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Abstract: Rail expresses play a vital role in intracity and intercity transportations. For accommo-
dating multi-source passenger traffic with different travel demand, while optimizing the energy
consumption, we propose a multi-cycle train timetable optimization model and a decomposition
algorithm. A periodized spatial-temporal network that can support the integrated optimization of
passenger service satisfaction and energy consumption considering multi-cycles is studied as the
basis of the modeling. Based on this, an integrated optimization model taking the planning of the
train spatial-temporal path, cycle length and active lines as variables is proposed. Then, for solving
the issues caused by the complex relationships among the cycle length, line and train spatial-temporal
path in large-scale cases, a hybrid heuristic Lagrangian decomposition method is investigated. Nu-
merical experiments under different passenger flow demand scenarios are performed. The results
show that the more fluctuating the passenger flow is, the more obvious the advantage of a multi-cycle
timetable is. For the scenario with two passenger flow peaks, compared to a single-cycle timetable,
the demand satisfaction ratio of the multi-cycle timetable is 4.44% higher and the train vacancy rate
is 11.49% lower. A multi-cycle timetable also saves 3.24 h running time and 15,553.6 kwh energy
consumption compared to a single-cycle timetable. Large-scale real cases show that this advantage
still exists in practice.

Keywords: rail express; passenger flow demand; multi-cycle train timetable; energy consumption;
spatial-temporal network; Lagrangian relaxation

MSC: 90B06

1. Introduction
1.1. Background

Along with the continuous urbanization and growth of the city scale, the functional
positionings of different areas in a city are gradually being clarified and the relationships
between such areas are more diverse. This leads to a much more complex passenger
traveling demand. Multi-source passenger flows generated from different areas, such as
tourism, business, commuting, schooling, etc., have individual travel times, frequencies
and their own time peaks. Aggregated along the time dimension, the overall flow unveils
unique characteristics, such as a wide peak, single peak or multi-peaks. At the same
time, green transportation is also one of the important directions of urban development.
Thus, for rail express operators, train schedules need to not only meet the demand–supply
relationships but also optimize the operating costs and energy consumption.

For meeting the demand–supply relationships, the plan should not only be flexible
to adapt to the characteristics of passenger demand but also be formulated as a regular
and easy-to-memorize schedule. Moreover, the model should consider and optimize the
energy consumption of the train fleet. A multi-cycle timetable, which is composed of a set
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of running lines with different frequencies and period lengths, is a good choice to meet
such requirements. Compared with the single-cycle train timetable, the multi-cycle train
timetable ensures the regularity and satisfies the passenger demand of different periods
by flexibly arranging the train departure time and the cycle length. Thus, it is necessary
to develop a multi-cycle train timetable that can accommodate the peaks caused by the
multi-source passenger demand while considering a proper combination of trains with
different stopping patterns and cycle lengths for better energy consumption.

There exists a relationship between the energy consumption and passenger demand
satisfaction. The train stops at different stations to provide transportation services, which
will affect the service satisfaction of passengers. Such kinds of stoppings are determined by
the line planning. In addition, trains of different speed classes will have crossings due to the
space–time relationship, thus leading to additional stoppings. Such kinds of stoppings are
determined by the train diagram (i.e., timetable). Train stopping is unavoidably accompa-
nied by train deceleration and acceleration, which directly affects the energy consumption
of trains. For this reason, the optimization of the passenger demand satisfaction and energy
consumption requires research in both the line planning and the train diagram aspects.

Motivated by these, this paper aims to solve a multi-cycle train timetable scheduling
problem by a space-time network with the joint optimization of the supply-to-demand
relationship and energy consumption. To this end, we need to solve the following issues:
(1) How to harmonize the relationship between line planning and timetabling to meet
the time-varying passenger demand. (2) How to establish a comprehensive optimization
model for scheduling a multi-cycle timetable. The model should have the ability to describe
the difference in energy consumption caused by combinations of stopping and crossing in
stations while focusing on the degree of passenger demand satisfaction, and then optimize
both. (3) How to improve the efficiency of the model solution by a suitable algorithm in the
face of complex cases.

1.2. Literature Reviews

The concept of a periodic train timetable was first proposed in the Netherlands in
1931, and the cycle time was set to 1 h. A cyclic timetable has many advantages, such as
a strong regularity, flexible use, high-capacity utilization rate and convenient travel for
passengers [1]. In 1989, Serafini and Ukovich [2] proposed the periodic event scheduling
problem (PESP). Later, many scholars studied the cyclic train timetable problem based on
the PESP model framework [3–7]. Mathias [8] introduced the time-discrete technology into
the PESP model and proposed the integer programming formula. In addition to the PESP
model, some scholars also used time–space networks to solve the cyclic train timetable
problem. Caprara et al. [9] proposed a graph theoretic formulation for the periodic train
timetable problem. On this basis, Zhang et al. [10] introduced the construction of an ex-
tended spatial-temporal network and proposed a new type of integer programming model
reformulation for the cyclic train timetabling problem on a double-track railway corridor.

Some studies tried to take different approaches to meet the demand for peak and off-
peak hours. Wang Bo et al. [1] used the method of cancelling train lines to meet the different
passenger flow demands during peak and off-peak periods. However, the cancellation
of train lines would destroy the regularity of train services. In addition, other studies
used a multi-cycle train timetable to improve the meeting of demand. Odijk [11] proposed
the concept of a multi-cycle train timetable. Robenek et al. [12] designed a multi-cycle
timetable optimization model with the goal of maximizing passenger satisfaction. Zhou [13]
constructed an optimization model for solving a multi-cycle train timetable problem with
a fixed cycle length and solved the model by using the Lagrangian relaxation algorithm.
Zhou [14] was devoted to modeling the multi-periodic train timetable problem, which
collaboratively optimized the operation periods, arrival times and departure times of all
period types of trains. Yan [15] proposed a multi-frequency line planning problem and
multi-period train timetable problem model, with consideration of both the periodic and
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aperiodic nature to meet strongly heterogeneous train services and reduce the capacity loss
of train operating companies.

In terms of the objective of timetable optimization, Niu et al. [16] proposed a set
of quadratic and quasi-quadratic objective functions to accurately formulate the total
waiting time under the minute-related demand and hour-related demand of different
origin–destination (OD) pairs so that the total station passenger waiting time is the smallest,
and a general advanced solver is used to solve the model. The cyclic train timetable problem
usually considers passenger-related expenses as the objective function, such as a minimum
train waiting time [17], guaranteed maximum passenger transfer waiting time, reduction
in the maximum train dwell time [18] and maximum passenger demand satisfaction [19].
Yin [20] minimized the weighted value of the total train travel time and the total passenger
waiting time, considering vehicle turnover as the objective function.

The existing studies have shown that factors such as the running time, headway time
and stop pattern affect the energy consumption of the train [21,22]. Some research was
mainly focused on the calculation of the energy consumption, train running control by ana-
lytical models [23], optimization models [24–28] and simulation-based approaches [29–31].
Some studies tried to schedule train diagrams with considerations of railway energy
consumption. Dingjun Chen [32] established an energy-efficient operation diagram for
high-speed railways based on stop and dispatch optimization. Huiru Zhang [33] devel-
oped a two-layer planning model for the timetable optimization of a high-speed rail based
on energy-efficient train control. Albrecht [34] developed a new approach to integration
for balancing simultaneity and energy efficiency in train schedules. Li [35] established a
multi-objective train scheduling model and integrated goals for energy efficiency, emissions
reduction and travel time. Lancien [36] minimized the energy consumption of trains under
fixed service time conditions by data mining and an optimization model. Bai Yun [37] stud-
ied the energy consumption at different inertial distances before braking and at lower speed
limits, as well as the uniformity of train speed by train motion analysis and simulation.

Despite the fruitful results of the current research, there are still some aspects that
need to be studied: (1) the existing multi-cycle timetabling models generally take the line
planning as determined input and have not yet integrated the cycle and train-specific
space–time points for optimization; (2) the existing multi-cycle models generally model
by the station entry and exit throats, which cannot distinguish the difference in the energy
consumption of trains under different stopping modes; and (3) the existing algorithms
cannot balance the efficiency and accuracy of the algorithm for the above-mentioned model.

1.3. Potential Contributions

In order to solve the issues mentioned in Section 1.1 and jointly optimize the supply-
to-demand relationship and energy consumption, the line plan and timetable would be
optimized simultaneously. The line plan, which is composed of lines, is one of the most
basic elements for rail transit operations. A line represents a series of trains that have the
same route, stopping pattern, frequency and cycle length, where the route is in a high-level
infrastructure graph, ignoring the precise details of the platforms, junctions, etc. [38]. The
train timetable determines the arrival and departure time of trains at stations based on the
line plan. In the multi-cycle train timetable, trains belonging to different train lines have an
identical cycle length, with a designed route and stop plan [38].

This paper uses a spatial-temporal network for modeling and designs the objective
function and solution framework. A multi-cycle timetable considering the supply-to-
demand relationship and energy consumption (MTSDE) is proposed to solve such an issue.
The potential contributions are as follows:
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1. A periodized spatial-temporal network that can support the integrated optimization
of passenger service satisfaction and energy consumption is studied. To describe the
acceleration and deceleration behavior of trains due to stopping, a vertex set and an
arc set of the spatial-temporal network are created based on the decomposed actions
of the trains’ movements. The network can be used to determine the spatial-temporal
path of trains, which in turn enables the integrated optimization of passenger service
satisfaction and energy consumption.

2. An integrated optimization model taking the train spatial-temporal path, cycle length
and active lines as the variables is proposed. The objective function composes the
supply–demand matching degree (SDMD), the minimum time cost (MTC) and the
energy consumption (EC), where the SDMD is measured by the difference between
the demand flow and train frequency in each time duration, and the MTC and EC are
measured by the costs of the spatial-temporal paths. Four classes of constraints are
considered, including the train flow balance constraints, cycle interval constraints,
incompatible constraints and minimum travel time constraints.

3. A hybrid heuristic Lagrangian decomposition method is proposed. The determination
of the cycle length and line and the scheduling of the spatial-temporal points in the
train diagram are separated, where the scheduling of the train diagram is further
decomposed into an independent problem by the Lagrangian relaxation.

The rest of this paper is organized as follows: In Section 2, the model of the MTSDE
is introduced with the objective function and constraint conditions based on periodized
spatial-temporal networks. Then, for solving the complex model, a hybrid heuristic La-
grangian decomposition method is proposed. In Section 3, cases under different passenger
flow demand scenarios are performed to analyze the characteristics of the MTSDE by
comparisons with a single-cycle train timetable. Moreover, the solving performance of the
proposed model is compared with the commercial solver. Lastly, the real-world case is
analyzed to verify the applicability of the MTSDE.

