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Abstract: Here, we analyze the (2+1)-dimensional stochastic modified Kordeweg–de Vries (SmKdV)
equation perturbed by multiplicative white noise in the Stratonovich sense. We apply the mapping
method to obtain new trigonometric, elliptic, and rational stochastic fractional solutions. Because of
the importance of the KdV equation in characterizing the behavior of waves in shallow water, the
obtained solutions are beneficial in interpreting certain fascinating physical phenomena. We plot
our figures in MATLAB and show several 3D and 2D graphical representations to show how the
multiplicative white noise affects the solutions of the SmKdV. We show that the white noise around
zero stabilizes SmKdV solutions.
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1. Introduction

The development of innovative traveling wave solutions for non-linear partial differ-
ential equations (NLPDEs) is crucial and important from many viewpoints for the most
physical mathematical phenomena.The non-linear wave phenomenon occurs in a variety of
disciplines of science and engineering, including meteorology, geology, solid-state physics,
biology, chemical kinematics, fluid-mechanics, ocean engineering, and chemical physics [1–4].
In non-linear wave equations, the non-linear wave phenomena of convection, diffusion,
dispersion, response, and dissipation are very significant. Consequently, one of the central
issues of interest in physics and mathematics has been the study of exact solutions to
those equations. Numerous techniques, such as the generalized Kudryashov method [5],
sine-Gordon expansion [6,7], Exp-function [8], perturbation [9,10], Lie symmetry [11], Ri-
catti equation expansion [12], sn-ns method [13], Bernoulli sub-equation function [14],
improved tan(ϕ/2)-expansion [15], tanh-sech [16–18], and (G′/G)-expansion [19], have
been explored, and some of them have been created in the process of looking for exact
solutions to those equations.

One of the most familiar models for NLPDEs is the Korteweg–de Vries (KdV) equation:

ϕt + 6ϕϕx + ϕxxx = 0. (1)

The KdV equation explains ion acoustic-waves in plasma, acoustic-waves on a crystal
lattice, and long internal waves in a density-stratified ocean and in weakly interacting
shallow-water waves. Numerous researchers have explored various forms of the KdV
equation using different methodologies and approaches from a variety of perspectives (see,
for example, Refs. [20–27] and the references therein).
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On the other hand, the modified Kordeweg–de Vries (mKdV) equation

ϕt + 6ϕ2 ϕx + ϕxxx = 0, (2)

has had a significant impact on the history of soliton theory. Additionally, it was employed
to create an unlimited number of conservation laws for the KdV equation [28], that led to
the identification of the Lax pair for the KdV equation and the invention of the inverse
scattering transform [29]. Many authors have addressed exact solutions using different
methods, such as the Exp-function [30], first integral [31], (G′/G)-expansion [32], and tanh
methods [33], Bifurcation [34], etc.

A new (2+1)-dimensional mKdV equation that depends on the extended Lax equation
was established and reported in 2019 [35] in the following form

ϕt + 6ϕ2(ϕy − ϕx)− ϕxxx + ϕyyy + 3ϕxxy − 3ϕxyy = 0. (3)

It is worth noting that if ϕ does not rely on x, i.e., ϕ = ϕ(y, t), then Equation (3) turns
out the mKdV equation

ϕt + 6ϕ2 ϕy + ϕyyy = 0. (4)

If we rewrite the variable y as x, we have the mKdV Equation (2). The mKdV equation
has multiple uses, including fluid mechanics [36], the dynamics of traffic flow [37], and the
study of waves propagating in plasma [38]. Additionally, it is utilized in non-linear optics
to explain pulses made up of a few optical cycles [39].

In recent years, the realization of adding random effects when predicting, modeling,
simulating, and evaluating complex systems has been extensively appreciated in telecom-
munications, cryptography, biology, computer science, signal processing, climatic dynamics,
physics, chemistry, geophysics, neuroscience, ecology, and other domains. Therefore, here,
we consider Equation (3), which is derived by multiplicative noise, in the following form:

dϕ + [6ϕ2(ϕy − ϕx)− ϕxxx + ϕyyy + 3ϕxxy − 3ϕxyy]dt = σϕ ◦ dβ. (5)

where β(t) is the white noise and σ is the intensity of noise.
If we evaluate the stochastic integral in the middle, the integral

∫ t
0 ϕ(τ)dβ(τ) is called the

Stratonovich stochastic integral (denoted by
∫ t

0 ϕ(τ) ◦ dβ(τ)). If we evaluate it at the left end,
the integral

∫ t
0 ϕ(τ)dβ(τ) is called the Itô stochastic integral (denoted by

∫ t
0 ϕ(τ)dβ(τ)) [40].

