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Abstract: In this paper, the problem of an unbonded material under variable thermal conductivity
with and without Kirchhoff’s transformations is investigated. The context of the problem is the
generalized thermoelasticity model. The boundary plane of the medium is exposed to a thermal shock
that is time-dependent and considered to be traction-free. Because nonlinear formulations are difficult,
the finite element method is applied to solve the problem without Kirchhoff’s transformations. In
a linear case, when using Kirchhoff’s transformations, the problem’s solution is derived using
the Laplace transforms and the eigenvalue approach. The effect of variable thermal conductivity is
discussed and compared with and without Kirchhoff’s transformations. The graphical representations
of numerical results are shown for the distributions of temperature, displacement and stress.

Keywords: finite element method; eigenvalue approach; Laplace transform variable thermal
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1. Introduction

Previously, it had been considered that all thermal parameters in thermoelasticity
theory were independent of temperature. However, considering many materials’ theoret-
ical and actual findings at high temperatures Noda [1] published a thorough analysis of
temperature-dependent material characteristics in 1991 and demonstrated that the materi-
als’ thermal conductivity drops off exponentially as the temperature rises. The importance
of thermoelastic materials with variable heat conductivity is a result of their recent em-
ployment in a variety of intriguing applications, primarily in contemporary technology
regarding new energy sources. In applied mechanical sciences and steel stress analysis,
which is the most typically designed structural material, the thermoelastic theory is crucial.

It may represent the solid mechanical properties of various common elastic materials,
including coal, concrete and wood. However, it is unable to capture the mechanical
behavior of several synthetic polymer and clastomer kinds, including polyethylene. The
thermoelastic theory has recently received greater attention due to its practical applications
in a variety of domains, including engineering, constructions, geology, biology, geophysics,
acoustics, physics, plasma, etc.

The theory formulated by Lord and Shulman [2] calculates the motion caused by a
thermal field’s limited speed, using only one relaxation time. For an unbounded medium
with spherical cavities, Youssef et al. [3] studied the dependence of the material’s ther-
mal conductivity and elastic modulus on temperature. Sherief and Hamza [4] presented
the modeling of varying thermal conductivity in an infinitely thermoelastic hollow cylin-
der. In 2D thermoelasticity problems with a temperature-dependent elastic modulus,
Othman [5] investigated the thermoelastic interactions. In their analysis of a problem
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involving density and thermoelastic properties that vary with temperature, Zenkour and
Abbas [6] identified several defining characteristics of temperature-dependent properties of
the material. Abbas [7] applied the finite element approaches to investigate the generalized
magneto-thermoelastic interaction in nonhomogeneous isotropic cylinders. Aboueregal
and Sedighi [8] used the Moore–Gibson–Thompson heating conduction model to study
the effects of rotation and varying properties in visco-thermo-elastic orthotropic cylinders.
Xiong and Guo [9] studied the effects of varying properties and moving heating sources on
magneto-thermoelasticity problems with fractional-order thermoelastic models.

Thermal conductivity is an essential material property that is often assumed to be
constant. Several theoretical and experimental studies, however, have shown that thermal
conductivity is strongly connected to the temperature change [10–19]. Othman et al. [20]
discussed the effect of initial stress and variable thermal conductivity on an unbounded
fiber-reinforced thick plate. Xiong et al. [21] studied the effects of variable thermal con-
ductivity on a thermoelasticity problem in an anisotropic fiber-reinforced plane. In a
semiconducting medium with cylinder-shaped holes and varying thermal conductivity,
Abbas et al. [22] investigated the solutions of photothermal interactions. Alzahrani [23]
investigated the effects of varying thermal conductivity in semi-conducting materials. Con-
vective fins with varying thermal conductivity and thermal generation were the subject of a
thermal analysis study by Ghasemi et al. [24]. The impact of varying thermal conductivity
on transients temperature fluctuations within wall-embedded insulation was studied by
Khoukhi et al. [25]. Othman et al. [26] studied the effects of initial stress on semiconducting
materials under temperature-dependent properties under the dual phase lag model. Several
researchers [27–33] proposed solutions to various problems using extended thermoelastic
theories.

This research aims to investigate the effects of thermal conductivity variations on the
thermoelastic wave propagation of material. The finite element method was applied to
solve the nonlinear problem (without Kirchhoff’s transform). The Laplace transform and
the eigenvalues approach was used to solve the linear problem (with Kirchhoff’s transform).
The numerical results for all physical quantities are obtained and visually displayed. A
comparison is made between the numerical solutions and earlier analytical solutions
produced by others while ignoring the new parameter, and the behaviors of the solution
are investigated to validate the proposed method’s correctness. The variable thermal
conductivity is addressed and contrasted with and without Kirchhoff’s transformations.

