
Citation: Lishner, I.; Shtub, A. Using

an Artificial Neural Network for

Improving the Prediction of Project

Duration. Mathematics 2022, 10, 4189.

https://doi.org/10.3390/

math10224189

Academic Editor: Freddy Gabbay

Received: 17 October 2022

Accepted: 4 November 2022

Published: 9 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Using an Artificial Neural Network for Improving the
Prediction of Project Duration
Itai Lishner * and Avraham Shtub

Faculty of Industrial Engineering and Management, Technion—Israel Institute of Technology, Haifa 320003, Israel
* Correspondence: itailishner@campus.technion.ac.il

Abstract: One of the most challenging tasks in project management is estimating the duration of a
project. The unknowns that accompany projects, the different risks, the uniqueness of each project,
and the differences between organizations’ culture and management techniques, hinder the ability to
build one project duration prediction tool that can fit all types of projects and organizations. When
machine learning (ML) techniques are used for project duration prediction, the challenge is even
greater, as each organization has a different dataset structure, different features, and different quality
of data. This hinders the ability to create one ML model that fits all types of organizations. This paper
presents a new dynamic ML tool for improving the prediction accuracy of project duration. The
tool is based on an artificial neural network (ANN) which is automatically adapted and optimized
to different types of prediction methods and different datasets. The tool trains the ANN model
multiple times with different architectures and uses a genetic algorithm to eventually choose the
architecture which gives the most accurate prediction results. The validation process of the prediction
accuracy is performed by using real-life project datasets supplied by two different organizations
which have different project management approaches, different project types, and different project
features. The results show that the proposed tool significantly improved the prediction accuracy for
both organizations despite the major differences in the size, type, and structure of their datasets.

Keywords: machine learning; artificial intelligence; prediction; GPU; artificial neural network;
project management

MSC: 68T07

1. Introduction

A project is a “temporary endeavor undertaken to create a unique product, service,
or result.” [1]. Due to the non-repetitive nature of the projects, the ability to predict their
outcome is limited. Several studies have compared the predicted schedule with the actual
duration of projects [2–4]. The results show that 70% of the projects are late. While the
majority of the projects eventually experience schedule overruns, the surveys show that
the top reason for project failure is missing deadlines [2,4,5]; hence, the importance of good
prediction for project duration is essential for project success.

Several studies have tried to solve the scheduling overrun problem and improve
the prediction of project duration. Nevertheless, most of the solutions are theoretical, as
few practical applications in large-scale real-life projects have been reported [6–8]. One
of the most common practical tools for project duration estimation and planning is the
Gantt chart [9]; other methods developed to allow project duration prediction include the
critical path method (CPM) and PERT (program evaluation and review technique) [10].
While applying the CPM is a very popular way for project duration estimation [11], the
uncertainty that characterizes projects affects the quality of project planning and, as a
consequence, the estimation of the project duration is poor. The Gantt chart lacks the ability
to foresee changes in resources or activities; it does not take into account the uncertainty

Mathematics 2022, 10, 4189. https://doi.org/10.3390/math10224189 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10224189
https://doi.org/10.3390/math10224189
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math10224189
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10224189?type=check_update&version=1


Mathematics 2022, 10, 4189 2 of 16

of the project execution and it is exposed to estimation errors [12–16]. All of the above
prevent Gantt from being a good schedule prediction method that can produce acceptable
prediction results. Some studies [17,18] suggest relying on information from past projects in
order to improve the project’s duration prediction. The prediction can be made by creating
a regression model that foresees the gap between the original duration estimation and the
actual duration of the project. With the right regression model and quality data extracted
from past projects, the model can potentially produce better predictions than the traditional
methods. Collecting more data and using more project features as input for the prediction
model will probably increase the prediction accuracy but will also make the regression
calculation more complex to solve. The use of artificial intelligence (AI) techniques allows
one to create and solve a regression model with multiple features without the need to
handle complex calculations.

The use of an AI tool requires a dataset in order to train the AI model; the quality of
the data and the amount of the data are important factors when training an AI model. The
type and the amount of the data will affect the architecture of the AI model. Organizations
have many differences when it comes to managing projects. Each organization uses a
different methodology, tools, and techniques; the type of project is different, the experience
of the organization is different, and the people involved are different. The location, the
technology, and the industry make it almost impossible to build one prediction tool that
fits all. When using an AI model, there are even more challenges, as the AI model is
directly related to the dataset being used. Different organizations have different ways
of collecting data; the amounts of historical data are different and the features that are
recorded are different as well. There are very few up-to-date project datasets that are public
and validated; this makes the ability to train, test, and validate a new tool more difficult.
In order to build a prediction tool that can fit different organizations and produce good
enough results, it is required to create a dynamic method that can automatically adjust
to the type of organization using it. In this paper, we present a dynamic project duration
prediction method that can be used by many types of organizations despite their many
differences in culture, industry, and project records. As most AI project prediction methods
today remain in the theoretical stage and still have not been validated with real projects,
this paper also brings practical validation and implementation. The novelty of this paper
and its contribution to the body of knowledge is that it presents a new proven practical
method that improves project duration prediction, is validated with real projects, and
includes auto-adjustment to different features and formats that different organizations
have. The results show a significant improvement in prediction accuracy compared to
traditional prediction methods. The paper presents one of the biggest project datasets from
a single organization and uses it to validate the presented solution. In addition, the paper
also includes two hardware implantation options and the limitation of each method.

The paper is organized as follows:

• Literature review on ANN architecture optimization, ANN training optimization, and
the use of ML for project prediction outcomes;

• Detailed description of the dynamic project duration prediction tool;
• Dataset description;
• Results;
• Discussion;
• Conclusions.

2. Literature Review
2.1. Optimization of the Architecture of an Artificial Neural Network

An artificial neural network (ANN) [19–21] is a class of machine learning algorithms
that is used to model nonlinear relations in datasets. The ANN architecture is constructed
from multiple layers which include hidden layers and activation functions. The basic
building block of an ANN is the artificial neuron. An artificial neuron is a mathematical
function in which inputs are separately weighted and the sum is passed through a transfer



Mathematics 2022, 10, 4189 3 of 16

function to an output connection. The input of an artificial neuron is a vector of numeric
values; the artificial neuron receives the vector’s values with an independent parameter
called weight. The neuron calculates its internal state by summing the weighted product
of the input vector and a numerical parameter called bias; this sum is passed through
a nonlinear function, which scales all the possible values of the internal state into the
desired interval of output values. Artificial neurons are organized into layers to comprise
a network. An ANN has an input layer that connects to the input variables; the number
of artificial neurons in the input layer is equal to the number of features in the data. The
ANN can also contain one or more interior (hidden) layers, which can have many or few
artificial neurons, and an output layer that produces the output variables; the number of
these variables defines the number of artificial neurons in this layer [22]. Figure 1 shows
the general structure of an ANN.

Mathematics 2022, 10, x FOR PEER REVIEW 3 of 17 
 

 

2. Literature Review 
2.1. Optimization of the Architecture of an Artificial Neural Network 

An artificial neural network (ANN) [19–21] is a class of machine learning algorithms 
that is used to model nonlinear relations in datasets. The ANN architecture is constructed 
from multiple layers which include hidden layers and activation functions. The basic 
building block of an ANN is the artificial neuron. An artificial neuron is a mathematical 
function in which inputs are separately weighted and the sum is passed through a transfer 
function to an output connection. The input of an artificial neuron is a vector of numeric 
values; the artificial neuron receives the vector’s values with an independent parameter 
called weight. The neuron calculates its internal state by summing the weighted 
product of the input vector and a numerical parameter called bias; this sum is passed 
through a nonlinear function, which scales all the possible values of the internal state 
into the desired interval of output values. Artificial neurons are organized into layers to 
comprise a network. An ANN has an input layer that connects to the input variables; the 
number of artificial neurons in the input layer is equal to the number of features in the 
data. The ANN can also contain one or more interior (hidden) layers, which can have 
many or few artificial neurons, and an output layer that produces the output variables; 
the number of these variables defines the number of artificial neurons in this layer [22]. 
Figure 1 shows the general structure of an ANN. 

