. This is due to the fact that the only
difference between two versions is the output heatmap (1 × 128 × 128 and 2 × 128 × 128).

As we can see from the table, as a location module, all versions of OTNet have a
smaller parameter amount and less complexity than the other model, especially OTNet-
Lite. Compared to the other two versions, OTNet-Lite has 55.53% less trainable parameters,
17.37% less FLOPs and 6.32% less parameter size. This comparison shows that this model
is capable of achieving satisfying results with low computation complexity. This indicates
that our model can be easier to implement into a relatively simple system while keep a
lower energy cost. This is also a key feature of the biological visual system that inspired
our research. In addition, this also means that this model is able to work as plug-in module
while minimizing the overall computation complexity increase.

3.3.3. Location Performance

We tested the LK and KLT algorithm and present the result below in Figure 5. We set
the window size for LK to be 30 × 30 for a 1920 × 1080 image. To make the results more
intuitive and to ensure the integrity of the object, we multiplied the optic flow vector with
the original image and displayed the regions with motions in the form of a bounding box.

As we can see from the figure above, or the same image with the same experimental
setup, the basic LK algorithm misclassifies most of the regions as motion regions. This is
mainly due to the fact that basic LK is computed window-by-window in the whole image,
and the points within each window are treated as potential motion points, while KLT is only
computed in the representative points in the image, thus reducing the misclassification.

We took a step further and compared the localization effects of these two algorithms
in the whole model, using the same experimental setup. The result is shown in Table 3.

Mathematics 2022, 10, 4125 12 of 18

Mathematics 2022, 10, x FOR PEER REVIEW 50 of 59

network to learn the features of all the objects when all the objects are considered as one

category. However, in OTNet‐C, due to the addition of the memory module, features are

more concentrated among the same category objects, and learning them is easier. This

proves the effectiveness of the memory module.

3.3.2. Computation Complexity

We measured the computation complexity of our models by counting the amount of

total parameters, trainable parameters, FLOPs and the parameter size.

For the sake of comparison, we chose two of the most commonly used and widely

accepted object detection models, MaskRCNN [11], and the location module of FCOS [18]

which also known as the anchor proposal network. We set the input image size to be 512

× 512 and counted the mentioned indices on those two models. The result is shown in

Table 2.

Table 2. The computation complexity results.

Model Total Params Trainable Params FLOPs Params Size

OTNet 30.01 M 6.50 M 27.17 114.48 MB

OTNet‐C 30.01 M 6.50 M 27.17 114.48 MB

OTNet‐Lite 28.45 M 2.89 M 22.45 107.24 MB

MaskRCNN [11] 27.39 M 27.37 M 134.42 177.61 MB

FCOS [18] 30.01 M 29.78 M 128.24 129.08 MB

When calculating FLOPs, we set the input size to be 512 × 512.

Since we only use the ResNet as the feature extractor, we did not train it. Therefore, as

the table shows, the trainable parameter is significantly less than the total parameters. On

the contrary, OTNet and OTNet‐C have less differences. This is due to the fact that the only

difference between two versions is the output heatmap (1 × 128 × 128 and 2 × 128 × 128).

As we can see from the table, as a location module, all versions of OTNet have a

smaller parameter amount and less complexity than the other model, especially OTNet‐

Lite. Compared to the other two versions, OTNet‐Lite has 55.53% less trainable parame‐

ters, 17.37% less FLOPs and 6.32% less parameter size. This comparison shows that this

model is capable of achieving satisfying results with low computation complexity. This

indicates that our model can be easier to implement into a relatively simple system while

keep a lower energy cost. This is also a key feature of the biological visual system that

inspired our research. In addition, this also means that this model is able to work as plug‐

in module while minimizing the overall computation complexity increase.

3.3.3. Location Performance

We tested the LK and KLT algorithm and present the result below in Figure 5. We set

the window size for LK to be 30 × 30 for a 1920 × 1080 image. To make the results more

intuitive and to ensure the integrity of the object, we multiplied the optic flow vector with

the original image and displayed the regions with motions in the form of a bounding box.