2. Methodology

The MTSDE contains three parts: The periodized spatial-temporal network, the op-
timization model and the decomposition algorithm. The periodized spatial-temporal
network focuses on how to build vertex and arc sets to describe the differential operation of
trains, which in turn supports the subsequent model construction. The optimization model
considers elements of timetabling and line planning, where elements of line planning
determine the path, cycle length and stopping patterns, and the elements of timetabling
determine the specific spatial-temporal points of trains. In addition, the model’s objective
function is composed of supply demand matching degree (SDMD), the minimum time cost
(MTC) and the energy consumption (EC); the model is constrained by train flow balance
constraints, cycle interval constraints, incompatible constraints and minimum travel time
constraints. Based on characteristics of the spatial-temporal network and the model, the
decomposition algorithm optimizes the line planning elements and timetable elements in
stages and achieves efficient preparation of multi-cycle complex operation diagrams by
Lagrangian relaxation algorithm.

The assumptions of the model are as follows:

1. The supply–demand matching set in this paper focuses on the supply–demand match-
ing of several stations. We believe that the trains’ transportation capacity in a line
needs to be prioritized to satisfy the stations with larger passenger flows, and other
stations with smaller passenger flows can be appropriately ignored. Therefore, the
set of stations to be concerned and their corresponding passenger flows will be given
in the modeling process of this paper. This assumption is in line with the planning
convention in actual transportation organization.
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2. The numbers of passengers on board in each station are preset as an input for the
model. In the course of practical application, the specific OD volume and dynamic
upload and download of passenger flow is difficult to count. We pre-estimate the
numbers of passenger that can be served in each station by means of passenger ticket
allocation techniques.

3. The time resolution of the spatial-temporal network is set to 1 min.

We introduce the notations and modeling basics first.

2.1. Notations and Modeling Basis

For the convenience of description, the sets, parameters and decision variables nota-
tions involved in this paper are shown in Table 1.

Table 1. Notaions.

Type Notation Definition

Set

K Set of trains k ∈ K
Π Set of line plan Π = {1, 2, . . . , π, . . . , n}, where π is the element of line plan
oπ Origin station index of line π
dπ Destination station index of line π
S Set of stations

Sπ Set of stations along line π’s route
Sπ Set of no-skip stations along line π’s route
Kπ Set of trains belonging to a line π, where Kπ ⊂ K, π ∈ Π

M
The number of time durations used for calculating passenger demand satisfaction.
M = {1, 2, . . . , m, . . . , nt }, where nt is the number of time duration. These time durations are
divided from the whole-time horizon T.

So
Stations, whose degree of passenger satisfaction needs to be optimized. Generally speaking, it
is the stations in the line with high passenger flow.

Parameter

gi Minimum arrival headway of station si ∈ S
hi Minimum departure headway of station si ∈ S
mi

Number of side tracks in station si ∈ S. If the station has overtravel conditions mi ≥ 1, mi = 0
otherwise.

m′i Number of main tracks in station si ∈ S
c′k The unit cost for train k stopping in a station
pk The earliest allowed start time of train k for running
qk The latest allowed end time of train k for running
αki The pure running time for train k to traverse section si − si+1
α′k Additional time for train k caused by acceleration
α′′k Additional time for train k caused by deceleration
βki The minimum required dwell time of train k at station si
ck Operating cost unit time for train k to run
fπ The departure frequency of the line π in the time range T

wπ Index of the first train in a line π
qk

π The order of train k in line π
τπ The time interval between two consecutive trains in the same line π

σπ
i

Numbers of passengers that can be served in station i by a train in line planning π. If i ∈ Sπ ,
then σk

i = 0, else σk
i = N.

δi
t Passenger demand at station i at time t

tsm Start time of the mth time duration, tsm = ∆(m− 1)
tem The end time of the mth time duration, tem = ∆m− 1
θk,s

t Coefficient of dwelling or waiting energy consumption per time of train k
θk,r,da

t Coefficient of running energy consumption per time of train k’s departure–arrival arcs

θ
k,r,dp
t

Coefficient of running energy consumption per time of train k’s departure–passing arcs

θ
k,r,pa
t

Coefficient of running energy consumption per time of train k’s passing–arrival arcs

θ
k,r,pp
t

Coefficient of running energy consumption per time of train k’s passing–passing arcs
ξk

t (u, v) Time cost of arcs u→ v of train k
ξk

e (u, v) Energy cost of arcs u→ v of train k

Variable
xk,π

uv If the train k of line π is passing through arc u→ v , then xk,π
uv = 1, else xk,π

uv = 0
plπ Cycle length of line π
yπ If line π is chosen, then yπ = 1, else yπ = 0
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In multi-cycle train timetable, trains belonging to different lines have different cycle
length, and trains belonging to the same line have the same cycle length and the stop
pattern. The arrival and departure time of trains in sections and stations strictly meet the
feasibility of capacity utilization. Figure 1 is a sample of multi-cycle train timetable.
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Figure 1. A multi-cycle train timetable with three-cycle period. There are 3 train lines. The cycle
length of line 1 is 30 min, and the train belonging to line 1 departs every 30 min. The cycle length of
line 2 is 20 min, and the train belonging to line 2 departs every 20 min. The cycle length of line 3 is
60 min, and trains belonging to line 3 depart every 60 min.

The difficulty of multi-cycle train timetable problem is how to determine the cycle
length and departure time so that the multi-cycle train timetable can meet the demands of
passengers in different time durations and also minimizing the energy cost.

2.2. Augmented Spatial-Temporal Network for Multi-Cycle Timetabiling

The augmented spatial-temporal network can extend spatial-temporal vertexes accord-
ing to cycles. Thus, trains belonging to a certain line will have a unique spatial-temporal
network after determining a cycle length. The vertexes and arcs of this network have
certain characteristics.

2.2.1. Spatial-Temporal Vertexes for Augmented Spatial-Temporal Network

For any train k ∈ K, the outflows and inflows at both the origin point o and the
destination point d are both set as 1. Assume that the train can only stop on the side track
of the station, and the main track can only be used for passing. Thus, the main track of
a station is regarded as a node ϕk,π

t,i in spatial-temporal network. Generally speaking, a
station is configured with only one main track in one direction. Moreover, consider the
side tracks as two nodes ρk,π

t,i,l and ρk,π
t,i,l , respectively. In order to express the movement

of trains between stations, σk,π
t,i nodes are introduced to describe the running behavior of

trains between stations. Therefore, suppose that the station si has mi ∈ N side tracks and
m′i ∈ {0, 1}main tracks and consider that the nodes will repeat

[
T

plπ

]
times in the whole

time horizon T; then, there are 2+∑n
i=1
(
2mi + m′i + 1

)
·
[

T
plπ

]
nodes in the spatial-temporal

network Gk of train k. The node set is shown as Equation (1):

Vk =
{

o, d
}
∪
[{(

ρk,π
t,i,l , ρk,π

t,i,l

)}
∪
{

ϕk,π
t,i

}
∪
{

σk,π
t,i

}]
t∈[0,·plπ ·qk

π ]

i = 1, 2, · · · , n; l = 1, 2, · · ·mi; plπ = 1, · · · ,
[

T
plπ

] (1)
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2.2.2. Arc Set Considering Differences in Energy Consumption for Various Train Behaviors

In the train spatial-temporal network, the spatial-temporal arc set Ak contains nine
kinds of spatial-temporal arcs, as shown in Table 2. The train starting arc represents that
at time t ≥ pk, train k starts its running operation from station soπ . The train ending
arc represents that at time t ≤ qk, train k completes its running operation at station sdπ

.
The train dwelling arc refers to the process of minimum dwell time for train k to stop at
the lth platform track of station si, during period [t, t′]. If the train has additional stop
time, it needs to enter the train waiting arc; train waiting arc refers to the process which
a train continues to stay on the lth platform track at station si during [t, t′], after meeting
its minimum dwell time requirements. In order to express the process of the train leaving
the station from the platform, the train departure arc is introduced. Train departure arc
refers to the train starts from the platform l of the si station where the stopped trains leave
the station at the time point t. In order to illustrate trains running processes in the section
from si to next station si+1, and depict different operation modes in the section, including
departure–arrival, departure–passing, passing–arrival and passing–passing, we design
four corresponding train arcs, respectively. Train departure–arrival arc refers to a running
process that the train stops at si station and stops at the lth platform of the station si+1 in
period [t, t′]. Likewise, train departure–passing arc refers to a running process that the
train stops at si station and skips the si+1 station in period [t, t′]. Train passing–arrival arc
represents a running process that the train skips si station and stops at the lth platform of
the station si+1 in period [t, t′]. Train passing–passing arc represents a running process that
the train skips si station and skips the si+1 station in period [t, t′]. All the train arcs have
time cost ξk

t and some of them have energy cost ξk
e .

Table 2. The arc set of spatial-temporal network.