 
Figure 1. ANN structure. 

ANNs have several hyper-parameters that control the architecture of the network; 
two of them are the number of layers and the number of artificial neurons in each hidden 
layer. Determining the number of neurons in the hidden layers is a very important part of 
the overall ANN architecture. Both the number of hidden layers and the number of 
artificial neurons in each of the layers must be carefully considered, as they have a great 
influence on the final output. Using too few artificial neurons in the hidden layers will 
result in underfitting [23]. Underfitting occurs when there are too few artificial neurons in 
the hidden layers to adequately detect the signals in a complicated dataset. Using too 
many artificial neurons in the hidden layers can result in overfitting [23]. Overfitting 
occurs when the neural network has so much information processing capacity that the 
limited amount of information contained in the training set is not enough to train all of 
the neurons in the hidden layers. Hence, the number of artificial neurons in the hidden 
layers is directly related to the amount of data and features in the dataset. Another side 
effect of too many neurons in the hidden layers is the complexity of the ANN which 

Figure 1. ANN structure.

ANNs have several hyper-parameters that control the architecture of the network;
two of them are the number of layers and the number of artificial neurons in each hidden
layer. Determining the number of neurons in the hidden layers is a very important part
of the overall ANN architecture. Both the number of hidden layers and the number of
artificial neurons in each of the layers must be carefully considered, as they have a great
influence on the final output. Using too few artificial neurons in the hidden layers will
result in underfitting [23]. Underfitting occurs when there are too few artificial neurons
in the hidden layers to adequately detect the signals in a complicated dataset. Using too
many artificial neurons in the hidden layers can result in overfitting [23]. Overfitting occurs
when the neural network has so much information processing capacity that the limited
amount of information contained in the training set is not enough to train all of the neurons
in the hidden layers. Hence, the number of artificial neurons in the hidden layers is directly
related to the amount of data and features in the dataset. Another side effect of too many
neurons in the hidden layers is the complexity of the ANN which increases the time it takes
to train the network. There is no single way to build and optimize an ANN architecture
to a specific or general use case. According to Lippmann [24], an ANN with two hidden
layers is enough for creating classification regions of any desired shape, although there
is no indication in his paper of what the implementation of such a network should look
like, how many artificial neurons to use in each layer, or how to train the weights. Some
theoretical findings have shown that an ANN with one hidden layer can approximate any
function required [22,25,26]. On the other hand, it seems that there is no upper limit on the



Mathematics 2022, 10, 4189 4 of 16

number of hidden layers [23,27], other than computing, memory, and time requirements.
Nevertheless, there seems to be no advantage of using more hidden layers than training
cases, since suboptimal local minima do not appear with so many hidden layers [28]. Some
studies have offered “rules of thumb” for choosing an architecture. “One rule of thumb is
that it [the hidden layer] should never be more than twice as large as the input layer.” [29];
“you will never require more than twice the number of hidden units as you have inputs”
in an ANN with one hidden layer [30]. “Typically, we specify as many hidden nodes as
dimensions [principal components] needed to capture 70–90% of the variance of the input
dataset.” [31]. While these rules of thumb may be true for some cases, they are ignoring the
complexity of the function, the number of training cases, the amount of noise in the targets,
and edge cases which are not suitable for these types of rules. For this reason, it is wise to
see these rules as a starting point for one to consider when building an ANN.

While it seems that there are many opinions on how to build an optimized ANN there
is one consensus that no study has refuted yet—ultimately, designing an appropriate ANN
architecture for a specific dataset will come down to trial and error. This “primitive” method
is the most commonly used method of designing and optimizing ANN architectures [32].
To improve the efficiency of the trial-and-error procedure, a genetic algorithm (GA) can
be applied in order to effectively find the ANN architecture [33]. GA is a method for
optimization based on the Darwinian theory that the survival of the generation is by
natural selection [34]. The GA is significantly more efficient than the traditional trial-and-
error method for designing ANN structures. Many studies have applied GA to optimize
ANN parameters [34–40]. While there are several optimization methods for parameter
tuning [41–45], each one of them has its own pros and cons. However, the GA method is
considered to be accurate and fast [42–45]. Moreover, GA is suitable for parallel computing
where multiple genetic algorithms are executed, and the best solution is selected from each
algorithm. Then, these best solutions will be evaluated with each other, and the best among
them is selected for training the model.

2.2. Optimization of Training an Artificial Neural Network

ANNs are trained using stochastic gradient descent optimization algorithms. This
type of algorithm uses the training dataset to make a prediction with the current state of
the model, then compares the prediction to the expected value and uses the difference as
an estimate of the error gradient. This error gradient is then used to update the model
weights; this process is repeated until the stop condition is fulfilled. The amount of change
applied to the weights during training is referred to as the learning rate. The learning
rate is a hyper-parameter in the range between 0 and 1. It controls the rate at which the
model is adapted to the problem. Small learning rates require more training epochs, due
to the smaller changes made to the weights in each cycle, whereas larger learning rates
cause bigger changes and require fewer training epochs. A learning rate that is too large
can cause the model to converge too quickly to a suboptimal solution, whereas a learning
rate that is too small can cause the process to get stuck. The learning rate is considered
one of the most important hyper-parameters for model training [25]. The error gradient
is a statistical value; the more training examples are used, the more accurate the estimate,
which will cause better adjustment of the ANN weights that will in turn improve the
performance of the prediction [25]. The number of training examples used in the estimation
of the error gradient is called a “batch” [25]. A batch size of N means that N samples from
the training dataset will be used to estimate the error gradient. A training epoch means
that the learning algorithm has made a single pass through the training datasets, which
were separated into randomly selected batch groups. In the case of a small batch value,
the error gradient will be less accurate and will be relevant mostly to the specific training
examples used. Using a small number of examples may cause a noisy estimate that will
have noisy updates to the model weights. Nevertheless, these noisy updates can result in
faster learning and sometimes a more robust model. By using randomly selected batches
for each epoch, generalization is achieved. In practice, smaller batch sizes are usually used



Mathematics 2022, 10, 4189 5 of 16

as they are noisy, offering a regularizing effect and a lower generalization error. In addition,
smaller batch sizes are fitted to the use of GPUs as it is more likely to fit one full batch of
training data in its memory. The commonly used batch size is usually 32 [25,46].

2.3. Machine Learning for Prediction Project Outcomes

The use of ML for prediction is very common [47–51], and in the last few years, many
studies have also focused on the use of ML and ANN to predict project outcomes [52]. ANN
and linear regression were used to estimate IT project efforts [20]; however, the methodology
was too complicated to be generalized as a generic tool. Hsu et al. [53] compared two
types of ANN for predicting project success and found that the differences between the
formats of the organizations’ data records were preventing these prediction methods
from getting proper training. Machine learning was used to predict the performance of
construction projects [54], but their outcome focus was more on project success parameters
rather than actual estimation values. ANN performance was found superior compared
to other multiple regression models in project effort estimation [55], and an algorithm
for software project prediction [56] exists but does not fit other types of projects and is
validated only with the quite old ISBSG public dataset. The common theme of all of
these studies is that none of them presented a validated project duration prediction model
that applied to real projects; none of the existing studies presents a practical AI duration
prediction tool that is flexible enough to fit different types of projects and organizations
and includes a prediction model which can be dynamically adjusted and optimized for any
given organization’s dataset.