(a) (b) (c)

Figure 5. The structure of our algorithm. (a) The ground truth. (b) The KLT result. (c) The LK result. Figure 5. The structure of our algorithm. (a) The ground truth. (b) The KLT result. (c) The LK result.

Table 3. The location performance results of the models.

Model Precision Recall F1 Score

OTNe with LK 81.18 88.38 84.63
OTNet with KLT 85.73 92.06 88.78

From the above table and figure, we can see that the optical flow map does not provide
the model with enough location information of moving objects due to too many interference
regions, resulting in its precision and recall being inferior to KLT, especially the high recall
gap which indicates that when we use LK as the optical flow module of OTNet, OTNet
cannot identify all targets from the complex environment.

Since there are very few brain-like location specific algorithms, we selected the brain-
like saliency model constructed by Itti [39] based on human attention during visual search
and the regional stability and saliency model proposed by Luo et al. [40] based on local
center-surround difference and the global rarity of human visual perception for comparison.
We consider the output saliency map of these two models as the location information.

The thing worth mentioning is that neither Itti’s method nor Luo’s method contains
temporal information. For the sake of fair comparison, we took the intersection of output
local information and the optic-flow map generated by the LK algorithm as the final
saliency map. We applied matlab’s regionprops function to segment the regions in the
output saliency map and obtained the bonding boxes for every region. The precision and
recall rate were obtained by comparing the bonding boxes and the GT. All the experiments
were performed using the AU-AIR dataset. The location performance of all three versions
and the mentioned two methods is shown in Table 4.

Table 4. The location performance results of the models.

Model Backbone Precision Recall F1 Score fps

OTNet Resnet50 85.73 92.06 88.78 27
OTNet-C Resnet50 82.97 97.95 89.94 27

OTNet-Lite Resnet50-Lite 80.66 97.93 88.46 33
Itti-Saliency [39] / 6.02 89.07 11.28 1.05

RSS [40] / 8.16 52.95 14.14 14.2
All the numbers are in percentage. We set the γ to be 0.5.

As the table shows, the overall location performance of all three models is very
promising. At the same time, the much higher fps indicates that all of our models have
much faster computing speed. The OTNet-C and OTNet-Lite have a higher recall rate
due to the memory module. The thing worth mentioning that we limited the number of
candidates for the object locations, which is similar to the anchors in the anchor-based
model. Due to the sparsity of the small object distribution, we set that there are no more
than 15 location candidates in each prediction map. Compared to the thousands of anchors,
our model is much more efficient for the SOD tasks. Meanwhile, the high recall rate means
that our model is able to locate most of the small objects with very few missing. Since our
goal in this step is to provide enough candidates for the following detection model, such

Mathematics 2022, 10, 4125 13 of 18

a high recall rate ensures we provide almost all the information needed by the next step.
Some of the location result examples are shown in Figure 6.

Mathematics 2022, 10, x FOR PEER REVIEW 52 of 59

 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb

 a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr

 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape

 Gaeq4SdCgaaa@37B0@

 </annotation>

 </semantics>

</math>

<!‐‐ MathType@End@5@5@ ‐‐>

 to be 0.5.

As the table shows, the overall location performance of all three models is very prom‐

ising. At the same time, the much higher fps indicates that all of our models have much

faster computing speed. The OTNet‐C and OTNet‐Lite have a higher recall rate due to the

memory module. The thing worth mentioning that we limited the number of candidates

for the object locations, which is similar to the anchors in the anchor‐based model. Due to

the sparsity of the small object distribution, we set that there are no more than 15 location

candidates in each prediction map. Compared to the thousands of anchors, our model is

much more efficient for the SOD tasks. Meanwhile, the high recall rate means that our

model is able to locate most of the small objects with very few missing. Since our goal in

this step is to provide enough candidates for the following detection model, such a high

recall rate ensures we provide almost all the information needed by the next step. Some

of the location result examples are shown in Figure 6.