ID Name Notation Time Cost and Energy Cost of Arcs Set

1 Train starting
arcs o → ρk,π

t,i,l

For π ∈ Π, k ∈ Kπ , if i = soπ and t ≥ pk, then the time cost of arc

o → ρk,π
t,i,l is ξk

t

(
o → ρk,π

t,i,l

)
= 0; else ξk

t

(
o → ρk,π

t,i,l

)
= +∞.

where i ∈ {1, 2, · · · , n− 1}; l ∈ {1, 2, · · ·mi}; t ∈ {0, 1, · · · , T}
Ak,π

s

2 Train ending
arcs σk,π

t,i → d

For π ∈ Π, k ∈ Kπ , if i = sdπ
and t ≤ qk, then the time cost of arc

σk,π
t,i → d is ξk

t

(
σk,π

t,i → d
)
= 0; else ξk

t

(
σk,π

t,i → d
)
= +∞.

where i ∈ {2, 3, · · · , n}; t ∈ {0, 1, · · · , T}
Ak,π

e

3 Train dwelling
arcs ρk,π

t,i,l → ρk,π
t′ ,i,l

For π ∈ Π, k ∈ Kπ , if soπ ≤ i ≤ sdπ
and si ∈ S\Sk, then the time cost

of arc ρk,π
t,i,l → ρk,π

t′ ,i,l is ξk
t

(
ρk,π

t,i,l → ρk,π
t′ ,i,l

)
= c

′

k(t
′ − t), else

ξk
t

(
ρk,π

t,i,l → ρk,π
t′ ,i,l

)
= +∞. In addition, the energy cost of this arc is

ξk
e

(
ρk,π

t,i,l → ρk,π
t′ ,i,l

)
= ξk

t

(
ρk,π

t,i,l → ρk,π
t′ ,i,l

)
· θk,s

t . θk,s
t is the coefficient of

dwelling or waiting energy consumption per time of train k.
where i ∈ {1, 2, · · · , n}, l ∈ {1, 2, · · ·mi}, t, t′ ∈ {0, 1, · · · , T}. Ak,π

ds

4 Train waiting
arcs ρk,π

t,i,l → ρk,π
t+1,i,l

For π ∈ Π, k ∈ Kπ , if soπ ≤ i ≤ sdπ
and si ∈ S\Sk, pk ≤ t ≤ qk − 1,

then the time cos t of arc ρk,π
t,i,l → ρk,π

t+1,i,l is ξk
t

(
ρk,π

t,i,l → ρk,π
t+1,i,l

)
= c

′

k,

else ξk
t

(
ρk,π

t,i,l → ρk,π
t+1,i,l

)
= +∞. In addition, the energy cost of this arc

is ξk
e

(
ρk,π

t,i,l → ρk,π
t+1,i,l

)
= ξk

t

(
ρk,π

t,i,l → ρk,π
t+1,i,l

)
· θk,s

t .
where i ∈ {1, 2, · · · , n}, l ∈ {1, 2, · · ·mi}, t ∈ {0, 1, · · · , T − 1}

5 Train departure
arcs ρk,π

t,i,l → σk,π
t,i

For π ∈ Π, k ∈ Kπ , if soπ ≤ i ≤ sdπ
and si ∈ S\Sk, t ≤ qk, then the

time cost of arc ρk,π
t,i,l → σk,π

t,i is ξk
t

(
ρk,π

t,i,l → σk,π
t,i

)
= 0,

else ξk
t

(
ρk,π

t,i,l → σk,π
t,i

)
= +∞. The set of ρk,π

t,i,l → σk,π
t,i is

denoted by Ak
dep.

where i ∈ {1, 2, · · · , n}, l ∈ {1, 2, · · ·mi}, t, t′ ∈ {0, 1, · · · , T}

Ak,π
de
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Table 2. Cont.

ID Name Notation Time Cost and Energy Cost of Arcs Set

6
Train departure–

arrival arcs in
section

σk,π
t,i → ρk,π

t′ ,i+1,l

For π ∈ Π, k ∈ Kπ , if soπ ≤ i ≤ sdπ
− 1 and si ∈ S\Sk, si+1 ∈ S\Sk,

t ≥ pk, and t′ = t + αki + α
′

k + α
′′
k ≤ qk, then the time cost of arc

σk,π
t,i → ρk,π

t′ ,i,l is ξk
t

(
σk,π

t,i → ρk,π
t′ ,i,l

)
= ck(t′ − t),

else ξk
t

(
σk,π

t,i → ρk,π
t′ ,i,l

)
= +∞. In addition, the energy cost of this arc is

ξk
e

(
σk,π

t,i → ρk,π
t′ ,i,l

)
= ξk

t

(
σk,π

t,i → ρk,π
t′ ,i,l

)
· θk,r,da

t . θk,r,da
t is the coefficient

of running energy consumption per time of train k.
where i ∈ {1, 2, · · · , n− 1}, l ∈ {1, 2, · · ·mi+1}, t, t′ ∈ {0, 1, · · · , T}

Ak,π
trv

7
Train departure–
passing arcs in

section
σk,π

t,i → ϕk,π
t′ ,i+1

For π ∈ Π, k ∈ Kπ , if soπ ≤ i ≤ sdπ
− 1 and si ∈ S\Sk, si+1 ∈ Sk,

t ≥ pk, t′ = t + αki + α
′

k ≤ qk,
then the time cos t of arc σk,π

t,i → ϕk,π
t′ ,i+1 is

ξk
t

(
σk,π

t,i → ϕk,π
t′ ,i+1,l

)
= ck(t′ − t), else ξk

t

(
σk,π

t,i → ϕk,π
t′ ,i+1,l

)
= +∞. In

addition, the energy cost of this arc is

ξk
e

(
σk,π

t,i → ϕk,π
t′ ,i+1,l

)
= ξk

t

(
σk,π

t,i → ϕk,π
t′ ,i+1,l

)
· θk,r,dp

t .

where i ∈ {1, 2, · · · , n− 1}, t, t′ ∈ {0, 1, · · · , T}

8
Train

passing–arrival
arcs in section

ϕk,π
t,i → ρk,π

t′ ,i+1,l

For π ∈ Π, k ∈ Kπ , if soπ ≤ i ≤ sdπ
− 1 and si ∈ Sk, si+1 ∈ S\Sk,

t ≥ pk, t′ = t + αki + α
′ ′

k ≤ qk, then the time cost of arc ϕk,π
t,i → ρk,π

t′ ,i+1,l

is ξk
t

(
ϕk,π

t,i → ρk,π
t′ ,i+1,l

)
= ck(t′ − t), else ξk

t

(
ϕk,π

t,i → ρk,π
t′ ,i+1,l

)
= +∞.

In addition, the energy cost of this arc is

ξk
e

(
ϕk,π

t,i → ρk,π
t′ ,i+1,l

)
= ξk

t

(
ϕk,π

t,i → ρk,π
t′ ,i+1,l

)
· θk,r,pa

t .

where i ∈ {1, 2, · · · , n− 1}, l ∈ {1, 2, · · ·mi+1}, t, t′ ∈ {0, 1, · · · , T}

9
Train passing–
passing arcs in

section
ϕk,π

t,i → ϕk,π
t′ ,i+1

For π ∈ Π, k ∈ Kπ , if soπ ≤ i ≤ sdπ
− 1 and si ∈ Sk, si+1 ∈ Sk, t ≥ pk,

t′ = t + αki ≤ qk, then the time cost of arc ϕk,π
t,i → ϕk,π

t′ ,i+1 is

ξk
t

(
ϕk,π

t,i → ϕk,π
t′ ,i+1

)
= ck(t′ − t), else ξk

t

(
ϕk,π

t,i → ϕk,π
t′ ,i+1

)
= +∞. In

addition, the energy cost of this arc is

ξk
e

(
ϕk,π

t,i → ϕk,π
t′ ,i+1

)
= ξk

t

(
ϕk,π

t,i → ϕk,π
t′ ,i+1

)
· θk,r,pp

t where

i ∈ {1, 2, · · · , n− 1}, t, t′ ∈ {0, 1, · · · , T}
A

2.3. Optimization Model for Scheduling MTSDE

The core of the proposed model is to find the shortest paths of trains under the time
and energy costs and find the best combination of such paths based on spatial-temporal
network. On the basis of spatial-temporal network, the establishment original model P of
MTSDE is established, as shown in Equations (2)–(9).

2.3.1. Objective Function

The objective function of MTSDE includes the total time cost of all trains, the total
energy cost and the sum of the differences between the station passenger demand and the
train supply. According to the design of spatial-temporal network, the objective function is
shown as Equation (2). Elements in Equations (2)–(11) are shown in Table 1.

Min ∑
k∈K

∑
u→v∈Ak

(
ξk

t (u, v) + ρ1ξk
e (u, v)

)
· xk,π

uv + ρ2 ∑
i∈So

∑
m∈M

∣∣∣∣∣∑t∈[tsm ,tem ]
δi

t −∑t∈[tsm ,tem ] ∑
π∈Π

yπ ·
T

plπ ·m
· σπ

i

∣∣∣∣∣ (2)

where
(

ξk
t (u, v) + ρ1ξk

e (u, v)
)
· xk,π

uv is the cost of time and energy cost in arc u→ v of train
k and line π. ρ1 and ρ2 are two coefficients for weighting importance of different parts
in Equation (2).
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In order to describe the relationship between passenger demand and train supply
more accurately, it is necessary to divide the time of day into multiple time periods and
match the passenger demand and train supply in each time period, so as to achieve the
matching of supply and demand throughout the whole-time horizon. Thus, in Equation (2),
yπ · T

plπ ·m · σ
π
i represents the average number of service passengers at time t by line π.

Then, ∑t∈[tsm ,tem ] δi
t −∑t∈[tsm ,tem ] ∑π∈Π yπ · T

plπ ·m · σ
π
i calculates the difference in passenger

demand in station i and the train supply in time duration m.

2.3.2. Constraint Condition

The constraints of MTSDE consist of four classes: train flow balance constraints, cycle
interval constraints, incompatible constraints and minimum travel time constraints.

(a) Train flow balance constraints
Equation (3) indicates that the train can only belong to one line π with origin point o.

The line determines the cycle length and stopping plan directly. Because there are no arcs
between layers with different cycles, the train cycle will be fixed in a path. Equations (3)–(5)
are the train flow balance constraints.

∑π∈Π ∑{v:õ→v∈Ak} xk,π
õv = 1, ∀k ∈ K (3)

∑π∈Π ∑{u:u→d∈Ak} xk,π
ud

= 1, ∀k ∈ K (4)

∑{u:u→v∈Ak} xk,π
uv = ∑{w:v→w∈Ak} xk,π

vw , ∀π ∈ Π, ∀k ∈ Kπ ; v ∈ Vk\
{

O, d
}

(5)

(b) Cycle interval constraints
In order to ensure the time relation between the first train and other trains can sat-

isfy the cycle requirement, Equation (7) ensures that, for any line π with cycle length
plπ , arcs of each train k in π are all coupled with the first train wπ in line π, i.e., the
time interval between each train and the first train is a multiple of the cycle and train
order—1 t̃ = t +

(
qk

π − 1
)
· plπ . We define a function FT(·, t) that can find the elements

from arc subset sA ∈ A, where the elements’ time is t.

xwπ ,π
u,v: (u,v)∈FT(sA,t) = xk,π

u,v: (u,v)∈FT(sA,̃t)

sA ∈ A =
{

Ak,π
s , Ak,π

e , Ak,π
ds , Ak,π

de , Ak,π
trv

}
, ∀π ∈ Π, k ∈ Kπ , t̃ = t +

(
qk

π − 1
)
· plπ , ∀t, t̃ ∈ T, qk

π > 1
(6)

(c) Incompatible constraint
Equation (8) is an incompatible constraint to prevent unsafe following behaviors of

trains in sections and stations. Where C is an incompatible set, and its detailed setting can
be seen in Section 2.3.3,

∑π∈Π ∑k∈K ∑u→v∈c xk,π
uv ≤ 1, ∀c ∈ C (7)

(d) Minimum travel time constraint
Equation (9) is the minimum travel time constraint, which focuses on the travel time

of train k cannot be higher than the time threshold η.