3. Prediction Tool Description

The need of an organization to have a prediction of the project’s duration is essential
for many reasons [57,58], such as project portfolio planning, product roadmap planning,
resource planning, budget planning, cash flow, customer satisfaction, and more. There
are many differences between organizations’ projects: the culture is different, the project
management process, the tools and techniques, and much more. In some organizations,
these differences exist also internally, between different sections of the same organization.
This required a project duration prediction tool to be agnostic and flexible enough to fit
many types of projects, products, and project management methods; it should support
different types of inputs, with different types of units; and it should handle the biases and
errors caused by these differences. While the input dataset of each organization can be
different, the required output is common to all types of projects; the output is a single value,
with units of time, which describe the predicted duration of the targeted project.

In this paper, we present a dynamic project duration prediction (DPDP) method. The
DPDP methodology employs a supervised machine learning technique to build a predictive
model, based on a dataset of features that encapsulate relevant characteristics of projects, to
map true inputs to true output. As there are not many constraints regarding the inputs, it is
required that the dataset include the actual duration of recorded projects used as an output
for the model training. This prediction method adjusts and optimizes itself according
to the supplied dataset. The DPDP creates a unique model per organization or a given
dataset. The DPDP uses historical data from past projects and learns from them what
future projects will look like according to the project features. The method is agnostic to
many biases between organizations and project types. The biases are usually caused by
different ways of measuring project features, such as risks, duration estimation, parameter
definition, different project management procedures, different types of projects, etc. The
DPDP method is relevant for all types of projects and products; it supports construction
projects, as well as product development projects and more. The prediction model is based
on ANN; the ANN was chosen as the preferred ML method as it can address almost any
regression problem and supply decent results as long as it is constructed with the proper
architecture and optimization. Nevertheless, the generalization comes with a price of not
always being optimal in terms of computing resources. Therefore, this method is also



Mathematics 2022, 10, 4189 6 of 16

designed to work with multi-tread computing and GPU optimization to compensate for
the efficiency of non-optimal resources and to reduce the model training and calculation
time. Using ANN for producing quality outputs with different types of data requires
re-adjustment, re-optimization, and adaptation for each type of input dataset. Usually,
these adjustments are made by qualified personnel who use mostly trial and error and
heuristic methods to optimize and adapt the tool for a new dataset. The DPDP includes a
semi-automatic method to adjust and optimize the ANN to the different datasets, so no
special qualification is needed to adjust the tool for the organization.

3.1. DPDP Tool Architecture

The DPDP method is constructed from two sequential phases: data processing, ANN
model optimization, and model compilation. The data processing phase includes loading
the data, cleaning it, and converting it into a format that the ANN can accept. In the
ANN model optimization phase, the model is trained and tested multiple times until it is
optimized to produce the most accurate prediction.

3.1.1. Data Processing Phase

The data are loaded automatically from a spreadsheet. They are required to have a
certain structure: each line marks a different project; each column marks a project feature;
the output feature column (the actual duration of the project) is the first column. After the
data are loaded, there is a processing procedure that eliminates invalid data (e.g., features
with an invalid value, missing data, etc.). Next, non-numeric data are encoded; as the ANN
is built to process numeric data, inputs that are not numeric must be encoded to numeric
values in order to be a valid input for the ANN model. The last stage is the normalization
of the data; when using multiple inputs to an ANN model, the input variables may have
different scales, as they represent different units. Differences in the scales across input
variables may increase the complexity of the problem being modeled [59]. Therefore, this
stage makes sure that all the input data are on the same scale by applying a normalization
algorithm that scales all the input values to a scale of 0 to 1. The normalization algorithm
we used is the min–max algorithm presented in Equation (1).

InputNormalized =
Input−Min(input)

Max(input)−Min(input)
(1)

3.1.2. ANN Model Optimization

After the data processing phase, the data are divided into three groups: training
dataset, validation dataset, and testing dataset. The training dataset includes ~80% of
the projects and is used for training the ANN. The validation dataset includes ~10% of
the projects and is used as a validation reference during the training. The testing dataset
includes the rest of the projects, and is used for testing, optimization, and scoring in each of
the optimization cycles.

There are two different ways for dividing the datasets in case the dataset includes
project dates or other indications for the precedence relation between the projects. The
training dataset will include 80% of the earliest executed projects. The rest of the projects
are randomly divided into the validation dataset and the testing dataset. The aim of this
split methodology is to allow the ANN to be trained on old projects in order to predict
the more recent project duration. In case there is no indication of the precedence relation
between the projects, the data are randomly split into these three groups. The system also
sets a lower boundary for the amount of data per group, which assures that the model will
have enough data for training and testing.

The ANN model consists of an input layer, an output layer, and hidden layers. The
output of the ANN model is the predicted duration which sets the layer size to a single
artificial neuron. The input layer size is the number of features in the dataset which are being
extracted. The chosen training optimizer for the method is Adam. Adam optimization is a



Mathematics 2022, 10, 4189 7 of 16

stochastic gradient descent method that is based on the adaptive estimation of first-order
and second-order moments. The Adam optimizer is considered efficient in computing and
memory; it is invariant to diagonal rescaling of gradients and is well suited for problems
with large datasets or problems with many features [60]. The learning rate of the Adam
optimizer is set to the value of 0.01. A batch size of 512 is set to allow small enough training
data to fit in the GPU memory, as well as big enough data to allow utilization of the parallel
calculation capability of the GPU. Then, the ANN training process begins with the training
dataset using the validation dataset as training validation. The outcome of a training cycle
is an ANN model able to predict a project’s duration with a certain degree of accuracy. To
optimize the ANN prediction, it is important to define the suitable number of hidden layers
and the number of artificial neurons in each layer that yield the best prediction result. A
genetic algorithm [33] is applied in order to find the most accurate ANN architecture. The
entire testing dataset is routed to the trained ANN, in order to get the prediction value
of the network. The differential between the ANN prediction value and the actual value
(the error) is calculated. To score the method prediction accuracy, three types of errors
are calculated: the mean absolute error (MAE) described by Equation (2), the root mean
square error (RMSE) [61] described by Equation (3), and the mean absolute percent error
(MAPE) [62], which is described by Equation (4).

MAE =
∑n

i=1|T_truei − T_predictioni|
n

(2)

RMSE =

√√√√∑n
i=1

(
Ttruei − Tpredictioni

)2

n
(3)

MAPE =
n

∑
i=1

∣∣∣Ttruei − Tpredictioni

∣∣∣
n·|Ttruei|

× 100% (4)

Ttruei represents the true duration of project i; Tpredictioni represents the ANN predicted
duration of project i, and n represents the total number of projects in the dataset. A lower
value of MAE, RMSE, and MAPE means a lower error which signifies better prediction
accuracy. Using these types of error measurements allows one to have different points of
view on the prediction accuracy. The MAE allocates an equal weight to all of the individual
differences, and it is considered to be more accurate than the RMSE and MAPE [62]. In the
RMSE, a relatively high weight is given to large errors, which is a good indication of the
presence of a large error. The RMSE must be bigger or equal to the MAE; if the RMSE is
equal to the MAE, then all the errors are of the same magnitude. The greater the difference
between the RMSE and MAE, the greater the variance in the individual errors. The units of
both MAE and RMSE are the same time units as the time units of the duration prediction,
so it is easier to understand the duration error in terms of time. The MAPE is related to the
percentage of the error from the true value, which allows a relative point of view on the
results, but it also gives higher weight to an under-forecast value which can bias the results
when compared with the MAE and RMSE.