2. Basic Equations

The basic formulations of a homogeneous elastic material with variable thermal
conductivity in the absence of body forces and thermal sources can be expressed as [2]:

The equations of motion

µui,jj + (λ + µ)uj,ij − γT,i = ρ
∂2ui
∂t2 . (1)

The energy equation

(
KT,j

)
j =

(
1 + τo

∂

∂t

)(
ρce

∂T
∂t

+ γTo
∂uj,j

∂t

)
. (2)

The constitutive equations

σij = (λuk,k − γT)δij + µ
(
ui,j + uj,i

)
, (3)

Where T is the temperature, T0 is the reference temperature, λ, µ are the Lame’s
constants, ce is the specific heat at constant strain, γ = (3λ + 2µ)αt, αt is the coefficient of
linear thermal expansion, ρ is the medium density, t is the time, eij are the components
of the strain tensor, ui are the components of the displacement vector, τo is the thermal
relaxation time, δij is the Kronecker symbol, the tensor is the components of stress tensor,
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and K represents the temperature-dependent thermal conductivity and has the following
linear form [34]

K(T) = Ko(1 + KvT), (4)

where Ko is the thermal conductivity when T = To, Kv is a parameter that is not positive.
Let us take a look at an elastic material whose state may be described as functions of the
spatial variables x and the time t, allowing the nonlinear Equation (1) to (3) to be provided
by [34]:

(λ + 2µ)
∂2u
∂x2 − γ

∂T
∂x

= ρ
∂2u
∂t2 , (5)

Ko(1 + KvT)
∂2T
∂x2 + KoKv

(
∂T
∂x

)2
=

(
1 + τo

∂

∂t

)(
ρce

∂T
∂t

+ γTo
∂2u
∂t∂x

)
, (6)

σxx = (λ + 2µ)
∂u
∂x
− γT. (7)

3. Application

The starting conditions are expected to be homogenous while the boundary condition
at x = 0 may be taken into consideration,

u(0, t) = 0, T(0, t) = T1H(t), (8)

where H(t) is the Heaviside unit function and T1 is a constant temperature. The non-
dimensional parameters may now be written as

(
x′, u′

)
= ηc(x, u), K

′
v = ToKv, T′ =

T
To

, σ
′
xx =

σxx

λ + 2µ
,
(
t′, τ′

)
= ηc2(t, τ), (9)

where c2 = λ+2µ
ρ and η = ρce

K .
The nonlinear governing equations with the dashes removed may be written as using

non-dimensional form parameters (9)

∂2u
∂x2 − u1

∂T
∂x

=
∂2u
∂t2 , (10)

(1 + KvT)
∂2T
∂x2 + Kv

(
∂T
∂x

)2
=

(
1 + τo

∂

∂t

)(
∂T
∂t

+ t1
∂2u
∂t∂x

)
, (11)

σxx =
∂u
∂x
− u1T, (12)

u(0, t) = 0, T(0, t) = T1H(t), (13)

where u1 = γTo
λ+2µ , t1 = γ

ρce
.

4. Numerical Scheme

The basic formulations established in this section are nonlinear partial differential
equations. The finite element method (FEM) is being studied for solutions to this problem.
The typical weak formulations processes, as described in [35], are applied in this approach.
The fundamental formulations’ non-dimensional weak formulations are fixed. The sets of
independent weight function consisting of displacement δu and temperature δT are shown.
The controlling formulations are multiplied by the independent weight function before
integrating across the locative domain using the boundary conditions of problem. As a
result, the nodal values for displacement and temperature may be stated as

T = ∑n
j=1 NjTj(t), u = ∑n

j=1 Njuj(t), (14)
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where n is the number of elements per node and N denotes the shape functions. Thus,
as part of Galerkin’s conventional procedures, the form and test functions are the same.
Therefore,

δT = ∑n
j=1 NjδTj, δu = ∑n

j=1 Njδuj. (15)

The three-node quadratic element is used. The one-dimension quadratic element is
employed in this problem, and we assume that the master element, which may be specified
by local coordinates in the range [−1, 1], is used, which can be defined by

N1 = 1
2 χ(χ− 1), N1 = 1− χ2, N3 = 1

2 χ(χ + 1).