(a) (b) (c)

(d) (e) (f)

Figure 6. The location result of OTNet in different scenes. (a) Multi-objects. (b) Truncation. (c) Bird
view. (d) Tiny objects. (e) Occlusion. (f) Low contrast.

The fps shows that the OTNet is able to process up to 33 frames with the size of
512 × 512 in 1 s. Such an impressive process speed is more than to provide real-time
analysis to most of the video use case. The machine we run the model on is only regular
tier work stations used for research purposes. There is room for improvement if the model
is run on a better machine.

3.3.4. Average Location Precision

We also evaluate the effectiveness of our template-matching memory module. Since
the OTNet does not contain a memory module, we performed the experiments on the
other two versions of the model. We mainly evaluated the precision rate of the two size
categories and the average location precision. The result is shown in Table 5.

Table 5. The classification results of the models.

Model Class 1
Precision

Class 2
Precision

Average Location
Precision

OTNet-C 74.63 43.31 58.97
OTNet-Lite 69.86 39.40 54.63

All the numbers are in percentage.

The average precision shows that the strategy of dividing the objects into two cate-
gories is effective. Objects of different categories appear on different feature maps output
by the model. As shown in Figure 7, the objects are marked differently using different box
sizes. However, the number has room for improvement. The reason we are not able to
achieve sufficiently satisfying results, especially with class 2 to which the smaller objects
belong to, is that small objects lack feature information which makes them easier to confuse.

Mathematics 2022, 10, 4125 14 of 18

In addition, the class imbalance and mislabeling of the data set are also the main reasons
for this result.

Mathematics 2022, 10, x FOR PEER REVIEW 53 of 59

Figure 6. The location result of OTNet in different scenes. (a) Multi‐objects. (b) Truncation. (c) Bird

view. (d) Tiny objects. (e) Occlusion. (f) Low contrast.

The fps shows that the OTNet is able to process up to 33 frames with the size of 512

× 512 in 1 s. Such an impressive process speed is more than to provide real‐time analysis

to most of the video use case. The machine we run the model on is only regular tier work

stations used for research purposes. There is room for improvement if the model is run on

a better machine.

3.3.4. Average Location Precision

We also evaluate the effectiveness of our template‐matching memory module. Since

the OTNet does not contain a memory module, we performed the experiments on the

other two versions of the model. We mainly evaluated the precision rate of the two size

categories and the average location precision. The result is shown in Table 5.

Table 5. The classification results of the models.

Model
Class 1

Precision

Class 2

Precision

Average Location

Precision

OTNet‐C 74.63 43.31 58.97

OTNet‐Lite 69.86 39.40 54.63

All the numbers are in percentage.

The average precision shows that the strategy of dividing the objects into two cate‐

gories is effective. Objects of different categories appear on different feature maps output

by the model. As shown in Figure 7, the objects are marked differently using different box

sizes. However, the number has room for improvement. The reason we are not able to

achieve sufficiently satisfying results, especially with class 2 to which the smaller objects

belong to, is that small objects lack feature information which makes them easier to con‐

fuse. In addition, the class imbalance and mislabeling of the data set are also the main

reasons for this result.

(a) (b)

Figure 7. The classification result of OTNet‐C. The larger boxes and the smaller boxes represent

different categories. (a) Result for the parking lot scene. (b) Result for the circular road scene.

3.4. Detection Performance Experiment

The main task of OTNet while facing the SOD tasks is to pre‐locate the areas in which

the small objects are most likely to appear. Therefore, in this section, we first conduct exper‐

iments to exam the performance improvement of the detection model brought by OTNet.