The training cycle is repeated multiple times; each time the error is measured, and
the genetic algorithm is applied in order to optimize the results. Last, the ANN model
architecture with the lowest error value is selected to be saved and used as the trained
model for the DPDP-based tool.

3.1.3. Genetic Algorithm

The GA was applied to optimize two of the main ANN hyper-parameters: the number
of hidden layers and the number of neurons in each hidden layer. An initial population
of networks (chromosomes) with different sets of these parameters (genes) was randomly
created. The initial setting of the GA parameters was based on previous studies [33–36,39]
and computational experiences. Chromosomes in the population pool contained two types



Mathematics 2022, 10, 4189 8 of 16

of genes: the number of hidden layers and the artificial neuron number of each hidden
layer. The range of the number of hidden layers in the network is set to 1–20. The range of
artificial neuron numbers in each hidden layer is set to 1–10 times the number of features.
For example, if the number of the input features of the ANN is 5, the number of artificial
neurons in each layer can be in a range of 5 to 50. The GA starts with 200 randomly
generated chromosomes (networks), where all chromosomes in the population pool had
at least one different parameter. The GA has three primary operations: reproducing,
generating, and choosing new populations according to their fitness; crossover, parent
choosing, recombination, and mutation in creating new generations. The fitness value of
chromosomes in generations was evaluated according to the MAE value of the network
prediction; a low MAE means better fitness. Reproduction evaluation was made according
to the fitness value, by extracting the chromosomes that have a fitness value above the
reproduction threshold. The reproduction threshold was set to the MAE of the traditional
method prediction. Since in this case the parents may not have the same number of genes, a
custom crossover and mutation algorithm was used, as described by Domashova [33]. The
evolving networks are iterated through 100 generations, where at the end, the networks
with the best fitness are the chosen networks for the provided dataset.

4. Dataset Description

In order to test the improvement in prediction accuracy of a tool based on the DPDP
method, we used real-life project datasets collected from two different organizations. The
first organization is a large global IT corporation, which produces an average of 1251 new IT
projects each year. The organization’s project datasets consist of a total of 20,024 recorded
projects that were executed during the years 2005–2021. The second organization is a
startup company that has developed multidisciplinary products including mechanics,
electronics, and software. The organization produces an average of nine projects a year and
a dataset that consists of a record of 26 projects executed during the years 2018–2021. The
two datasets represent two extremes of organization size. One is a very big organization
with a large record of project data; the organization has an established and structured
project management methodology, with a lot of experience in executing projects that have
similar properties. The other organization is a small startup that has not yet established a
project management methodology and has little historical information about its projects.
The two datasets were recorded differently by the corresponding organizations and were
based on each organization’s methods of defining and applying project features, such
as task duration, risk level, etc. It is hard to evaluate the quality of these features, how
accurate their estimations are, how relevant they are to the project outcomes, and how
they correspond to other features of the organization. Nevertheless, a DPDP tool can
overcome these biases in data as long as the methods of defining and estimating these
features per dataset are consistent, as the tool optimizes for each organization and does
not generalize across organizations. The DPDP tool learns the correlation between these
feature estimations and the actual results per dataset, so the biases and the errors caused
by different methodologies are diminished.

Tables 1 and 2 present the details of the project datasets provided by Organizations 1
and 2 respectively. As can be seen in these tables, although both datasets include 11 features
per project, the description, and the units of the features are different between the organi-
zations. Usually, it is necessary to build different prediction tools for each organization
in order to use its features and optimize the AI model according to each organization’s
dataset. However, as described in this paper, the DPDP tool can accept both datasets and
can create a unique ANN model for each organization, which is optimized to predict future
project duration.



Mathematics 2022, 10, 4189 9 of 16

Table 1. Project Features of Organization 1.

No. Feature Name Notes

1 Project type Minor R&D involvement—19,247 (~96%)
(Procurement + Delivery only)—777 (~4%)

2 Business unit

Network integration services—13,587 (~68%)
Customer support—4182 (~21%)

Managed service and network assurance—776 (~4%)
Managed service—613 (~3%)

Software company service—515 (~2.5%)
Others—351 (~1.5%)

3 Project mode
The data contain 293 different project modes:

Standard—16,034 (~80%)
292Others—3990 (~20%)

4 Project risk level Four levels of scheduled risks:
Class A is the highest risk and D the lowest risk

5 Start day The day the project kicked off
6 Start month The month when the project kicked off
7 Start year The year when the project kicked off
8 Planned end day The expected day for project delivery
9 Planned end month The expected month for project delivery
10 Planned end year The expected year for project delivery
11 Project actual duration The actual project duration (in weeks).

Table 2. Project Features of Organization 2.

No. Feature Name Notes

1 Project type

Operational project
Logistic project

Combined (a project with minor R&D involvement)
Combined+ (a project with significant

R&D involvement)

2 Product type The type of products delivered in the project.
(Type 1, Type 2, Type 3, Type 4, Type 5, Type 6)

3 Project estimated duration The project estimated duration (in weeks) according
to the Gantt chart at kick-off.

4 Stability of the project scope
A 3-point scale (High, Medium, Low) of what is the

level of the certainty that the project scope is not
likely to be changed?

5 Degree of risks for
project delay

A 3-point scale (High, Medium, Low) of the level of
certainty that the project will stay on schedule

6 Importance of time A 3-point scale (High, Medium, Low) of how critical
it is to deliver the project on time

7 Importance of cost A 3-point scale (High, Medium, Low) of how critical
it is to keep the project cost low

8 Experience with
the technology

A 3-point scale (High, Medium, Low) of how much
experience the organization has with the technology

being used in the project

9 Level of details in the
project plan

A 3-point scale (High, Medium, Low) of the detailed
and resolution level of the project plan

10 Sub-contractor dependency A 3-point scale (High, Medium, Low) of how much
the project relies on sub-contractors

11 Project actual duration The actual project duration (in weeks)

5. Results

This section presents the results of the analysis performed in order to evaluate and
validate the DPDP tool. The analysis includes accuracy measurements and processing
time performance analysis. The accuracy measurement was performed by applying the
prediction tool to a real-life project dataset that was presented in the previous section,
measuring the accuracy of the prediction results and comparing these predictions to the



Mathematics 2022, 10, 4189 10 of 16

traditional prediction methods used by the organizations. The accuracy measurements
of the tool were based on calculating three types of errors: MAE, RMSE, and MAPE as
presented in the previous section. The error calculations of the tool outcome were compared
with the error calculations of the traditional predictions made by these organizations using
their traditional methods. In both cases, the organizations used a Gantt chart and CPM in
order to estimate the duration of the projects. The processing time performance analysis
was conducted by comparing the processing time of sections in the DPDP tool using only
the CPU (Central Processing Unit) versus running it with an additional GPU. The aim of
this test is to understand the benefit of using this tool on a GPU-based platform and to find
the optimized size of a training batch to fit such a tool.