∑
v∈Vk

akv + a′k

(
∑

u→v∈Ak

xk,π
uv − 1

)
+ a′′k

(
∑

u→v∈Ak

xk,π
uv − 1

)
≤ η, ∀π ∈ Π, k ∈ Kπ (8)

(e) Decision variables
Equation (10) specifies the types of decision-making variables.

xk,π
uv ∈ {0, 1}, ∀π ∈ Π, k ∈ Kπ ; u→ v ∈ Ak (9)

yπ ∈ {0, 1}, ∀π ∈ Π (10)
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plπ ∈ N, ∀π ∈ Π (11)

2.3.3. Sets of Incompatible Arcs

There are some conditions that must be met in the actual operation, such as train
following headway constraints, no overtaking constraints, etc. In the spatial-temporal
network, these conditions are represented by the sets of incompatible arcs C (which is
important in Equation (7)). C represents that, in a specified space and time, at most one
arc can be chosen from the arc sets. C includes five subsets: arrival headway constraint arc
set, departure headway constraint arc set, interval forbidden crossing constraint arc set,
platform track exclusive constraint arc set. These are

C =
{

C1
it

∣∣i = 2, 3, . . . , n; t = 0, 1, . . . , T − gi + 1
}{

C2
it

∣∣i = 1, 2, . . . , n− 1; t = 0, 1, . . . , T − hi + 1
}{

C2
it
′∣∣i = 1, 2, . . . , n− 1; t = 0, 1, . . . , T − ρ+ 1

}{
C3

it1t2

∣∣∣i = 1, 2, . . . , n− 1; 0 ≤ t1 < t2 < T s.t.Bit1t2 , B′ it1t2 6= ∅
}{

C4
ilt

∣∣i = 1, 2, . . . , n; l = 1, 2, . . . , mi; t = 0, 1, . . . , T
}{

C5
it1t2

∣∣∣i = 1, 2, . . . , n− 1; 0 ≤ t1 < t2 < T
}

(12)

(a) Incompatible arcs for arrival headway constraint
For any station i, the arrival between adjacent trains is constrained by the minimum

arrival interval gi. Let t be the time when the train leaves from station si−1 (including
the departure after stopping and passing through without stopping), and t′ be the time
when the train arrives at station i (including stopping and passing through). Then, for
any time t1 at station i, there is a set of incompatible constraints C1

it1
in the closed interval

of t′ ∈ [t1, t1 + gi − 1]. The set includes four types of spatial-temporal arcs, namely train
departure–arrival arcs in section σk,π

t,i−1 → ρk,π
t′ ,i,l , train departure–passing arcs in section

ϕk,π
t,i−1 → ρk,π

t′ ,i,l , train passing–arrival arcs in section σk,π
t,i−1 → ϕk,π

t′ ,i and train passing–passing

arcs in section ϕk,π
t,i−1 → ϕk,π

t′ ,i . When one of these arcs is selected (xk,π
uv = 1), the other arcs

cannot be selected.

C1
it1

= A ∩ [
{

σk,π
t,i−1 → ρk,π

t′ ,i,l

∣∣∣l = 1, 2, . . . mi; t, t′ = 0, 1, . . . , T; t1 ≤ t′ ≤ t1 + gi − 1
}

∪
{

ϕk,π
t,i−1 → ρk,π

t′ ,i,l

∣∣∣m′ i−1 = 1; l = 1, 2, . . . mi; t, t′ = 0, 1, . . . , T; t1 ≤ t′ ≤ t1 + gi − 1
}

∪
{

σk,π
t,i−1 → ϕk,π

t′ ,i

∣∣∣m′ i = 1; t, t′ = 0, 1, . . . , T; t1 ≤ t′ ≤ t1 + gi − 1
}

∪
{

ϕk,π
t,i−1 → ϕk,π

t′ ,i

∣∣∣m′ i−1 = m′ i = 1; t, t′ = 0, 1, . . . , T; t1 ≤ t′ ≤ t1 + gi − 1
}

t, ]

(13)

(b) Departure headway constraint
For any station i, the departure of its trains is constrained by the minimum departure

interval hi. Let t be the time when the train leaves from station si (including stop and leave
and pass without stop), and t′ be the time when the train arrives at station si+1 (including
stopping and passing). Then, for any time t1 at station i, there is a set of incompatible
constraints C2

it1
in the closed interval of t′ ∈ [t1, t1 + hi − 1]. The set includes four types

of spatial-temporal arcs, respectively, train departure–arrival arcs σk,π
t,i → ρk,π

t′ ,i+1,l , train

departure–passing arcs ϕk,π
t,i → ρk,π

t′ ,i+1,l , train passing–arrival arcs σk,π
t,i → ϕk,π

t′ ,i+1 and train

passing–passing arcs ϕk,π
t,i → ϕk,π

t′ ,i+1 . When one of these arcs is selected (xk,π
uv = 1), the other

arcs cannot be selected.

C2
it1

= A ∩ [
{

σk,π
t,i → ρk,π

t′ ,i+1,l

∣∣∣l = 1, 2, . . . mi+1; t, t′ = 0, 1, . . . , T; t1 ≤ t ≤ t1 + hi − 1
}

∪
{

ϕk,π
t,i → ρk,π

t′ ,i+1,l

∣∣∣m′ i+1 = 1; t, t′ = 0, 1, . . . , T; t1 ≤ t ≤ t1 + hi − 1
}

∪
{

σk,π
t,i → ϕk,π

t′ ,i+1

∣∣∣m′ i = 1; l = 1, 2, . . . mi+1; t, t′ = 0, 1, . . . , T; t1 ≤ t ≤ t1 + hi − 1
}

∪
{

ϕk,π
t,i → ϕk,π

t′ ,i+1

∣∣∣m′ i = m′ i+1 = 1; t, t′ = 0, 1, . . . , T; t1 ≤ t ≤ t1 + hi − 1
}
]

(14)
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(c) Overtaking constraints
For any station i, overtaking is not allowed in the section si → si+1 . For each pair of

different time points t1 and t2 (t1 < t2), let t be the moment when train k leaves from station
si, and t2 is the moment when train k reaches (including stop and pass) si+1 station. t1 is the
time when the train k′ leaves from station i (including after stopping and passing through
without stopping), and t′ is the time when the train k′ reaches (including stopping and
passing through) si+1 station. For si → si+1 section, if the train k leaves si earlier than k′

departure time t1, in t ∈ (t1, t2) within the open interval train k has incompatible constraint
set Bit1t2 ; if train k′ arrives at si+1 before the arrival time t2 of train k, in t′ ∈ (t2, T) half-
open interval, train k′ has incompatible constraint set B′it1t2 . Bit1t2 and B′it1t2 form the
section prohibition of overtaking constraint arc set C3

it1t2
. When one of these arcs is selected

(xk,π
uv = 1), the other arcs cannot be selected.

Bit1t2 = A ∩ [
{

σk,π
t1,i → ρk,π

t2,i+1,l

∣∣∣l = 1, 2, . . . mi+1; t1 < t < t2

}
∪
{

σk,π
t,i → ϕk,π

t2,i+1

∣∣∣m′ i+1 = 1; t1 < t < t2

}
∪
{

ϕk,π
t,i → ρk,π

t2,i+1,l

∣∣∣m′ i = 1; l = 1, 2, . . . mi+1; t1 < t < t2

}
∪
{

ϕk,π
t,i → ϕk,π

t2,i+1

∣∣∣m′ i = m′ i+1 = 1; t1 < t < t2

}
]

B′ it1t2 = A ∩ [
{

σk,π
t1,i → ρk,π

t′ ,i+1,l

∣∣∣l = 1, 2, . . . mi+1; t2 < t′ ≤ T
}

k

∪
{

σk,π
t1,i → ϕk,π

t′ ,i+1

∣∣∣m′ i+1 = 1; t2 < t′ ≤ Tvk

∪
{

ϕk,π
t1,i → ρk,π

t′ ,i+1,l

∣∣∣m′ i = 1; l = 1, 2, . . . mi+1; t2 < t′ ≤ T
}t,

∪
{

ϕk,π
t1,i → ϕk,π

t′ ,i+1

∣∣∣m′ i = m′ i+1 = 1; t2 < t′ ≤ T
}
]

C3
it1t2

= Bit1t2 ∪ B′it1t2

(15)

(d) Platform track exclusive constraint
For any side track l of any station si, it can be occupied by at most one train at a time.

Let t be the time when the train starts to stop at l track of station i, t′ is the time when the
train finishes stopping at l track of station i, t1 − 1 is the time when the train starts to wait
at l track of station i and t1 is the time when the train finishes waiting at l track of station i.
Then, for any time t1 of the track l at station i, there is a set of incompatible constraints C4

it1
in the closed interval t1 ∈ [t, t′]. The collection includes two kinds of spatial-temporal arcs,
stop arc ρk,π

t,i,l → ρk,π
t′ ,i,l and waiting arc ρk,π

t1−l,i,l → ρk,π
t1,i,l , respectively. When one of these arcs

is selected (xk,π
uv = 1), the other arcs cannot be selected.

C4
ilt1

= A ∩
[{

ρk,π
t,i,l → ρk,π

t′ ,i,l | t ≤ t1 ≤ t′
}
∪
{

ρk,π
t1−1,i,l → ρk,π

t1,i,l

}]
(16)

2.4. Decomposition Algorithm Based on Hybrid Heuristic Lagrangian Relaxation (HHLR)

The decision variables yπ and plπ determine the second part (i.e., the supply–demand
satisfaction degree) of Equation (2), and the variable xk,π

uv determines the first part (i.e., the
running time and energy consumption) of Equation (2). The proposed algorithm takes
these three variables as two groups, where yπ and plπ are group 1 and xk,π

uv is group 2, then
uses a heuristic framework to optimize the first group and the Lagrangian relaxation to
optimize the second group.