We connected OTNet with yolov6s [41] as an external module. We first input the temporal

image sequence into OTNet. OTNet finds the patches which are most likely to have the ob‐

ject. The output patches are then sent into yolov6s to perform object detection. We compared

the performance of yolov6 with/without OTNet. The result is shown in Table 6.

Figure 7. The classification result of OTNet-C. The larger boxes and the smaller boxes represent
different categories. (a) Result for the parking lot scene. (b) Result for the circular road scene.

3.4. Detection Performance Experiment

The main task of OTNet while facing the SOD tasks is to pre-locate the areas in which
the small objects are most likely to appear. Therefore, in this section, we first conduct
experiments to exam the performance improvement of the detection model brought by
OTNet. We connected OTNet with yolov6s [41] as an external module. We first input the
temporal image sequence into OTNet. OTNet finds the patches which are most likely to
have the object. The output patches are then sent into yolov6s to perform object detection.
We compared the performance of yolov6 with/without OTNet. The result is shown in
Table 6.

Table 6. The performance of yolov6 with/without OTNet.

mAP (IoU = 0.5) mAP (IoU = 0.75)

Yolov6s [41] 24.71 7.90
OTNet + Yolov6s 31.34 7.54

After verifying the improvement that OTNet can bring to the detection model as an
external module, we then chose some commonly accepted video object detection algorithms
for comparison to examine the overall performance of our framework. FGFA [23] is an
end-to-end learning framework for video detection, which leverages temporal coherence
on feature level to improve accuracy. DFF [42] only applies the feature network on sparse
key frames. The feature maps of a non-key frame are propagated from previous key frames,
using feature flow. Temporal ROI Align [43] contains two new frameworks, MS ROI Align
and temporal attentional feature aggregation (TAFA), compared with ROI Align to make
the features of proposals contain temporal information. MEGA [24] integrates global and
local feature information, and proposes a novel structure called long range memory module
(LRM), which enables the current frame to obtain more comprehensive feature information.
MAMBA [25] proposes a multi-level aggregation architecture via memory bank (MAMBA),
and a generalized enhancement operation (GEO) to utilize knowledge from the whole video
with reduced computational cost. The TransVOD [44] is the first end-to-end video object
detection system based on spatial–temporal transformer architectures. Using temporal
query encoder to fuse object queries and temporal deformable transformer decoder to
obtain current frame detection results, it performs better than any other transformer-based
model and Yolov6s, one the latest versions of the commonly accepted object detection
model, yolo series. We used the OTNet with Yolov6s to compare with the above models.

We performed the experiments using the AU-AIR dataset. For the mentioned algo-
rithms, we used resnet101 as the backbone and SGD as the optimizer. We set the learning
rate to be 0.01, the momentum to be 0.9 and the weight decay rate to be 1 × 10−4. We
stopped the training for the other models when the mAP on the validation set stopped

Mathematics 2022, 10, 4125 15 of 18

rising and took the best mAP as the final results. The experiment results are shown in
Table 7.

Table 7. Comparison results (average precision) to other object detection models.

Model Human Car Truck Van Motorbike Bicycle Bus Trailer mAP
(IoU = 0.5)

FGFA [23] 23.30 25.64 57.31 33.88 0.02 0.05 0.17 11.99 19.00
DFF [42] 17.78 22.53 46.19 27.22 0.00 0.03 0.11 9.98 15.50

Temporal [43] 20.39 27.72 59.54 37.91 0.03 0.06 0.46 9.98 19.80
MEGA [24] 18.53 29.57 49.05 32.98 0.78 0.00 0.30 5.22 17.05

MAMBA [25] 15.69 24.98 40.93 26.41 0.00 0.00 0.17 2.89 13.88
TransVOD [44] 23.93 36.58 58.61 41.73 1.68 0.01 0.35 8.82 21.50

Yolov6s [41] 30.44 41.89 60.43 48.52 0.00 0.50 0.79 15.22 24.72
Ours 42.41 58.65 47.13 51.36 0.87 32.07 0.54 17.73 31.34

All the numbers are in percentage.