5.1. Prediction Accuracy Test

The results of the accuracy test are summarized in Tables 3 and 4. They reveal that
the DPDP tool prediction accuracy is superior to the traditional method. The tables show
a comparison between the MAE, RMSE, MAPE, and max error (the highest measured
error) of the two methods for each of the dataset partitions (A, B, and C). The A, B, and C
datasets were created by random partitioning of the data for the testing set and validation
set. The partition was performed three times and yielded three different validation and
testing sets A, B, and C. This was done in order to reduce the bias that a single test may
create. Table 3 compares Organization 1’s duration prediction error and Table 4 relates to
Organization 2’s duration prediction error. As can be seen in both tables, the DPDP tool’s
MAE is significantly lower than that of the traditional method on all of the testing sets
in both organizations. Comparing the RMSE with the MAE of each method reveals the
cases in which the variance of the error is large. For example, in Table 3, the value of the
traditional method’s MAE in testing set A is 54.92 while the value of the RMSE is 83.18;
the differential between these values is significant (more than 50%), which implies that
many large errors exist. The average on Organization 1’s traditional prediction MAE is
49.18 weeks and the average RMSE is 71.69 weeks, which results in an average of ~47%
difference; by comparison, the DPDP tool, which has an average MAE of 24.25 weeks and
an average RMSE of 30.12 weeks, results in a 24% difference. Organization 2’s results
show the same trend with 37% in the traditional method vs. only 15% with the DPDP tool.
The MAE and the RMSE give an absolute number in the same time units of the predicted
duration. This makes it easy to understand the practical value of the error, but it does
not help in understanding the magnitude of the error relative to the project length. For
example, a 2-week prediction error will be significant when referring to a 5-week project,
but the same error would be considered low when referring to a 200-week project. The
MAPE value of each method gives a good indication of the error magnitude relative to
the project length. For example, in Table 4, the MAE values are in single digits, seemingly
lower than the ones in Table 3 which have two-digit errors. Nevertheless, according to
the MAPE value, one can deduce that in terms of the error relative to the length of the
project, there is not much of a difference as in both tables the magnitude of the MAPE is
approximately the same. As can be seen in both tables, the average relative error of the
DPDP is consistently lower in all instances.

The max error indication focuses on one extreme use case with the biggest prediction
error. Even though this value alone is not enough for accuracy determination, presenting
it near the other average errors helps to understand more about the robustness of the
prediction tool and its suitability to extreme cases of variance and uncertainty that projects
bring with them. The results show that the DPDP can predict uncertainties better than the
traditional methods and also give better predictions in extreme cases.

Measuring the variance of the errors between the different testing datasets allows
a point of view on the tool’s immunity to noise; when the variance is high, it means
that the error of the prediction is easily affected by different types of projects, while low
variation points to a stable prediction and adaptation to different types of projects. In



Mathematics 2022, 10, 4189 11 of 16

both organizations, the DPDP tool shows improvement in the variation errors, while in
Organization 1, with the larger dataset, the improvement is more significant.

Table 3. Comparing Organization 1’s traditional vs. DPDP prediction accuracy.

Prediction Method Testing Set MAE
(Weeks)

RMSE
(Weeks)

MAPE
(%)

Max Error
(Weeks)

Traditional A 54.92 83.18 190.13% 272
DPDP A 25.47 32.96 34.98% 92.18

Traditional B 37.27 55.49 29.01% 237.71
DPDP B 20.93 26.32 15.62% 68.37

Traditional C 55.35 76.4 52.75% 248.86
DPDP C 26.36 31.07 24.33% 71.02

Traditional Average A/B/C 49.18 71.69 91% 252.86
DPDP Average A/B/C 24.25 30.12 25% 77.19

Traditional Variance A/B/C 70.95 138.88 – 203.95
DPDP Variance A/B/C 5.65 7.80 – 113.52

Table 4. Comparing Organization 2’s traditional vs. DPDP prediction accuracy.

Prediction Method Testing Set MAE
(Weeks)

RMSE
(Weeks)

MAPE
(%)

Max Error
(Weeks)

Traditional A 5.75 8.13 21.67% 15.57
DPDP A 4.48 4.77 25.7% 7.29

Traditional B 6.11 8.74 18.75% 15.57
DPDP B 3.02 4.15 8.99% 7.92

Traditional C 8.54 11.11 31.14% 15.71
DPDP C 4.56 4.99 17.53% 6.46

Traditional Average A/B/C 6.80 9.33 24% 15.62
DPDP Average A/B/C 4.02 4.64 17% 7.22

Traditional Variance A/B/C 1.54 1.65 – 0.004
DPDP Variance A/B/C 0.50 0.13 – 0.36

5.2. Generated Model Structure

The prediction models generated for each use case had different hyper-parameters,
which were set using the GA, as explained in Section 3.1.3. For each organization and
separately for each validation set (A, B, and C), the DPDP tool created different models with
different hyper-parameters (a total of six ANNs). Each model was optimized according to
the validation dataset loaded into the DPDP tool. The training optimizer in all cases was
set as Adam (as presented in Section 3.1.2) and the learning rate was set as 0.01. Table 5
presents the ANN layers and artificial neurons in each layer per network and validation set.

Table 5. Number of layers and neurons per model and validation set.

Layer Org 1—A Org 1—B Org 1—C Org 2—A Org 2—B Org 2—C

Input 10 10 10 15 15 15
Hidden 1 154 110 66 105 285 105
Hidden 2 33 77 154 225 120 255
Hidden 3 - 198 77 - - 255
Hidden 4 - 176 99 - - 195
Hidden 5 - 110 187 - - 30
Output 1 1 1 1 1 1

As can be seen in Table 5, the output layer contains a single neuron as there is only
one output (project duration). The input layer is set as the number of features. Both
organizations’ (1 and 2) datasets contain 10 features, but the feature “Project Type” in
Organization 2 was decoded using one-hot encoding [63], which increases the number of



Mathematics 2022, 10, 4189 12 of 16

input features to 15. The number of layers and number of artificial neurons in each layer
were optimized for the best accuracy according to the GA.

5.3. CPU/GPU Performance Analysis

As GPUs can perform multiple, simultaneous computations based on their thousands
of cores, this trait can be used for the distribution of training processes and significantly
speed up the ANN training procedure. Thus, the dataset size and mostly the batch size
which is set for the training process need to be optimized for the GPU and its characteristics.
The analysis was performed using the hardware presented in Table 6. The same hardware
was used for both CPU and GPU experiments, by enabling or disabling the GPU functional-
ity. In addition, as the tool uses randomization algorithms, we overwrite the randomization
with fixed values in order to allow the same execution in all experiments. The DPDP tool
uses multiple training sessions in order to optimize the ANN. For the presented test, we
performed only one training session as a reference to a multi- session procedure. The
tested ANN architecture includes five layers with 11, 55, 110, 55, and 1 artificial neuron(s),
respectively, in each layer. The activation function was set as a rectified linear unit [64]. In
addition, a fixed number of epochs of 100 were set in order to reduce the randomization of
weight selection.

Table 6. Server Hardware Properties.

Feature CPU GPU

Model Intel(R) Xeon(R) CPU NVIDIA Tesla-K80
No. of Cores 2 2496 CUDA
CPU Clock 2.3 GHz 820 MHz

RAM 12 GB 12 GB
Cache Memory 39,424 KB –

The experiment includes measuring the effect of changing the batch size parameter of
the ANN training. Increasing the batch size will cause a larger matrix multiplication; since
the matrix multiplications are parallelizable operations, increasing the batch size is expected
to shorten the calculation time of the GPU compared to the CPU. Above a certain batch size
value, a full batch of training data cannot fit into the GPU memory, which might cause a
deceleration in the GPU performance. Figure 2 presents the results of the CPU vs. GPU
experiment. As can be seen in Figure 2, the small batch size has a longer running time; as the
batch size increases, the running time of the training gets shorter until a certain point where
the CPU and the GPU act differently. With a small batch size, there is no advantage of
using GPU over CPU; the suggested reason for that is the fact that the CPU clock is higher
than the GPU clock, and because the amount of data is small, the overhead of loading the
data to the GPU memory is greater than the improvement in performance by the parallel
calculation method. As the batch size increases, the advantage of the GPU is manifested
and the GPU reaches a 250% faster processing time compared to the CPU. It can be seen in
Figure 2 that above a batch size of 1024, the running time of the GPU stays steady (10 s for
100 epochs) even though the batch size increases, while the CPU running time gets longer.
One suggested explanation for this phenomenon is that with a batch size above 1024, the
data loading time to the memory is negligible compared to the calculation time, and as the
calculation process by the GPU is performed in parallel; as long as the GPU’s cores are not
fully loaded, there is no major change in the calculation duration even when the amount
of data increases. However, in the CPU, it seems that above a batch size of 512 the serial
calculation takes longer than the parallel one on the GPU, even though the clock speed of
the CPU is higher.