2.4.1. Optional Set-Based Algorithm Framework

For ensuring that the resulting multi-cycle train timetable can meet the passenger
demand while being easy for passengers to remember, this paper constructs a candidate set
of lines with optional cycle lengths (i.e., 30 min, 40 min, and 60 min, which are convenient
for passengers to remember) and uses random search to solve the model. Such optional
set-based algorithm framework is shown in Figure 2. In step 1, basic information of line,
passenger demand and parameters of timetable are input. In step 2, the model selects a set



Mathematics 2022, 10, 4164 12 of 29

of line from the input lines randomly, which determines the value of yπs. Then, for each
selected line, select a cycle length from the optional cycle lengths, which determines the
value of plπs. In step 3, solve the MTSDE model and obtain feasible solution. Store the
solution into the result set. This process repeats Ni times, and in the final step, we select the
solution with the best objective value as the final solution.
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The previously mentioned step 3 requires solving the difficult problem caused by
complex spatial-temporal constraints in Equations (3)–(8). We use the idea of Lagrangian
decomposition for the optimization.

2.4.2. Decomposition of the Original MTSDE Model

By using Lagrangian decompoition method, the original problem can be decomposed
into a lower bound problem and can be decomposed into about |K|-independent shortest
path problem LRP(K). The upper bound heuristic algorithm is used to solve the upper
bound solution, and the Lagrange operator is updated according to the upper and lower
bound solution, and the optimal solution is obtained by continuing the iteration.

Two termination conditions are used to stop the Lagrangian decomposition algorithm.
One is that the maximum number of iterations ML is reached. The other is that the lower
bound objective function value LB, corresponding to the relaxation problem, and the upper
bound objective function value UB are satisfied: Gap = (UB−LB)

LB · 100% ≤ δL. The basic
process of Lagrange decomposition algorithm is shown in Algorithm 1 (Algorithm process
for solving the model).
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Algorithm 1 Lagrangian Decomposition Algorithm

1:
Lagrangian Relaxation: According to the Lagrange relaxation of the original integer
programming problem P, the corresponding relaxation problem P̃(λ) is obtained.

2:
Problem decomposition: Relaxation problem P̃(λ) is decomposed into about |K|
independent of the shortest path problem P̃k(λ).

3:
Initialize: In order to solve the train schedule problem P̃k(λ), let the initial iteration number
t = 1, the corresponding Lagrange multiplier λ1 = 0, the upper bound objective function
value is UB = +∞, and the lower bound objective function value is LB = −∞

4: while t ≤ ML or Gap ≥ δL then

5:
According to the current Lagrange multiplier, the problem P̃k(λ) with constraints is

solved using dynamics programming algorithm and obtains the lower bound solution Xt
LB.

6:
Calculate the objective function value LBt of P̃(λ) problem corresponding to the lower

bound solution Xt
LB.

7: if LBt > LB then
8: Update the optimal lower bound solution, let LB = LBt, XLB = Xt

LB.
9: end if
10: The upper bound solution Xt

UB is obtained by using the greedy algorithm for Xt
LB.

11:
Compute the objective function value UBt of the P problem corresponding to the upper

bound solution Xt
UB.

12: if UBt < UB then
13: Update the optimal upper bound solution, let UB = UBt, XUB = Xt

UB
14: end if
15: Lagrange multipliers are updated by sub gradient method.
16: t = t + 1
17: Gap = (UB− LB)/LB·100%
18: end while
19: return UB

The network is transformed into the minimum cost of train occupancy of network arcs.
Gk = (Vk, Ak) is the spatial-temporal subnetwork corresponding to train k, Vk is the set of
spatial-temporal nodes that can be occupied by train k and Ak is the set of spatial-temporal
arcs that can be occupied by train k.

Relax the complicated constraint (6) of the original problem and introduce λC ≥ 0 to
construct the Lagrangian relaxation dual problem P̃(λ), where λ is the vector of λC value,
λC is the Lagrange multiplier of constraint (6).

P̃(λ) : Min ∑
k∈K

∑
u→v∈Ak

(
ξk

t (u, v) + ρ1ξk
e (u, v)

)
· xk,π

uv + ∑c∈C λC

(
∑π∈Π ∑k∈K ∑u→v∈c xk,π

uv − 1
)

+ρ2 ∑
i∈S

∑
m∈M

(
∑t∈[tsm ,tem ] δi

t −∑t∈[tsm ,tem ] ∑
π∈Π

yπ · T
plπ ·m · σ

π
i

)2 (17)

∑π∈Π ∑{v:õ→v∈Ak} xk,π
õv = 1, ∀k ∈ K (18)

∑π∈Π ∑{u:u→d∈Ak} xk,π
ud

= 1, ∀k ∈ K (19)

∑{u:u→v∈Ak} xk,π
uv = ∑{w:v→w∈Ak} xk,π

vw , ∀π ∈ Π, ∀k ∈ Kπ ; v ∈ Vk\
{

O, d
}

(20)

xwπ ,π
uv:(i,t)→(j,t′) = xk,π

uv:(i,t1)→(j,t2)
∀π ∈ Π, k ∈ Kπ , qk

π > 1 (21)

t1 = t +
(

qk
π − 1

)
· plπ , t2 = t′ +

(
qk

π − 1
)
· plπ ∀i, j ∈ E, ∀t, t′ ∈ T (22)

∑
v∈Vk

akv + a′k

(
∑

u→v∈Ak

xk,π
uv − 1

)
+ a′′k

(
∑

u→v∈Ak

xk,π
uv − 1

)
≤ η, ∀π ∈ Π, k ∈ Kπ (23)

xk,π
uv ∈ {0, 1}, ∀π ∈ Π, k ∈ Kπ ; u→ v ∈ Ak (24)
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2.4.3. Lower Bound Solution Algorithm of Lagrangian Sub-Problem Based on Dynamic
Programming Algorithm

For each train, suppose Gk = (Nk, Ak) is the spatial-temproal network corresponding
to train k, Nk is the set of spatial-temporal nodes that train k can occupy and Ak is the set of
spatial-temporal arcs that train k can use. Each train k ∈ K has a Lagrangian sub-problem
P̃k(λ). In this objective function, the difference between the station passenger demand and
the train supply is a constant. Thus, this part is ignored in the objective function of P̃k(λ).

P̃k(λ) : Min ∑
u→v∈Ak

(
ξk

t (u, v) + ρ1ξk
e (u, v)

)
xk,π

uv +∑c∈C λC

(
∑π∈Π ∑u→v∈c xk,π

uv − 1
)

(25)

∑π∈Π ∑{v:õ→v∈Ak} xk,π
õv = 1, ∀k ∈ K (26)

∑π∈Π ∑{u:u→d∈Ak} xk,π
ud

= 1, ∀k ∈ K (27)

∑{u:u→v∈Ak} xk,π
uv = ∑{w:v→w∈Ak} xk,π

vw , ∀π ∈ Π, ∀k ∈ Kπ ; v ∈ Vk\
{

O, d
}

(28)

xwπ ,π
uv:(i,t)→(j,t′) = xk,π

uv:(i,t1)→(j,t2)
∀π ∈ Π, k ∈ Kπ , qk

π > 1 (29)

t1 = t +
(

qk
π − 1

)
· plπ , t2 = t′ +

(
qk

π − 1
)
· plπ ∀i, j ∈ E, ∀t, t′ ∈ T (30)

∑
v∈Vk

akv + a′k

(
∑

u→v∈Ak

xk,π
uv − 1

)
+ a′′k

(
∑

u→v∈Ak

xk,π
uv − 1

)
≤ η, ∀π ∈ Π, k ∈ Kπ (31)

It is easy to obtain Adep ∩ c = ∅ for all c ∈ C from the definitions for incompatibility
arcs. We can obtain ∑{C∈C:u→v∈C} λC = 0. Thus, the weights of different arcs can be
deduced by Equation (32).

δk
uv =

 ξk
t (u, v) + ρ1ξk

e (u, v), otherwise
ξk

t (u, v) + ρ1ξk
e (u, v) + ∑

[c∈C:u→v∈C]
λC, i f u→ v ∈ Atrv (32)

After the above derivation, each sub-problem P̃′k(λ) is a shortest path problem with
weight δk

uv. Thus, each sub-problem is transformed into a minimum cost network flow
problem which is from o to d. Because Gk is a cyclic network, P̃′k(λ) can be solved effectively
through a standard dynamic programming algorithm [39].

Suppose Z∗ is the optimal objective value of original problem P. Suppose L(λ) indicates
the optimal objective value of lower bound problem P̃k(λ). For any nonnegative vector λ,
L(λ) is a lower bound Z∗.

2.4.4. Upper Bound Solution of Lagrangian Sub-Problem Based on Heuristic Algorithm

After solving the relaxation problem, then lower bound solution xLB of problem
P can be obtained. xLB. In the lower bound solution, there may exist conflicts, and the
objective function of the lower bound solution will be better than the actual optimal solution.
Although the lower bound solution cannot be directly used because it is not feasible, it can
lead to the obtaining of feasible solutions. In order to ensure the feasibility of the solution,
a heuristic algorithm is used for calculating upper bound solution. The basic process of the
algorithm is shown in Algorithm 2 (Basic process of the greedy algorithm).
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Algorithm 2 Greedy Algorithm

1: According to the results of the lower bound solution, the optimal objective values of the
sub-problem p̃k(λ)s are sorted from small to large so that the train k with the smallest
optimal objective is ranked first

2: The train’s spatial-temporal path is arranged one by one, according to the sequence order,
by solving the shortest path

3: Search all feasible paths to find the shortest path of the train. The network Gk does not
contain any arc that is incompatible with the arc passed by the last train by eliminating arcs
who violate the arrival headway, departure headway constraints, etc.

4: Output: a set of xk,π
uv values of all k∈K, π ∈ Π and u→ν∈A, obtain all train paths.

2.4.5. The Updates of Lagrangian Multipliers

We use the subgradient algorithm to update the λ. The update is shown in
Equations (33)–(35).

λm ← max
{

λm + θ · UB− L(λ, µ)

‖ χ ‖2 · χm, 0
}
(m = 1, 2, . . . , |C|) (33)

where L(λ, µ) is the optimal value of solution of P̃(λ, µ). θ > 0 is the preset length. UB
represents the current optimal solution of P. For m = 1, 2, . . . , |C| +

∣∣∣Ak,π
de ∪ Ak,π

trv

∣∣∣, χm

represents the mth element of vector χ. For m = 1, 2, . . . , |C|, the λm represents the mth
element of vector λ.

We denote the χ(i) as the vector χ in ith iteration and used a modified subgradient
method (Camerini et al. [40], Xu [41], Caprara [9]) to update χ, where we used χ̃ instead of
χ. The process is shown in Equations (34) and (35).