From Table 7, we can see that, comparing to other classic or state-of-the-art object
detection methods, our OTNet has comparable results, especially better for smaller objects
such as humans (39.32% better) and cars (40.01% better). For the objects motorbike and
bicycles, most models are not able to detect them, including Yolov6s. With our model,
the detection result for these two categories is significantly improved. Since our model is
dedicated to smaller objects, the performance improvement on larger objects, such as truck,
bus and trailer, is not as significant.

Another important fact that is worth mentioning is that, for a SOD task such as the
dataset we chose, none of the above algorithms were able to perform as well as they did
when detecting normal size objects. The reasons for such unsatisfying results are as follows:

• The size of the object is too small. From the tables, we can see that some categories
such as the motorbike and the bicycle in the chosen dataset, are significantly smaller
than others. Smaller objects mean fewer pixel points, which lead to less information
contained in the image. This makes them much more difficult to detect than other
categories and results in lower AP values.

• The class imbalance is another crucial reason. In the chosen dataset, motorbike, bicycle,
bus and trailer have significantly smaller object amounts than other classes. This also
leads to a lack of information when detecting the mentioned classes. As a result, the
results for these classes are not as satisfying.

• The similar features of objects from different classes also add difficulty to the task. For
instance, human, bicycle and motorbike share a fairly large amount of similar features,
especially in the bird-view scenes. Combined with the lack of information caused by
the above two reasons, the difficulty of the SOD detection tasks become much higher
than normal tasks.

3.5. Ablation Experiment

In this section, we performed some ablation experiments in order to evaluate the
effectiveness of our proposed modules. Since the performance of the memory module
can be seen from the comparison between OTNet and OTNet-C, we mainly focused on
evaluating the other two modules in this section. We designed a group of w/o experiments
and chose precision, recall and F1 score as metrics to examine the effectiveness of the motion
module and the pop-out module. The result is shown in Table 8.

Mathematics 2022, 10, 4125 16 of 18

Table 8. The w/o experiments’ results.

Precision Recall F1 Score

OTNet 85.73 92.06 88.78
w/o Motion Module 78.94 80.26 79.69
w/o Pop-out Module 33.15 74.10 45.79

All the numbers are in percentage.

It can be easily seen that both modules show their effectiveness in the experiments.
Dropping the pop-out module causes a larger decrease than dropping the motion module,
especially for the precision rate. Since the pop-out module is in charge for feature extraction,
such a result is understandable. The thing worth noticing is that while dropping the motion
module, the decrease in the recall rate is much more significant. This indicates that the
model will miss some of the objects without this module.

4. Conclusions and Future Work

In this paper, facing the difficulties of the SOD tasks, inspired by the “location–focus–
identification” process of the complex biological system, combining the mechanism of
the OT and idea of visual saliency, we presented our bio-interpretable anchor-free SOD
algorithm, OTNet. We designed three modules for the three forms of visual saliency: the
optical-flow-based module for the “motion”, the feature-extraction-network-based module
for the “pop-out”, and the template-matching module for “memory”. The experiment
results show the efficiency of the modules as well as the whole algorithm. As the result
shows, our algorithm has better performance when facing smaller objects. Not only does
our algorithm have satisfying results, but it also shares another similar feature with the
biological system: low computation cost. As the comparison between OTNet-Lite and
other models shows, our algorithm is able to perform with significantly fewer trainable
parameters and with faster computing speed. Importantly, we emphasize that the mo-
tivation of this work is not only to beat existing models in SOD, but to complement a
method to provide bio-interpretability for detecting small objects, which we believe is a
more important task. In practice, our method can also be deployed together with existing
object detection models as a bio-interpretable plugin module to improve its performance.

For future work, it is important and valuable to further explore and understand the
functions and mechanisms of the OT and the midbrain network. The inspiration we can
obtain from the biological neural system is priceless and worth digging deeper. Another
problem we faced during this study was finding high quality datasets that contain different
categories of small objects. We have plans for further testing our model, and our own
high-quality dataset is also on the way.