Mathematics 2022, 10, 4189 13 of 16

Mathematics 2022, 10, x FOR PEER REVIEW 13 of 17 
 

 

The experiment includes measuring the effect of changing the batch size parameter of 
the ANN training. Increasing the batch size will cause a larger matrix multiplication; since 
the matrix multiplications are parallelizable operations, increasing the batch size is 
expected to shorten the calculation time of the GPU compared to the CPU. Above a certain 
batch size value, a full batch of training data cannot fit into the GPU memory, which might 
cause a deceleration in the GPU performance. Figure 2 presents the results of the CPU vs. 
GPU experiment. As can be seen in Figure 2, the small batch size has a longer running time; 
as the batch size increases, the running time of the training gets shorter until a certain point 
where the CPU and the GPU act differently. With a small batch size, there is no advantage 
of using GPU over CPU; the suggested reason for that is the fact that the CPU clock is 
higher than the GPU clock, and because the amount of data is small, the overhead of 
loading the data to the GPU memory is greater than the improvement in performance by 
the parallel calculation method. As the batch size increases, the advantage of the GPU is 
manifested and the GPU reaches a 250% faster processing time compared to the CPU. It 
can be seen in Figure 2 that above a batch size of 1024, the running time of the GPU stays 
steady (10 s for 100 epochs) even though the batch size increases, while the CPU running 
time gets longer. One suggested explanation for this phenomenon is that with a batch size 
above 1024, the data loading time to the memory is negligible compared to the calculation 
time, and as the calculation process by the GPU is performed in parallel; as long as the 
GPU’s cores are not fully loaded, there is no major change in the calculation duration even 
when the amount of data increases. However, in the CPU, it seems that above a batch size 
of 512 the serial calculation takes longer than the parallel one on the GPU, even though 
the clock speed of the CPU is higher. 

 
Figure 2. GPU vs. CPU running time. 

6. Discussion 
The DPDP method showed that it fits both small and large organizations with 

different sizes of datasets. It showed that it is flexible enough to get different types of 
features, with different scales and units, and in all the tested cases it out-performed the 
other traditional prediction methods. Nevertheless, the small organization had a less 
significant improvement compared to the large organization. The reason is that the 
amount and the quality of the data directly affect the ANN training and the accuracy of 
the DPDP results. The small organization had provided a very small number of recorded 
projects, which provided fewer examples for the tool to learn from. Because of this, an 
organization with larger historical data will more likely derive a greater benefit from this 
tool. 

An important aspect that stood out in the results was the immunity of the DPDP 
method to noises. The differences between datasets hardly affected the average error of 

Figure 2. GPU vs. CPU running time.

6. Discussion

The DPDP method showed that it fits both small and large organizations with different
sizes of datasets. It showed that it is flexible enough to get different types of features,
with different scales and units, and in all the tested cases it out-performed the other
traditional prediction methods. Nevertheless, the small organization had a less significant
improvement compared to the large organization. The reason is that the amount and the
quality of the data directly affect the ANN training and the accuracy of the DPDP results.
The small organization had provided a very small number of recorded projects, which
provided fewer examples for the tool to learn from. Because of this, an organization with
larger historical data will more likely derive a greater benefit from this tool.

An important aspect that stood out in the results was the immunity of the DPDP
method to noises. The differences between datasets hardly affected the average error
of the DPDP prediction. The three datasets A, B, and C were randomly divided and
used for training, validation, and accuracy tests. The variance between the three groups is
perceptible by looking at the traditional method prediction results; group A in Organization
1 seems to include many projects that experienced issues that were not anticipated by the
traditional prediction method. This is shown by the values of max error, MAPE, and the
differences between MAE and RMSE. However, the DPDP method’s variance in errors
between the groups is quite small, and the results were not much different than in the other
dataset groups. This fact indicates the capability of the DPDP method to provide a stable
average error even with projects that are outliers in some way. In all of the performed tests,
the variance of the errors had significantly decreased compared to the other traditional
methods. This is an important feature for a prediction tool, as it helps to have more certainty
in the prediction error range, which is important when evaluating the project risks.

To keep the DPDP tool up to date and to maintain its accuracy, it is recommended to
retrain the tool often with new records of project data. In some organizations, it can get
to a point where this training is being done daily or even a couple of times a day. Smaller
datasets will probably need frequent retraining, as every record is more significant. In large
datasets adding a small number of records will probably not affect the results too much,
so less frequent retraining is required. As training ANN with a large dataset consumes a
lot of computing resources and may take a long time, the use of a GPU with this tool is
recommended in order to produce an outcome in a reasonable timeframe. The reduction in
time can be effective with the use of a GPU as the model is being trained hundreds of times
until the optimal architecture is found. The CPU vs. GPU experiment results provided
insights into how to optimize the ANN training parameters in order to take advantage
of and maximize the GPU capabilities. The GPU performance analysis had shown an
improvement of 250% in processing time compared to the CPU. Nevertheless, as today’s



Mathematics 2022, 10, 4189 14 of 16

tools are moving to cloud computing, the cost of running time is also a factor to take into
account when considering which hardware to use. In cloud computing, the GPU server
cost is significantly higher than the CPU cost. At the time of conducting this study, the cost
of a cloud GPU can be more than 1000% higher than a cloud CPU [65]. The organization
that chooses to use a tool based on the DPDP method will need to find the balance between
the time required versus the cost of GPU cloud computing. An important limitation of this
tool is its optimization per project. Although the DPDP method significantly improved the
prediction accuracy, it is not the optimal solution for each project.

7. Conclusions

The DPDP method is built to fit different types of projects and different datasets; it
cannot be optimal for all of them. A dedicated model designed for a specific project or type
of dataset can potentially produce better results than the presented tool but will require an
additional effort and redesign to fit other types of data, which is not always practical for an
organization. Future work can include more optimization of the DPDP tool with additional
validation on more datasets, finding the upper and lower boundaries of the amount of data
this tool has and improving its performance. In addition, a future study can compare the
performance of the presented DPDP tool with other AI prediction tools built and optimized
according to the project type, data type, or organization. Such a study would measure the
expected improvement in prediction accuracy and try to find the point of equivalence in
resources, time, cost, etc. of building a dedicated prediction model vs. using an existing
general prediction tool.

Author Contributions: Conceptualization, I.L. and A.S.; methodology, I.L. and A.S.; software, I.L.;
validation, I.L. and A.S.; formal analysis, I.L.; investigation, I.L.; resources, I.L. and A.S.; data curation,
I.L.; writing—original draft preparation, I.L.; writing—review and editing, A.S.; visualization, I.L.;
supervision, A.S.; project administration, A.S.; funding acquisition, A.S. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: All data are presented in the main text.