χ̃(i) ← χ(i) + bχ̃(i−1) (34)

b =

−a · χ̃(i−1) ·χ(i)

||χ̃(i−1)||2
, if χ̃(i−1) · χ(i) < 0

0, otherwise
(35)

where a is a given scale and 0 ≤ a ≤ 2.

3. Numerical Experiments

In order to verify the model and algorithm proposed in this paper, three cases were
designed, including the model performance characteristics under different passenger flow
scenarios, the calculation efficiency under different scale scenarios and the actual large
passenger flow. Visual Studio 2019 and C# language are used to implement the model
and algorithm proposed in this paper. The hardware platform is powered by an Intel
Core i7 processor and 16 GB RAM. The operation system of the experiment platform is
Windows 10. The upper limit of solving time is set to 1 h.

3.1. Experiment Designs

We chose a double-track railway corridor with 7 stations as the hypothetical railway
network (Figure 3). The entire length of line is 166 km, and the design speed is 350 km/h.

Figure 3 shows the layout of selected directions, where station 1 is the origin station
and stations 6 and station 7 are the destination stations. The minimum safety departure
time interval is set to 4 min, the minimum safety arrival time interval is set to 3 min, and
the acceleration and deceleration times for all trains are specified as 2 min and 3 min,
respectively. The pure running times of all trains in sections are shown in Figure 3, and the
station dwell time of all trains are set to 2–8 min. The planning time horizon of this case
is 6:00–12:00; the time period for passenger demand is 6:00–11:00. Station 1 is the origin
station, and the total time is divided into 5 segments based on 60 min. Table 3 shows the
line plan of multi-cycle train timetable model of this case.
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Table 3. Lines in line plan.

Line Origin Destination Route Stop Plans
(Intermediate Stations) Optional Cycle

1 1 3 1→2→3 - 30, 40

2 1 3 1→2→3 2 30, 40, 60, 90

3 1 6 1→2→3→4→5→6 3, 5 30, 40, 60, 90

4 1 6 1→2→3→4→5→6 2, 3, 5 60, 90, 120, 150, 180

5 1 6 1→2→3→4→5→6 3, 4 60, 90, 120, 150, 180, 240, 300, 360, 420, 480,
540, 600, 660, 720, 780, 840, 900, 960

6 1 6 1→2→3→4→5→6 3 60, 90, 120, 150, 180, 240, 300, 360, 420, 480,
540, 600, 660, 720, 780, 840, 900, 960, 1020

7 1 6 1→2→3→4→5→6 2, 3, 4, 5 60, 90, 120, 150, 180, 240, 300, 360, 420, 480,
540, 600, 660, 720, 780, 840, 900, 960

8 1 6 1→2→3→4→5→6 3, 4, 5 60, 90, 120, 150, 180, 240, 300, 360, 420, 480,
540, 600, 660, 720, 780, 840, 900, 960, 1020

9 1 7 1→2→7 2 60, 90, 120, 150, 180, 240, 300, 360, 420, 480,
540, 600, 660, 720, 780, 840, 900, 960, 1020

10 1 7 1→2→7 - 30, 40, 50

All stations (station 1 to station 7) are served and set ρ1 = 0.005 and ρ2 = 1.0. The
solution of the model is based on Gurobi 9.5.2 and C# on the Visual Studio 2022 platform.

3.2. Comparison of Single-Cycle and Multi-Cycle Train Timetable under Different Scenarios

There are three different scenarios of the passenger flow demand. Scenario 1 is
characterized by two passenger flow peaks. Scenario 2 is characterized by one passenger
flow peak. Scenario 3 is characterized by a passenger flow without peaks. For these three
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types of passenger flow distributions, the corresponding multi-cycle train timetable is
obtained according to the multi-cycle train timetable optimization model proposed in this
paper, and the single-cycle train timetable is obtained at the same time. The metrics are
compared between the multi-cycle train timetable and the single-cycle train timetable. The
corresponding metrics include the objective function value, satisfaction ratio of passenger
demand, train vacancy rate, running time and energy consumption.

During the demand period, the supply of trains in each period should match the
demand of the passenger flow to ensure the regular operation of the trains and meet the
travel demand of the passengers in different periods. In order to verify the matching
degree between the multi-cycle train diagram and the time distribution of the passenger
flow demand as well as the performance of the multi-cycle train diagram model, the
corresponding multi-cycle and single-cycle train timetable are solved, respectively, and the
corresponding metrics are compared.

The cycle length of the train lines in the single-cycle train timetable model is set to 60 min.

3.2.1. Scenario 1 with Two Passenger Flow Peaks

The train diagrams of the single-cycle train timetable model and the multi-cycle train
timetable model of passenger flow distribution 1 are shown in Figure 4. It can be seen
from the multi-cycle train timetable that the number of train departures during the two
peak periods is larger than the number of the off-peak period (i.e., in the peak period from
6 a.m. to 8 a.m., there are 11 trains departing from the terminal station, while in the off-peak
period from 8 a.m. to 10 a.m., there are only 7 trains departing from the terminal station),
while the number of train departures in each period of the single-cycle train timetable is
the same.
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Figure 4. Multi-cycle train timetable and single-cycle train timetable under scenario 1. (a) Multi-cycle
train timetable. (b) Single-cycle train timetable. Red, green, blue, orange, violet, navy blue and purple
represents Line 1, 2, 3, 4, 5, 7 and 10 in Table 3, respectively.

The matching results of the two train timetables and the passenger flow are shown in
Figure 5 (the sum of the supply and demand of all the stations during each time duration,
i.e., So includes all stations), and the details of the supply and demand matching degree
can be seen in Tables 4 and 5.
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Figure 5. Supply and demand matching diagram under scenario 1. (a) Supply and demand matching
diagram of multi-cycle train timetable. (b) Supply and demand matching diagram of single-cycle
train timetable.

Table 4. Details of supply and demand matching degree of multi-cycle timetable in scenario 1.

Figure 4a 6~7 7~8 8~9 9~10 10~11

Departure supply 3600 3000 1800 2400 3000
Passenger demand 3901 3001 1223 2088 3293

SDMD * 92.57% 99.97% 62.39% 86.12% 91.49%

* SDMD (supply and demand matching degree): EXP
(
− |Passenger demand−Departure supply|

Passenger demand

)
· 100%.

Table 5. Details of supply and demand matching degree of single-cycle timetable in scenario 1.

Figure 4b 6~7 7~8 8~9 9~10 10~11

Departure supply 3000 3000 3000 3000 3000
Passenger demand 3901 3001 1223 2088 3293

SDMD * 79.38% 99.97% 23.39% 64.61% 91.49%

* SDMD (supply and demand matching degree): EXP
(
− |Passenger demand−Departure supply|

Passenger demand

)
· 100%.

It can be seen from the supply–demand matching graph that, as the time changes,
the change trend of the departure frequency of the multi-cycle train timetable is more in
line with the change trend of the passenger demand. Specifically, the supply and demand
matching degrees in all the time periods in the multi-cycle train timetable exceed 60%, with
an average value of 86.51%, which is only 71.77% in the single-cycle train timetable. In
terms of the energy consumption, line 1 in the multi-cycle train timetable has the highest
energy consumption, while line 3 in the single-cycle train timetable has the highest energy
consumption (Table 6).

Table 6. Energy consumption of all lines in scenario 1 (kwh).

Line (Line Color)

1 (Red) 2 (Green) 3 (Blue) 4 (Orange) 5 (Violet) 7 (Navy blue) 10 (Purple)

MT * 59,168.79 23,362.32 26,286.6 28,712.86 13,143.3 16,300.63 35,308.45
ST 65,743.1 38,937.2 77,847.8 - - - 35,308.45

* MT: Multi-cycle train timetable. ST: Single-cycle train timetable.

The corresponding data metrics are shown in Table 7. According to the metrics,
because the single-cycle train timetable should keep the same train departure frequency
in each cycle, the single-cycle timetable could not adapt to the different passenger flow
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demand in the different periods. The demand satisfaction ratio of the single-cycle train
timetable is 4.44% lower than that of the multi-cycle train timetable. Meanwhile, the
train vacancy rate of the single-cycle train timetable is higher, which indicates that the
single-cycle train timetable could not meet the passenger flow demand as well as the
multi-cycle train timetable. The total energy consumption of the multi-cycle train timetable
is 15,553.6 kwh lower than the single-cycle train timetable.

Table 7. Comparison of metrics in scenario 1.

Total Number
of Trains
Running

The Number
of Passenger

Demand

Demand
Satisfaction

Ratio

Train Vacancy
Rate

Running Time
(h)

Energy
Consumption

(kwh)

MT * 25 12,911 95.59% 6.44% 14.33 202,282.95
ST 25 12,311 91.15% 17.93% 17.57 217,836.55

* MT: Multi-cycle train timetable. ST: Single-cycle train timetable.

3.2.2. Scenario 2 with One Passenger Flow Peaks

The solution results of the single-cycle train timetable and the multi-cycle train
timetable of passenger flow distribution 2 are shown in Figure 6. The matching results of
the two timetables and passenger flow are shown in Figure 7, and the corresponding data
metrics are shown in Tables 8 and 9.
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Figure 6. Multi-cycle train timetable and single-cycle train timetable under scenario 2. (a) Multi-cycle
train timetable. (b) Single-cycle train timetable. Red, green, blue, orange, violet, navy blue and purple
represents Line 1, 2, 3, 4, 5, 7 and 10 in Table 3, respectively.

It can be seen from the multi-cycle train timetable that the number of train departures
during the peak period is significantly larger than that during the off-peak period, while
the number of train departures in each period of the single-cycle train timetable is the
same. It can be seen from the supply–demand matching diagram that the supply–demand
matching degree of the multi-cycle train timetable is also better than that of the single-cycle
train timetable. Specifically, it can be seen from Tables 8 and 9 that the supply and demand
matching degrees in all the time periods in the multi-cycle train timetable exceed 85%, with
an average value of 90.15%, which is only 78.54% in the single-cycle train timetable. It is
also clear that the single-peak flows in scenario 2 have a higher matching ratio between the
supply and demand than the double-peak flows in scenario 1.
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Figure 7. Supply and demand matching diagram under scenario 2. (a) Supply and demand matching
diagram of multi-cycle train timetable. (b) Supply and demand matching diagram of single-cycle
train timetable.

Table 8. Details of supply and demand matching degree of multi-cycle timetable in scenario 2.