Author Contributions: Formal analysis, X.W.; Investigation, X.Z. and Y.C.; Methodology, P.H.;
Software, P.H.; Supervision, L.S.; Writing–original draft, X.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors are very grateful to the editors and reviewers for their valuable
comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rabbi, J.; Ray, N.; Schubert, M.; Chowdhury, S.; Chao, D. Small-Object Detection in Remote Sensing Images with End-to-End

Edge-Enhanced GAN and Object Detector Network. Remote Sens. 2020, 12, 1432. [CrossRef]
2. Wei, J.; He, J.; Zhou, Y.; Chen, K.; Tang, Z.; Xiong, Z. Enhanced Object Detection With Deep Convolutional Neural Networks for

Advanced Driving Assistance. IEEE Trans. Intell. Transp. Syst. 2020, 21, 1572–1583. [CrossRef]
3. Tong, K.; Wu, Y.; Zhou, F. Recent advances in small object detection based on deep learning: A review. Image Vis. Comput. 2020,

97, 103910. [CrossRef]

http://doi.org/10.3390/rs12091432
http://doi.org/10.1109/TITS.2019.2910643
http://doi.org/10.1016/j.imavis.2020.103910

Mathematics 2022, 10, 4125 17 of 18

4. Lin, T.-Y.; Maire, M.; Belongie, S.; Bourdev, L.; Girshick, R.; Hays, J.; Perona, P.; Ramanan, D.; Zitnick, C.L.; Dollár, P. Microsoft
COCO: Common Objects in Context; Springer: Cham, Switzerland, 2015. [CrossRef]

5. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–26 June 2005; Volume 1, pp. 886–893.

6. Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE International Conference
on Computer Vision, Kerkyra, Greece, 20–27 September 1999; Volume 2, pp. 1150–1157.

7. Van de Sande, K.E.A.; Uijlings, J.R.R.; Gevers, T.; Smeulders, A.W.M. Segmentation as selective search for object recognition. In
Proceedings of the 2011 International Conference on Computer Vision, Washington, DC, USA, 6–13 November 2011; pp. 1879–1886.
[CrossRef]

8. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

9. Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13
December 2015; pp. 1440–1448.

10. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In
Advances in Neural Information Processing Systems; IEEE Transactions on Pattern Analysis and Machine Intelligence: New York, NY,
USA, 2015; Volume 39, pp. 1137–1149.

11. He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer
Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969.

12. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

13. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Computer
Vision–ECCV 2016, Lecture Notes in Computer Science; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer International
Publishing: Cham, Switzerland, 2016; pp. 21–37. [CrossRef]

14. Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. In Proceedings of the IEEE International
Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.

15. Law, H.; Deng, J. CornerNet: Detecting Objects as Paired Keypoints. In Proceedings of the European Conference on Computer
Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 734–750.

16. Duan, K.; Bai, S.; Xie, L.; Qi, H.; Huang, Q.; Tian, Q. CenterNet: Keypoint Triplets for Object Detection. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 6569–6578.

17. Zhu, C.; He, Y.; Savvides, M. Feature Selective Anchor-Free Module for Single-Shot Object Detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 840–849.

18. Tian, Z.; Shen, C.; Chen, H.; He, T. FCOS: Fully Convolutional One-Stage Object Detection. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 9627–9636.