Acknowledgments: We would like to thank all who gave us support to complete this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

ANN Artificial Neural Network
GPU Graphics Processing Unit
CPM Critical Path Method
PERT Program Evaluation and Review Technique
AI Artificial Intelligence
ML Machine Learning
GA Genetic Algorithm
DPDP Dynamic Project Duration Prediction
MAE Mean Absolute Error
RMSE Root Mean Square Error
MAPE Mean Absolute Percent Error

References
1. Project Management Body of Knowledge (PMBOK® Guide 7th Edition); Project Management Institute: Newton Square, PA, USA, 2021.
2. Lishner, I.; Shtub, A. Measuring the success of Lean and Agile projects: Are cost, time, scope and quality equally important?

J. Mod. Proj. Manag. 2019, 7, 139–145.
3. Barlow, G.; Tubb, A.; Riley, G. Driving business performance: Project Management Survey 2017. Wellingt. N. Z. KPMG N. Z. 2017.
4. The Standish Group. CHAOS Manifesto Report. 2015.
5. PWC. The Third Global Survey on the Current State of Project Management. 2012.



Mathematics 2022, 10, 4189 15 of 16

6. Szwarcfiter, C.; Herer, Y.T.; Shtub, A. Project scheduling in a lean environment to maximize value and minimize overruns. J. Sched.
2022, 25, 177–190. [CrossRef]

7. Hanzalek, Z.; Hanen, C. The impact of core precedences in a cyclic RCPSP with precedence delays. J. Sched. 2014, 18, 275–284.
[CrossRef]

8. Ashtiani, B.; Leus, R.; Aryanezhad, M.-B. New competitive results for the stochastic resource-constrained project scheduling
problem: Exploring the benefits of pre-processing. J. Sched. 2009, 14, 157–171. [CrossRef]

9. Gantt, H.L. A Graphical Daily Balance in Manufacture. Trans. Am. Soc. Mech. Eng. 1903, 24, 1322–1336.
10. Petersen, P.B. The evolution of the Gantt chart and its relevance today. J. Manag. Issues 1991, 3, 131–155.
11. Wilson, J.M. Gantt charts: A centenary appreciation. Eur. J. Oper. Res. 2003, 149, 430–437. [CrossRef]
12. Moore, D.A.; Healy, P.J. The trouble with overconfidence. Psychol. Rev. 2008, 115, 502–517. [CrossRef]
13. König, C.J. Anchors distort estimates of expected duration. Psychol. Rep. 2005, 96, 253–256. [CrossRef]
14. Hill, J.; Thomas, L.C.; Allen, D.E. Experts’ estimates of task durations in software development projects. Int. J. Proj. Manag. 2000,

18, 13–21. [CrossRef]
15. Josephs, R.A.; Hahn, E.D. Bias and accuracy in estimates of task duration. Organ. Behav. Hum. Decis. Process. 1995, 61, 202–213.

[CrossRef]
16. Burt, C.D.B.; Kemp, S. Construction of activity duration and time management potential. Appl. Cogn. Psychol. 1994, 8, 155–168.

[CrossRef]
17. White, R.W.; Awadallah, A.H. Task duration estimation. In Proceedings of the Twelfth ACM International Conference on Web

Search and Data Mining, Melbourne, Australia, 11–15 February 2019; pp. 636–644.
18. König, C.J.; Wirz, A.; Thomas, K.E.; Weidmann, R.-Z. The effects of previous misestimation of task duration on estimating future

task duration. Curr. Psychol. 2014, 34, 1–13. [CrossRef]
19. López-Martin, C.; Chavoya, A.; Meda-Campaña, M.E. Use of a feedforward neural network for predicting the development

duration of software projects. In Proceedings of the 12th International Conference on Machine Learning and Applications, Miami,
FL, USA, 4–7 December 2013; Volume 2, pp. 156–159.

20. Berlin, S.; Raz, T.; Glezer, C.; Zviran, M. Comparison of estimation methods of cost and duration in IT projects. Inf. Softw. Technol.
2009, 51, 738–748. [CrossRef]

21. Anderson, J.A. An Introduction to Neural Networks; MIT Press: Cambridge, MA, USA, 1995.
22. Reed, R.; Marks, R.J., II. Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks; MIT Press: Cambridge, MA,

USA, 1999.
23. Tetko, I.V.; Livingstone, D.J.; Luik, A.I. Neural network studies. 1. Comparison of overfitting and overtraining. J. Chem. Inf.

Comput. Sci. 1995, 35, 826–833. [CrossRef]
24. Lippmann, R.P. Multi-style training for robust isolated-word speech recognition. In Proceedings of the IEEE International

Conference on Acoustics, Speech, and Signal Processing, Dallas, TX, USA, 6–9 April 1987; Volume 4.
25. Heaton, J.; Goodfellow, I.; Bengio, Y.; Courville, A. Deep learning. Genet. Program. Evolvable Mach. 2017, 19, 305–307. [CrossRef]
26. Kolmogorov, A.N. On the representation of continuous functions of many variables by superposition of continuous functions

of one variable and addition. In Doklady Akademii Nauk; Russian Academy of Sciences: Moscow, Russia, 1957; Volume 114,
pp. 953–956.

27. Weigend, A. On overfitting and the effective number of hidden units. In Proceedings of the 1993 Connectionist Models Summer
School, Lawrence Erlbaum Associates, NJ, USA, 1994; Volume 1, pp. 335–342.

28. Sarle, W.S. Stopped training and other remedies for overfitting. Proc. 27th Symp. Interface Comput. Sci. Stat. 1996, 352–360.
29. Berry, M.J.A.; Linoff, G.S. Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management; John Wiley & Sons:

Hoboken, NJ, USA, 2004.
30. Swingler, K. Applying Neural Networks: A Practical Guide; Morgan Kaufmann: San Francisco, CA, USA, 1996.
31. Boger, Z.; Guterman, H. Knowledge extraction from artificial neural network models. In Proceedings of the 1997 IEEE International

Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, Orlando, FL, USA, 12–15 October
1997; Volume 4, pp. 3030–3035.

32. Zhong, Z.; Yan, J.; Wu, W.; Shao, J.; Liu, C.-L. Practical block-wise neural network architecture generation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2423–2432.

33. Domashova, J.V.; Emtseva, S.S.; Fail, V.S.; Gridin, A.S. Selecting an optimal architecture of neural network using genetic algorithm.
Procedia Comput. Sci. 2021, 190, 263–273. [CrossRef]

34. Mahajan, R.; Kaur, G. Neural networks using genetic algorithms. Int. J. Comput. Appl. 2013, 77, 6–11. [CrossRef]
35. Idrissi, M.A.J.; Ramchoun, H.; Ghanou, Y.; Ettaouil, M. Genetic algorithm for neural network architecture optimization. In

Proceedings of the 2016 3rd International Conference on Logistics Operations Management (GOL), Fez, Morocco, 23–25 May
2016; pp. 1–4.

36. Abbasi, H.; Seyedain Ardabili, S.M.; Mohammadifar, M.A.; Emam-Djomeh, Z. Comparison of trial and error and genetic algorithm
in neural network development for estimating farinograph properties of wheat-flour dough. Nutr. Food Sci. Res. 2015, 2, 29–38.