Figure 6a 6~7 7~8 8~9 9~10 10~11

Departure supply 2400 3000 3600 2400 2400
Passenger demand 2097 3266 3845 2680 2130

SDMD * 86.55% 92.18% 93.83% 90.08% 88.09%

* SDMD (supply and demand matching degree): EXP
(
− |Passenger demand−Departure supply|

Passenger demand

)
· 100%.

Table 9. Details of supply and demand matching degree of single-cycle timetable in scenario 2.

Figure 6b 6~7 7~8 8~9 9~10 10~11

Departure supply 3000 3000 3000 3000 3000
Passenger demand 2097 3266 3845 2680 2130

SDMD * 65.01% 92.18% 80.27% 88.75% 66.47%

* SDMD (supply and demand matching degree): EXP
(
− |Passenger demand−Departure supply|

Passenger demand

)
∗ 100%.

In terms of the energy consumption, similar to scenario 1, line 1 in the multi-cycle
train timetable has the highest energy consumption, while line 3 in the single-cycle train
timetable has the highest energy consumption (Table 10).

Table 10. Total energy consumption of all lines under scenario 2 (kwh).

Line (Line Color)

1 (Red) 2 (Green) 3 (Blue) 4 (Orange) 5 (Violet) 7 (Navy blue) 10 (Purple)

MT * 59,168.79 - 26,286.6 28,712.86 13,143.3 15,569.56 35,308.45
ST 65,743.1 38,937.2 77,847.8 - - - 35,308.45

* MT: Multi-cycle train timetable. ST: Single-cycle train timetable.

It can be seen from the data in Table 11 that the single-cycle train timetable demand
satisfaction ratio is lower than that of the multi-cycle train timetable. At the same time, the
train vacancy rate is higher, indicating that the single-cycle train timetable is much less
satisfying than the multi-cycle train timetable. For the passenger flow distribution 2, the
running time of the multi-cycle train timetable is 2.32 h lower than that of the single-cycle
train timetable, and the total energy consumption of the multi-cycle train timetable is
16,284.67 kwh lower than the single-cycle train timetable.
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Table 11. Comparison of metrics under scenario 2.

Total Number
of Trains
Running

The Number
of Passenger

Demand

Demand
Satisfaction

Ratio

Train Vacancy
Rate

Running Time
(h)

Energy
Consumption

(kwh)

MT * 25 13,227 94.36% 4.15% 14.63 201,551.88
ST 25 14,618 92.07% 13.95% 16.95 217,836.55

*MT: Multi-cycle train timetable. ST: Single-cycle train timetable.

3.2.3. Scenario 3 without Passenger Flow Peaks

The solution results of the single-cycle train timetable and the multi-cycle train
timetable of passenger flow distribution 3 are shown in Figure 8. The matching results of
the two timetables and passenger flow are shown in Figure 9, and the corresponding data
metrics are shown in Tables 12 and 13.
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Figure 8. Multi-cycle train timetable and single-cycle train timetable under scenario 3. (a) Multi-cycle
train timetable. (b) Single-cycle train timetable. Red, green, blue, orange, violet, navy blue and purple
represents Line 1, 2, 3, 4, 5, 7 and 10 in Table 3, respectively.
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Figure 9. Supply and demand matching diagram under scenario 3. (a) Supply and demand matching
diagram of multi-cycle train timetable. (b) Supply and demand matching diagram of single-cycle
train timetable.
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Table 12. Details of supply and demand matching degree of multi-cycle timetable in scenario 3.

Figure 8a 6~7 7~8 8~9 9~10 10~11

Departure supply 3000 3000 2400 2400 3000
Passenger demand 2753 2651 2443 2273 2704

SDMD * 91.42% 87.66% 98.26% 94.57% 89.63%

* SDMD (supply and demand matching degree): EXP
(
− |Passenger demand−Departure supply|

Passenger demand

)
∗ 100%.

Table 13. Details of supply and demand matching degree of single-cycle timetable in scenario 3.

Figure 8b 6~7 7~8 8~9 9~10 10~11

Departure supply 3000 3000 3000 3000 3000
Passenger demand 2753 2651 2443 2273 2704

SDMD * 91.42% 87.66% 79.61% 72.63% 89.63%

* SDMD (supply and demand matching degree): EXP
(
− |Passenger demand−Departure supply|

Passenger demand

)
∗ 100%.

It can be seen from the supply–demand matching graph and that the metrics of the
multi-cycle timetable and the single-cycle timetable have little change, indicating that for
the passenger flow distribution with a stable passenger flow distribution, the multi-cycle
train timetable can also meet the passenger flow demand. Specifically, it can be seen from
Tables 12 and 13 that the supply and demand matching degrees in all the time periods in
the multi-cycle train timetable exceed 85%, with an average value of 92.31%, which is only
84.19% in the single-cycle train timetable. It can be seen that the no-passenger flow peaks
scenario has a better match between the supply and demand than the scenarios with peaks
(scenario 1 and scenario 2).

In terms of the energy consumption, similar to scenario 1 and scenario 2, line 1 in
the multi-cycle train timetable has the highest energy consumption, while line 3 in the
single-cycle train timetable has the highest energy consumption (Table 14).

Table 14. Total energy consumption of all lines under scenario 3 (kwh).

Line (Line Color)

1 (Red) 2 (Green) 3 (Blue) 4 (Orange) 5 (Violet) 7 (Navy blue) 10 (Purple)

MT * 59,168.79 23,362.32 28,214.84 29,676.98 13,143.3 15,569.56 35,308.45
ST 65,743.1 38,937.2 77,847.8 - - - 35,308.45

* MT: Multi-cycle train timetable. ST: Single-cycle train timetable.

From Table 15, we can see that the single-cycle train timetable demand satisfaction
ratio is higher than that of the multi-cycle train timetable, which is different from the
previous two scenarios. However, the train vacancy rate of the single-cycle train timetable
is far higher than the multi-cycle train timetable. For the passenger flow distribution 3, the
running time of the multi-cycle train timetable is 2.32 h lower than that of the single-cycle
train timetable. In addition, the total energy consumption of the multi-cycle train timetable
is 13,392.31 kwh lower than the single-cycle train timetable.

Table 15. Comparison of metrics under scenario 3.

Total Number
of Trains
Running

The Number
of Passenger

Demand

Demand
Satisfaction

Ratio

Train Vacancy
Rate

Running Time
(h)

Energy
Consumption

(kwh)

MT * 25 12,781 99.7% 7.38% 14.34 204,444.24
ST 25 12,824 100% 14.51% 16.58 217,836.55

* MT: Multi-cycle train timetable. ST: Single-cycle train timetable.
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3.3. Analysis of Solution Efficiency

The line plan in Section 3.1 and the passenger flow scenario in Section 3.2.1 are applied
in this analysis. The time horizons in this analysis are set to 5 h, 10 h, 15 h, 20 h and
25 h. According to the comparison of the different cases in Table 16, the solution could be
concluded that the objective function values are increasing along with the scale increasing
(mainly influenced by the numbers of train departures and the energy consumption). Mean-
while, during the experiments of the small-scale case, the proposed algorithm performs
similarly to the Gurobi solver as the accuracies in cases 1–3 range between 99.50% and
100%. However, the proposed algorithm works more efficiently than the Gurobi with the
accuracy slightly decreasing. As shown in Figure 10, with the increase in the case scale, the
proposed algorithm could finish the computing task within 200 s, while the Gurobi solvers
need more than 2000 s.

Table 16. Comparison table of algorithm efficiency and accuracy for different cases.

Case
ID

Time
Horizons

Number
of Trains

Algorithm
Calculation Time
Consumption (s)

The Objective
Function Values

Calculated by
the Algorithm

Gurobi
Calculation Time
Consumption (s)

The Objective
Function
Values

Calculated by
Gurobi

Accuracy (%)

1 5 25 76 3475.21 92 3475.21 100.00%
2 10 50 152 6359.64 207 6353.28 99.90%
3 15 75 224 10,112.87 359 10,062.31 99.50%
4 20 100 299 13,727.10 890 13,521.19 98.48%
5 25 150 458 20,816.54 2093 20,192.04 96.91%
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Figure 10. Solving time comparison.

3.4. Experiment Based on Real-World Case

The time and space range of the train diagram used in this case is 6:00–23:00. In
terms of the passenger demand, the total period of the passenger demand considered is
6:00–22:00, which means that the period when the train departs from station a is 6:00–22:00,
and the total time horizon is divided into 16 segments according to the time interval of
60 min. The set of the cycle alternatives for lines 1–8 (the passenger flow and operation
lines associated with station 7 are not considered in this case) is shown in Table 3.

It can be seen from Figure 11 that the supply level of each time period of the obtained
train operation diagram changes with the change in the passenger flow demand, which can
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satisfy the passenger flow demand of each time period to a large extent. From Tables 17
and 18, we can see the distribution of the supply and demand matching under each time
period. Specifically, the supply–demand matching degree is 91.16% during the morning
peak period (7:00–8:00) and 92.38% during the evening peak period (19:00–20:00), which
means that the model could satisfy the passenger flow demand effectively. Among them,
the highest supply and demand matching degree is 94.52% during 10:00–11:00, while the
lowest supply and demand matching degree is 84.16% throughout the whole day. To a
large extent, it can meet the passenger flow demand at different times throughout the day.
At the same time, the matching of the supply and demand also indicates that the model in
this paper can obtain the train timetable that can meet the passenger flow demand.

Mathematics 2022, 10, x FOR PEER REVIEW 25 of 30 
 

 

 
Figure 11. Supply and demand matching diagram of intercity railway. 

Table 17. Details of supply and demand matching degree of multi-cycle timetable of intercity railway 
(6:00–14:00). 

 6:00–7:00 7:00–8:00 8:00–9:00 
9:00–
10:00 

10:00–
11:00 

11:00–
12:00 

12:00–
13:00 

13:00–
14:00 

Depar-
ture sup-

ply 
1800 3000 3600 3000 2400 2400 3000 2400 

Passen-
ger de-
mand 

2043 3306 3858 2710 2272 2122 2692 2271 

SDMD * 88.79% 91.16% 93.53% 89.85% 94.52% 87.72% 89.19% 94.48% 
* SDMD (supply and demand matching degree): 𝐸𝑋𝑃 ቀ− |௦௦ ௗௗ ି ௧௨ ௦௨௬|௦௦ ௗௗ ቁ ∗100%. 

Table 18. Details of supply and demand matching degree of multi-cycle timetable of intercity railway 
(14:00–22:00). 