19. Kong, T.; Sun, F.; Liu, H.; Jiang, Y.; Li, L.; Shi, J. FoveaBox: Beyound Anchor-Based Object Detection. IEEE Trans. Image Process.
2020, 29, 7389–7398. [CrossRef]

20. Jiao, L.; Zhang, R.; Liu, F.; Yang, S.; Hou, B.; Li, L.; Tang, X. New Generation Deep Learning for Video Object Detection: A Survey.
IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 3195–3215. [CrossRef] [PubMed]

21. Kang, K.; Li, H.; Yan, J.; Zeng, X.; Yang, B.; Xiao, T.; Zhang, C.; Wang, Z.; Wang, R.; Wang, X.; et al. T-CNN: Tubelets With
Convolutional Neural Networks for Object Detection From Videos. IEEE Trans. Circuits Syst. Video Technol. 2018, 28, 2896–2907.
[CrossRef]

22. Dosovitskiy, A.; Fischer, P.; Ilg, E.; Hausser, P.; Hazirbas, C.; Golkov, V.; van der Smagt, P.; Cremers, D.; Brox, T. FlowNet: Learning
Optical Flow With Convolutional Networks. In Proceedings of the IEEE International Conference on Computer Vision, Santiago,
Chile, 7–13 December 2015; pp. 2758–2766.

23. Zhu, X.; Wang, Y.; Dai, J.; Yuan, L.; Wei, Y. Flow-Guided Feature Aggregation for Video Object Detection. In Proceedings of the
IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 408–417.

24. Chen, Y.; Cao, Y.; Hu, H.; Wang, L. Memory Enhanced Global-Local Aggregation for Video Object Detection. In Proceedings
of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020;
pp. 10334–10343. [CrossRef]

25. Sun, G.; Hua, Y.; Hu, G.; Robertson, N. MAMBA: Multi-level Aggregation via Memory Bank for Video Object Detection. In
Proceedings of the AAAI Conference on Artificial Intelligence 35, Online, 2–9 February 2021; pp. 2620–2627. [CrossRef]

26. Xiao, F.; Lee, Y.J. Video Object Detection with an Aligned Spatial-Temporal Memory. In Proceedings of the European Conference
on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 485–501.

27. Sridharan, D.; Schwarz, J.S.; Knudsen, E.I. Selective attention in birds. Curr. Biol. 2014, 24, R510–R513. [CrossRef] [PubMed]
28. Zhaoping, L. From the optic tectum to the primary visual cortex: Migration through evolution of the saliency map for exogenous

attentional guidance. Curr. Opin. Neurobiol. 2016, 40, 94–102. [CrossRef] [PubMed]
29. Mysore, S.P.; Asadollahi, A.; Knudsen, E.I. Global Inhibition and Stimulus Competition in the Owl Optic Tectum. J. Neurosci.

2010, 30, 1727–1738. [CrossRef] [PubMed]

http://doi.org/10.48550/arXiv.1405.0312
http://doi.org/10.1109/ICCV.2011.6126456
http://doi.org/10.1007/978-3-319-46448-0_2
http://doi.org/10.1109/TIP.2020.3002345
http://doi.org/10.1109/TNNLS.2021.3053249
http://www.ncbi.nlm.nih.gov/pubmed/33534715
http://doi.org/10.1109/TCSVT.2017.2736553
http://doi.org/10.1109/CVPR42600.2020.01035
http://doi.org/10.1609/aaai.v35i3.16365
http://doi.org/10.1016/j.cub.2013.12.046
http://www.ncbi.nlm.nih.gov/pubmed/24892907
http://doi.org/10.1016/j.conb.2016.06.017
http://www.ncbi.nlm.nih.gov/pubmed/27420378
http://doi.org/10.1523/JNEUROSCI.3740-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20130182

Mathematics 2022, 10, 4125 18 of 18

30. Del Bene, F.; Wyart, C.; Robles, E.; Tran, A.; Looger, L.; Scott, E.K.; Isacoff, E.Y.; Baier, H. Filtering of Visual Information in the
Tectum by an Identified Neural Circuit. Science 2010, 330, 669–673. [CrossRef] [PubMed]

31. Asadollahi, A.; Knudsen, E.I. Spatially precise visual gain control mediated by a cholinergic circuit in the midbrain attention
network. Nat. Commun. 2016, 7, 13472. [CrossRef] [PubMed]