37. Majdi, A.; Beiki, M. Evolving neural network using a genetic algorithm for predicting the deformation modulus of rock masses.
Int. J. Rock Mech. Min. Sci. 2010, 47, 246–253. [CrossRef]

http://doi.org/10.1007/s10951-022-00727-9
http://doi.org/10.1007/s10951-014-0399-4
http://doi.org/10.1007/s10951-009-0143-7
http://doi.org/10.1016/S0377-2217(02)00769-5
http://doi.org/10.1037/0033-295X.115.2.502
http://doi.org/10.2466/pr0.96.2.253-256
http://doi.org/10.1016/S0263-7863(98)00062-3
http://doi.org/10.1006/obhd.1995.1016
http://doi.org/10.1002/acp.2350080206
http://doi.org/10.1007/s12144-014-9236-3
http://doi.org/10.1016/j.infsof.2008.09.007
http://doi.org/10.1021/ci00027a006
http://doi.org/10.1007/s10710-017-9314-z
http://doi.org/10.1016/j.procs.2021.06.036
http://doi.org/10.5120/13549-1153
http://doi.org/10.1016/j.ijrmms.2009.09.011


Mathematics 2022, 10, 4189 16 of 16

38. Mohebbi, A.; Taheri, M.; Soltani, A. A neural network for predicting saturated liquid density using genetic algorithm for pure
and mixed refrigerants. Int. J. Refrig. 2008, 31, 1317–1327. [CrossRef]

39. Saemi, M.; Ahmadi, M.; Varjani, A.Y. Design of neural networks using genetic algorithm for the permeability estimation of the
reservoir. J. Pet. Sci. Eng. 2007, 59, 97–105. [CrossRef]

40. Kim, G.-H.; Yoon, J.-E.; An, S.-H.; Cho, H.-H.; Kang, K.-I. Neural network model incorporating a genetic algorithm in estimating
construction costs. Build. Environ. 2004, 39, 1333–1340. [CrossRef]

41. Gupta, T.K.; Raza, K. Optimization of ANN architecture: A review on nature-inspired techniques. Mach. Learn. Bio-Signal Anal.
Diagn. Imaging 2019, 159–182. [CrossRef]

42. Alibrahim, H.; Ludwig, S.A. Hyperparameter optimization: Comparing genetic algorithm against grid search and bayesian
optimization. In Proceedings of the 2021 IEEE Congress on Evolutionary Computation (CEC), Kraków, Poland, 28 June 2021–1 July
2021; pp. 1551–1559.

43. Acharya, R.Y.; Charlot, N.F.; Alam, M.M.; Ganji, F.; Gauthier, D.; Forte, D. Chaogate parameter optimization using bayesian
optimization and genetic algorithm. In Proceedings of the 2021 22nd International Symposium on Quality Electronic Design
(ISQED), Santa Clara, CA, USA, 7–9 April 2021; pp. 426–431.

44. Trotter, M.; Liu, G.; Wood, T. Into the storm: Descrying optimal configurations using genetic algorithms and bayesian optimization.
In Proceedings of the 2017 IEEE 2nd International Workshops on Foundations and Applications of Self* Systems (FAS* W),
Tucson, AZ, USA, 18–22 September 2017; pp. 175–180.

45. Roman, I.; Ceberio, J.; Mendiburu, A.; Lozano, J.A. Bayesian optimization for parameter tuning in evolutionary algorithms.
In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016;
pp. 4839–4845.

46. Masters, D.; Luschi, C. Revisiting small batch training for deep neural networks. arXiv 2018, arXiv:1804.07612.
47. Mosavi, A.; Ozturk, P.; Chau, K.W. Flood prediction using machine learning models: Literature review. Water 2018, 10, 1536.

[CrossRef]
48. Neu, D.A.; Lahann, J.; Fettke, P. A systematic literature review on state-of-the-art deep learning methods for process prediction.

Artif. Intell. Rev. 2021, 137, 106024. [CrossRef]
49. Bertolini, M.; Mezzogori, D.; Neroni, M.; Zammori, F. Machine Learning for industrial applications: A comprehensive literature

review. Expert Syst. Appl. 2021, 175, 114820. [CrossRef]
50. Van Klompenburg, T.; Kassahun, A.; Catal, C. Crop yield prediction using machine learning: A systematic literature review.

Comput. Electron. Agric. 2020, 177, 105709. [CrossRef]
51. Guo, Z.; Chen, L.; Gui, L.; Du, J.; Yin, K.; Do, H.M. Landslide displacement prediction based on variational mode decomposition

and WA-GWO-BP model. Landslides 2020, 17, 567–583. [CrossRef]
52. Wen, J.; Li, S.; Lin, Z.; Hu, Y.; Huang, C. Systematic literature review of machine learning based software development effort

estimation models. Inf. Softw. Technol. 2012, 54, 41–59. [CrossRef]
53. Hsu, M.-W.; Dacre, N.; Senyo, P.K. Applied algorithmic machine learning for intelligent project prediction: Towards an AI

framework of project success. Adv. Proj. Manag. 2021, 21. [CrossRef]
54. Ling, F.Y.Y.; Liu, M. Using neural network to predict performance of design-build projects in Singapore. Build. Environ. 2004,

39, 1263–1274. [CrossRef]
55. de Barcelos Tronto, I.F.; da Silva, J.D.S.; Sant’Anna, N. An investigation of artificial neural networks based prediction systems in

software project management. J. Syst. Softw. 2008, 81, 356–367. [CrossRef]
56. Pospieszny, P.; Czarnacka-Chrobot, B.; Kobylinski, A. An effective approach for software project effort and duration estimation

with machine learning algorithms. J. Syst. Softw. 2018, 137, 184–196. [CrossRef]
57. Alami, A. Why do information technology projects fail? Procedia Comput. Sci. 2016, 100, 62–71. [CrossRef]
58. Majid, I.A. Causes and Effects of Delays in ACEH Construction Industry; Universiti Teknologi Malaysia: Johor Bahru, Malaysia, 2006.
59. Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University Press: Oxford, UK, 1995.
60. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
61. Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing

average model performance. Clim. Res. 2005, 30, 79–82. [CrossRef]
62. Goodwin, P.; Lawton, R. On the asymmetry of the symmetric MAPE. Int. J. Forecast. 1999, 15, 405–408. [CrossRef]
63. Brownlee, J. Why One-Hot Encode Data in Machine Learning; Machine Learning Mastery. 2017. Available online: https:

//machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning/ (accessed on 1 November 2022).
64. Agarap, A.F. Deep learning using rectified linear units (relu). arXiv 2018, arXiv:1803.08375.
65. Google Cloud GPU Pricing. Available online: http://cloud.google.com/compute/gpus-pricing (accessed on 1 July 2022).

http://doi.org/10.1016/j.ijrefrig.2008.04.008
http://doi.org/10.1016/j.petrol.2007.03.007
http://doi.org/10.1016/j.buildenv.2004.03.009
http://doi.org/10.1016/B978-0-12-816086-2.00007-2
http://doi.org/10.3390/w10111536
http://doi.org/10.1007/s10462-021-09960-8
http://doi.org/10.1016/j.eswa.2021.114820
http://doi.org/10.1016/j.compag.2020.105709
http://doi.org/10.1007/s10346-019-01314-4
http://doi.org/10.1016/j.infsof.2011.09.002
http://doi.org/10.2139/ssrn.3823900
http://doi.org/10.1016/j.buildenv.2004.02.008
http://doi.org/10.1016/j.jss.2007.05.011
http://doi.org/10.1016/j.jss.2017.11.066
http://doi.org/10.1016/j.procs.2016.09.124
http://doi.org/10.3354/cr030079
http://doi.org/10.1016/S0169-2070(99)00007-2
https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning/
https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning/
http://cloud.google.com/compute/gpus-pricing

	Introduction 
	Literature Review 
	Optimization of the Architecture of an Artificial Neural Network 
	Optimization of Training an Artificial Neural Network 
	Machine Learning for Prediction Project Outcomes 

	Prediction Tool Description 
	DPDP Tool Architecture 
	Data Processing Phase 
	ANN Model Optimization 
	Genetic Algorithm 


	Dataset Description 
	Results 
	Prediction Accuracy Test 
	Generated Model Structure 
	CPU/GPU Performance Analysis 

	Discussion 
	Conclusions 
	References