 
14:00–
15:00 

15:00–
16:00 

16:00–
17:00 

17:00–
18:00 

18:00–
19:00 

19:00–
20:00 

20:00–
21:00 

21:00–
22:00 

Depar-
ture sup-

ply 
2400 3000 2400 2400 2400 3600 2400 1800 

Passen-
ger de-
mand 

2051 2568 2047 2133 2679 3910 2690 2103 

SDMD * 84.35% 84.52% 84.16% 88.23% 90.11% 92.38% 89.78% 86.58% 
* SDMD (supply and demand matching degree): 𝐸𝑋𝑃 ቀ− |௦௦ ௗௗ ି ௧௨ ௦௨௬|௦௦ ௗௗ ቁ ∗100%. 

Table 19 shows the performance metrics of the model for the different cases. It can be 
seen that compared to other timetables, the demand satisfaction rate of the multi-cycle 
timetable considering the energy consumption does not decrease obviously, but the num-
ber of trains decreases significantly. From the values of the train vacancy rate, we can see 

0
500

1000
1500
2000
2500
3000
3500
4000
4500

V
ol

um
e 

(P
es

on
)

Time

Departure supply Passenger demand

Figure 11. Supply and demand matching diagram of intercity railway.

Table 17. Details of supply and demand matching degree of multi-cycle timetable of intercity railway
(6:00–14:00).

6:00–7:00 7:00–8:00 8:00–9:00 9:00–10:00 10:00–11:00 11:00–12:00 12:00–13:00 13:00–14:00

Departure
supply 1800 3000 3600 3000 2400 2400 3000 2400

Passenger
demand 2043 3306 3858 2710 2272 2122 2692 2271

SDMD * 88.79% 91.16% 93.53% 89.85% 94.52% 87.72% 89.19% 94.48%

* SDMD (supply and demand matching degree): EXP
(
− |Passenger demand−Departure supply|

Passenger demand

)
∗ 100%.

Table 18. Details of supply and demand matching degree of multi-cycle timetable of intercity railway
(14:00–22:00).

14:00–15:00 15:00–16:00 16:00–17:00 17:00–18:00 18:00–19:00 19:00–20:00 20:00–21:00 21:00–22:00

Departure
supply 2400 3000 2400 2400 2400 3600 2400 1800

Passenger
demand 2051 2568 2047 2133 2679 3910 2690 2103

SDMD * 84.35% 84.52% 84.16% 88.23% 90.11% 92.38% 89.78% 86.58%

* SDMD (supply and demand matching degree): EXP
(
− |Passenger demand−Departure supply|

Passenger demand

)
∗ 100%.

Table 19 shows the performance metrics of the model for the different cases. It can
be seen that compared to other timetables, the demand satisfaction rate of the multi-cycle
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timetable considering the energy consumption does not decrease obviously, but the number
of trains decreases significantly. From the values of the train vacancy rate, we can see that
the vacancy rate of the original timetable is 24.32%, while after optimization, the vacancy
rate of the multi-cycle timetable is only 6.03%, which greatly increases the operational
efficiency. From the values of the total running time and energy consumption, the multi-
cycle timetable performs the best. Although the multi-cycle timetable without considering
the energy consumption has saved more running time compared with the original timetable,
it is still inferior to the timetable where the energy consumption is considered.

Table 19. Metrics of intercity railway.

Total
Number of

Trains

Demand
Satisfaction

Ratio

Train
Vacancy Rate

Running
Time (h)

Energy
Consumption

(kwh)

Multi-cycle timetable (with energy) 70 95.20% 6.03% 50.12 648,185.71
Original timetable 87 95.31% 24.32% 59.53 791,056.64

Single-cycle timetable 82 96.25% 18.90% 58.78 762,158.36
Multi-cycle timetable (without energy) 78 97.54% 13.60% 52.31 737,311.25

The cycle lengths of each operation line type in the multi-cycle timetable are shown
in Table 20.

Table 20. Metrics of supply and demand matching of intercity railway.

Line (Line Color) Cycle Length (min)

1 (red) 30
2 (green) 60
3 (blue) 90

4 (orange) 120
5 (violet) 660

7 (navy blue) 780
6 (purple) 660

8 (yellow green) 660

It can be seen from Figure 12 that all the trains run according to the cycle length in
Table 20, and the train diagram conforms to the characteristics of the multi-cycle timetable
and has a strong regularity. The multi-cycle timetable can provide a certain reference for
the intercity multi-cycle train operation organization.

3.5. Discussion

By solving the multi-cycle timetable and single-cycle timetable under different pas-
senger flow distribution scenarios, the matching degree of the supply and passenger
flow demand under different distribution scenarios is analyzed. The analysis results are
as follows.

For the scenario with two passenger flow peaks, compared to the single-cycle timetable,
the demand satisfaction ratio of the multi-cycle timetable is 4.44% higher and the train
vacancy rate is 11.49% lower. The multi-cycle timetable also saves 3.24 h running time
and 15,553.6 kwh energy consumption compared to the single-cycle timetable. For the
scenario with one passenger flow peak, compared to the single-cycle timetable, the demand
satisfaction ratio of the multi-cycle timetable is 2.29% higher and the train vacancy rate is
9.80% lower. The multi-cycle timetable saves 2.32 h running time and 12,281.31 kwh energy
consumption compared to the single-cycle timetable. For the scenario without peaks, the
multi-cycle timetable could perform as well as the single-cycle timetable and saves 2.32 h
running time and 13,392.31 kwh energy consumption. For the three kinds of passenger
flow distributions, the passenger demand satisfaction rate of the multi-cycle timetable
optimization model exceeds 98%.
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In the large-scale actual passenger flow scenario, the demand satisfaction rate of
the multi-cycle timetable considering the energy consumption reaches 95.20%, and the
train vacancy rate is only 6.03%, which is 18.29% lower than the train vacancy rate
of the original timetable. The multi-cycle timetable considering the energy consump-
tion saves 9.41 h train running time compared with the original timetable and saves
89,125.54 kwh energy consumption compared with the multi-cycle timetable without the
energy consumption considered.

The results show that the multi-cycle timetable-compiled model proposed in this paper
has a good adaptability to different passenger flow distributions. The supply of the train
operation diagram obtained according to the model can change along with the passenger
flow demand changes, which could ensure the periodicity of the train operation.

Compared with the single-cycle timetable, the multi-cycle timetable has strong flexi-
bility and can flexibly adapt to various passenger flow distributions while ensuring the
train running regularity. The more fluctuating the passenger flow is, the more obvious the
advantage of a multi-cycle timetable is.

4. Conclusions

Providing efficient and green transportation services has always been the focus of
railway expresses. As urbanization continues to expand, passenger travel demands are
becoming increasingly complex, making it a challenge to optimize the supply-to-demand re-
lationship and energy consumption jointly. Compared with the single-cycle train timetable,
the multi-cycle train timetable not only ensures the regularity but also satisfies the passen-
ger flow demand of different time periods by flexibly arranging the train departure time
and the cycle length. Thus, it is necessary to develop a multi-cycle train operation that
can accommodate the peaks caused by multi-source passenger demand while considering
a proper combination of trains with different stopping patterns and cycles for a better
energy consumption.

To this end, a multi-cycle timetable considering the supply-to-demand relationship
and energy consumption (MTSDE) is proposed. The MTSDE focuses on three parts: the
periodized spatial-temporal network, the optimization model and the decomposition
algorithm. The periodized spatial-temporal network focuses on how to build vertex and arc
sets to describe the differential operation of trains, which in turn supports the subsequent
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model construction. The optimization model considers the elements of timetabling and
line planning, where the elements of line planning determine the path, cycle length and
stopping patterns, and the elements of timetabling determine the specific spatial-temporal
points of trains. In addition, the model’s objective function composes the supply demand
matching degree (SDMD), the minimum time cost (MTC) and the energy consumption
(EC). Based on the characteristics of the spatial-temporal network and the model, the
decomposition algorithm optimizes the line planning elements and timetable elements in
stages and achieves an efficient preparation of the multi-cycle complex operation diagrams
by the Lagrangian relaxation algorithm. The main conclusions are as follows:

(1) The more fluctuating the passenger flow is, the more obvious the advantage of
a multi-cycle timetable is. For example, if the demand has two passenger flow peaks,
compared to the single-cycle timetable, the demand satisfaction ratio of the multi-cycle
timetable is 4.44% higher and the train vacancy rate is 11.49% lower. The multi-cycle
timetable also saves 3.24 h running time and 15,553.6 kwh energy consumption compared
to the single-cycle timetable. Meanwhile, for the scenario with one passenger flow peak,
compared to the single-cycle timetable, the demand satisfaction ratio of the multi-cycle
timetable is 2.29% higher and the train vacancy rate is 9.80% lower. The multi-cycle
timetable saves 2.32 h running time and 12,281.31 kwh energy consumption compared to
the single-cycle timetable.

(2) Large-scale real cases show that this advantage still exists in practice. In a scenario,
the demand satisfaction rate of the multi-cycle timetable considering the energy consump-
tion reaches 95.20%, and the train vacancy rate is only 6.03%, which is 18.29% lower than
the train vacancy rate of the original timetable. The multi-cycle timetable considering the
energy consumption saves 9.41 h train running time compared with the original timetable
and saves 89,125.54 kwh energy consumption compared with the multi-cycle timetable
without the energy consumption considered.

Although the proposed model can make an integrated optimization for both the
demand–supply satisfaction and energy consumption by an efficient algorithm, there
still exists some limitations: (1) the multi-cycle timetable studied in this paper does not
consider the rolling stock circulation of trains and (2) the utility of the obtained timetables
in the practical scenarios was not verified. In future research, we will modify the model to
integrate more practical considerations, such as the rolling stock circulation. In addition,
timetables under multiple scenarios will be designed and compared to further discover the
impact of seasonal and other factors on the model. The implementation of the timetables
produced in this paper can be studied based on the simulation and other techniques to
further optimize the model and algorithm design.

The studied methodology will support the transportation organization of rail express
lines and also push the future development theme of green transportation.
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Abbreviations

Abbreviation Description
PESP Periodic event scheduling problem
OD Origin–destination

MTSDE
Multi-cycle timetable considering supply-to-demand relationship
and energy consumption

SDMD Supply–demand matching degree
MTC Minimum time cost
EC Energy consumption
HHLR Hybrid heuristic Lagrangian relaxation
LB Lower bound
UB Upper bound
MT Multi-cycle train timetable
ST Single-cycle train timetable
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