32. Itti, L. Visual salience. Scholarpedia 2007, 2, 3327. [CrossRef]
33. Lucas, B.; Kanade, T. An Iterative Image RegistrationTechnique with an Application to Stereo Vision. In Proceedings of the 7th

International Joint Conference on Artificial Intelligence (IJCAI), San Francisco, CA, USA, 24–28 August 1981; pp. 674–679.
34. Tomasi, C.; Kanade, T. Detection and Tracking of Point Features; Carnegie Mellon University Technical Report CMU-CS-91-132;

Carnegie Mellon University: Pittsburgh, PA, USA, 1991.
35. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
36. Lovett, A.; Bridewell, W.; Bello, P. Selection, Engagement, & Enhancement: A Framework for Modeling Visual Attention. In

Proceedings of the Annual Meeting of the Cognitive Science Society 43, Vienna, Austria, 26–29 July 2021; 2021.
37. Knudsen, E.I.; Schwarz, J.S. The Optic Tectum: A Structure Evolved for Stimulus Selection; Evolution of Nervous Systems; Elsevier:

Amsterdam, The Netherlands, 2017; pp. 387–408.
38. Bozcan, I.; Kayacan, E. AU-AIR: A Multi-modal Unmanned Aerial Vehicle Dataset for Low Altitude Traffic Surveillance. In

Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August
2020; pp. 8504–8510.

39. Itti, L.; Koch, C. Computational modelling of visual attention. Nat. Rev. Neurosci. 2001, 2, 194–203. [CrossRef] [PubMed]
40. Lou, J.; Zhu, W.; Wang, H.; Ren, M. Small target detection combining regional stability and saliency in a color image. Multimed.

Tools Appl. 2017, 76, 14781–14798. [CrossRef]
41. Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A Single-Stage Object Detection

Framework for Industrial Applications. arXiv 2022, arXiv:2209.02976. [CrossRef]
42. Hu, Y.; Chen, Y.; Li, X.; Feng, J. Dynamic Feature Fusion for Semantic Edge Detection. arXiv 2019, arXiv:1902.09104. [CrossRef]
43. Gong, T.; Chen, K.; Wang, X.; Chu, Q.; Zhu, F.; Lin, D.; Yu, N.; Feng, H. Temporal ROI Align for Video Object Recognition. In

Proceedings of the AAAI Conference on Artificial Intelligence 35, Online, 2–9 February 2021; pp. 1442–1450. [CrossRef]
44. Zhou, Q.; Li, X.; He, L.; Yang, Y.; Cheng, G.; Tong, Y.; Ma, L.; Tao, D. TransVOD: End-to-end Video Object Detection with

Spatial-Temporal Transformers. arXiv 2022, arXiv:2201.05047.

http://doi.org/10.1126/science.1192949
http://www.ncbi.nlm.nih.gov/pubmed/21030657
http://doi.org/10.1038/ncomms13472
http://www.ncbi.nlm.nih.gov/pubmed/27853140
http://doi.org/10.4249/scholarpedia.3327
http://doi.org/10.1038/35058500
http://www.ncbi.nlm.nih.gov/pubmed/11256080
http://doi.org/10.1007/s11042-016-4025-7
http://doi.org/10.48550/arXiv.2209.02976
http://doi.org/10.48550/arXiv.1902.09104
http://doi.org/10.1609/aaai.v35i2.16234

	Introduction
	Materials and Methods
	Temporal–Spatial Feature Extraction (Motion Module)
	Spatial Feature Extraction (Network) (Pop-Out Module)
	Memory-Based Template Matching Strategy (Memory Module)
	Version Setup
	Loss Function and Training Strategy

	Experiments and Results
	Dataset and Training Parameters
	Metrics
	Complexity and Location Performance Experiment
	Training Difficulty
	Computation Complexity
	Location Performance
	Average Location Precision

	Detection Performance Experiment
	Ablation Experiment

	Conclusions and Future Work
	References