The following stage should include calculating the time derivative of the unknown
variables using implicit methods. The weak formulas for FEM corresponding to (10-11) are
now as follows.∫ L

0

∂δu
∂x

(
∂u
∂x
− u1T

)
dx +

∫ L

0
δu
(

∂2u
∂t2

)
dx = δu

(
∂u
∂x
− u1T

)L

0
, (16)

∫ L

0

∂δT
∂x

(
(1 + KvT)

∂T
∂x

)
dx +

∫ L

0
δT
(

1 + τo
∂

∂t

)(
∂T
∂t

+ t1
∂2u
∂t∂x

)
dx = δT

(
(1 + KvT)

∂T
∂x

)L

0
, (17)

where L is. the length of the domain.

5. Linear Case (with Kirchhoff’s Transformation)

To transform the basic formulations into the linear form from the nonlinear one,
we apply Kirchhoff’s transform mapping [34] to variable thermal conductivity, which is
presented in Equation (4)

θ =
1

Ko

∫ T

0
K(T)dT, (18)

where the newly introduced function expresses heat conduction. We may obtain [34] by
substituting from Equation (18) to (4), then integrating.

θ = T +
1
2

KvT2. (19)

From Equations (18) and (19), the following may be deduced:

Koθ,i = K(T)T,i, Koθ,ii = (K(T)T,i),i, Ko
∂θ

∂t
= K(T)

∂T
∂t

. (20)

The governing Equation (10) through (13) may thus be expressed in the linear form:

∂2u
∂x2 − u1

∂θ

∂x
=

∂2u
∂t2 , (21)

∂2θ

∂x2 =

(
1 + τo

∂

∂t

)(
∂θ

∂t
+ t1

∂2u
∂t∂x

)
, (22)

σxx =
∂u
∂x
− u1T, (23)

T =
1

Kv

(
−1 +

√
1 + 2Kvθ

)
, (24)

u(0, t) = 0, θ(0, t) = T1H(t) +
1
2

Kv(T1H(t))2, (25)
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By applying Laplace transform to Equation (21) through (25),

f (x, s) = L[ f (x, t)] =
∞∫

0

f (x, t)e−stdt. (26)

Hence, we can get the following equations

d2u
dx2 = s2u + u1

dθ

dx
, (27)

d2θ

dx2 =
(

s + s2τo

)(
θ + t1

du
dx

)
, (28)

u(0, t) = 0, θ(0, s) =
T1

s

(
1 +

1
2s

T1Kv

)
. (29)

From Equations (27) and (28), the vector-matrix differential equation can be expressed
by

dV
dx

= AV, (30)

where V =
(

u θ du
dx

dθ
dx

)T
and A =


0 0 1 0
0 0 0 1

a31 0 0 a34
0 a42 a43 0

 and a31 = s2,

a34 = u1, a42 = s + s2τo, a43 =
(

s + s2τo

)
t1.

By using the eigenvalue technique as described in [36–43] regarding the solutions of
Equation (30), the characteristic relation of matrix A may be expressed as

m4 − (a31 + a42 + a34a43)m2 + a31a42 = 0, (31)

The matrix eigenvalues of A are the Equation (31); four roots which are defined by
±m1, ±m2. The solutions Equation (31) are given as

V(x, s) = ∑2
i=1

(
AiXie−mix + Ai+1Xi+1emix

)
, (32)

Where the boundary conditions of the problem can be used to compute the constants
A1, A2, A3, and A4. The Stehfest technique [44] may be used as a numerical inversion
strategy to obtain the temperature, displacement, and stress distribution final solutions.

6. Results and Discussion

In this study, the thermoelastic interaction resulting from a moving heat source under
generalized thermoelastic models is investigated in an unbounded isotropic medium. The
material specifications are specified below [45]:

µ = 3.86× 1010(kg)(m)−1(s)−2, K = 3.68× 102(kg)(m) (K)−1(s)−3, t = 0.6, T1 = 1
T0 = 293(K), λ = 7.76× 1010(kg)(m)−1(s)−2, ce = 3.831× 102(m)2(K)−1(s)−2,

αt = 17.8× 10−6(K)−1, ρ = 8.954× 103(kg)(m)−3.

The numerical computations of physical quantities with regard to the distance x while
taking variable thermal conductivity into account are performed within the framework of
extended thermoelastic theory with and without Kirchhoff’s transforms, as illustrated in
Figures 1–12. Numerical calculations are carried out by the provided set of constants for
the field distribution, displacement distribution (strain waves), temperature distribution
(thermal waves) and mechanical waves distributions; numerical computations are per-
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formed. During the time t = 0.6, the numerical computation was executed. The grid size
was adjusted until the values of the fields under consideration settle. Further modification
of mesh size above 20, 000 elements does not significantly change the results. Thus, the grid
size of 20, 000 was used for this study. Figures 1–3 show the impacts of varying thermal
conductivity in the temperature, the displacement, and the stress along the distance x
without Kirchhoff transform (nonlinear case). Figure 1 depicts the temperature change
as a function of distance x. It was seen to have a maximum value (T1 = 1) that satisfies
the boundary conditions of the problem on the surface x = 0, after which the temperature
decreases as x increases until it approaches zero. Figure 2 depicts the displacement variation
as a function of distances x. It was discovered that the displacement achieves maximum
negative values, gradually increasing until it reaches peak values near the surface, and then
falls continuously to zero. Figure 3 shows the variations of stress as a function of distance
x. The stress is shown to start at zero, which fulfills the problem boundary condition,
and gradually rise up to positive peak values before decreasing heavily to negative peak
values and increasing again to near zero. As predicted, varying thermal conductivity has a
significant influence on the values of temperature, displacement, and stress distributions.

Figure 1. The temperature variation along the distance with three values of Kv.

Figure 2. The variation of displacement with respect to the distances with three values of Kv.
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Figure 3. The stress variation via the distance with three values of Kv.

The difference between the use of Kirchhoff transform (WKT) and non-Kirchhoff
transform (NKT) is seen in Figures 4–12. Figures 4–6 show the variations of temperature,
the variations of displacement, and the variations of stress along the distance x when
kv = −1. It is observed that the solid line refers to the use of Kirchhoff transform (WKT)
while the dotted line refers to the nonlinear case without Kirchhoff transform (NKT).
The curves match at the surface according to the boundary condition of the temperature
(T1 = 1) then the difference ratio increases with the increase of distance until x = 0.75
after that the difference ratio decreases to reach zero at x = 2.55 as in Figure 4. Figure 5
shows the displacement variations with Kirchhoff transform (WKT) and without Kirchhoff
transform (NKT), in which the curves have a maximum difference ratio on the surface
x = 0. Figure 6 shows the stress variations with Kirchhoff transform (WKT) and without
Kirchhoff transform (NKT), in which the curves match at the surface according to the
boundary condition of stress (σxx = 0), then the difference ratio increases with the increase
of distance until x = 0.5; after that the difference ratio decreases to reach zero at x = 2.5.
Figures 7–9 display the variations of temperature, the variations of displacement, and
the variations of stress along the distance x when kv = −0.5. It was observed that there
are highly different values between using the Kirchhoff transform (WKT) and not using
Kirchhoff transform (NKT).

Figures 10–12 show the comparison between the numerical solution (finite element
approach without Kirchhoff transform) and the analytical solution (Laplace transform and
eigenvalues approach with Kirchhoff transform) when Kv = 0. The numerical results of
temperature variation, displacement variations, and stress variations show good agreement
with the findings of those analytical data over the distance x.
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Figure 4. The temperature variation with and without Kirchhoff transform when Kv = −1.

Figure 5. The displacement variation with and without Kirchhoff transform when Kv = −1.
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Figure 6. The stress variation with and without Kirchhoff transform when Kv = −1.

Figure 7. The temperature variations with and without Kirchhoff transform when Kv = −0.5.



Mathematics 2022, 10, 4176 10 of 14

Figure 8. The displacement variation with and without Kirchhoff transform when Kv = −0.5.

Figure 9. The stress variation with and without Kirchhoff transform when Kv = −0.5.
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Figure 10. The temperature variation with and without Kirchhoff transform when Kv = 0.

Figure 11. The displacement variation with and without Kirchhoff transform when Kv = 0.



Mathematics 2022, 10, 4176 12 of 14

Figure 12. The stress variation with and without Kirchhoff transform when Kv = 0.

7. Conclusions

In this work, the effects of variable thermal conductivity with and without Kirch-
hoff’s transformations in a thermoelastic medium are mathematically analyzed. The finite
element method obtains the numerical solution for nonlinear equations without Kirch-
hoff’s transformations. The eigenvalues method is used to obtain the analytical solution
for nonlinear equations with Kirchhoff’s transformations. It can thus be seen that the
varying thermal conductivity has a significant impact and plays a role in the behaviors of
deformations of different physical field components. Additionally, a comparison is made
between the numerical and earlier analytical solutions produced by others while ignoring
the new parameter, and the behavior of the solution is investigated to validate the proposed
method’s correctness.
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