The Itô integral and Stratonovich integral have the following relationship:

∫ t

0
σϕ(τ)dβ(τ) =

∫ t

0
σϕ(τ) ◦ dβ(τ)− σ2

2

∫ t

0
ϕ(τ)dτ. (6)

Our objective is to apply the mapping method to determine the exact stochastic
solutions of the SmKdV Equation (5). The solutions provided would be tremendously
helpful to physicists in characterizing some important physical phenomena. Additionally,
we explore the influence of noise on the analytical solutions of the SmKdV Equation (5) by
introducing several figures through the use of MATLAB software.

The following is the order of the article: In Section 2, we employ wave transformation
to attain the wave equation for the stochastic SmKdV Equation (5). In Section 3, we describe
the mapping method, which we use in this article. In Section 4, the mapping method is
used to ensure the exact stochastic solution of the SmKdV Equation (5). Next, in Section 5,
we can see the influence of white noise on the acquired solutions of the SmKdV equation.
Finally, the article’s conclusions are provided.

2. Traveling Wave Equation for SmKdV

The wave equation for the SmKdV Equation (5) is obtained using the transformation:

ϕ(x, y, t) = ψ(µ)e[σβ(t)−σ2t], µ = µ1x + µ2y + µ3t, (7)



Mathematics 2022, 10, 4212 3 of 9

where ψ is a real deterministic function and µ1, µ2, µ3 are non-zero constants. We note that

dϕ = [µ3ψ′dt + σψdβ− 1
2

σ2ψdt]e[σβ(t)−σ2t]

= [µ3ψ′dt + σψ ◦ dβ]e[σβ(t)−σ2t], (8)

and

ϕx = µ1ψ′e[σβ(t)−σ2t], ϕxxx = µ3
1ψ′′′e[σβ(t)−σ2t],

ϕy = µ2ψ′e[σβ(t)−σ2t], ϕyyy = µ3
2ψ′′′e[σβ(t)−σ2t]

ϕxxy = µ2
1µ2ψ′′′e[σβ(t)−σ2t], ϕxyy = µ1µ2

2ψ′′′e[σβ(t)−σ2t]. (9)

Inserting Equation (7) into (5) and utilizing (8) and (9), we obtain

(µ2 − µ1)
3ψ′′′ + µ3ψ′ + 6(µ2 − µ1)ψ

2ψ′e[2σβ(t)−2σ2t] = 0. (10)

Considering the expectations on both sides, we attain

(µ2 − µ1)
3ψ′′′ + µ3ψ′ + 6(µ2 − µ1)ψ

2ψ′e−2σ2tEe[2σβ(t)] = 0. (11)

Since β(t) is the normal process, then E(e2σβ(t)) = e2σ2t. Therefore, Equation (11)
becomes

(µ2 − µ1)
3ψ′′′ + µ3ψ′ + 6(µ2 − µ1)ψ

2ψ′ = 0. (12)

Integrating Equation (12) once and setting the constant of integration equal to zero,
we have the following Duffing equation

ψ′′ + `1ψ3 + `2ψ = 0, (13)

where
`1 =

2
(µ2 − µ1)2 and `2 =

µ3

(µ2 − µ1)3 .

3. The Description of Mapping Method

Let us now explain the mapping method stated in Ref. [41]. Supposing that the
solutions to Equation (13) are

ψ(µ) =
m

∑
i=0

h̄iFi(µ), (14)

where h̄i, for i = 1, 2, . . . h̄m, are undefined constants to be evaluated and F fulfills the first
type of elliptic equation

F′ =
√

r + qF2 + pF4, (15)

where the parameters r, q, and p are real.
We see that Equation (15) has several solutions based on r, q, and p as following

Table 1:

Table 1. All solutions for Equation (15) for various r, q, and p values.

Case p q r F(µ)

1 κ2 −(1 + κ2) 1 sn(µ)
2 1 2κ2 − 1 −κ2(1− κ2) ds(µ)
3 1 2− κ2 (1− κ2) cs(µ)
4 −κ2 2κ2 − 1 (1− κ2) cn(µ)
5 −1 2− κ2 (κ2 − 1) dn(µ)
6 κ2

4
(κ2−2)

2
1
4

sn(µ)
1±dn(µ)
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Table 1. Cont.

Case p q r F(µ)

7 κ2

4
(κ2−2)

2
κ2

4
sn(µ)

1±dn(µ)

8 −1
4

(κ2+1)
2

−(1−κ2)2

4
κcn(µ)± dn(µ)

9 κ2−1
4

(κ2+1)
2

(κ2−1)
4

dn(µ)
1±sn(µ)

10 1−κ2

4
(1−κ2)

2
(1−κ2)

4
cn(µ)

1±sn(µ)

11 (1−κ2)2

4
(1−κ2)2

2
1
4

sn(µ)
dn±cn(µ)

12 1 0 0 c
µ

13 0 1 0 ceµ

Where cn(µ) = cn(µ, κ), sn(µ) = sn(µ, κ), dn(µ) = dn(µ, κ), for 0 < κ < 1 are the
Jacobi elliptic functions (JEFs). If κ → 1, then JEFs are transformed into the following
hyperbolic functions:

cs(µ) → csch(µ), sn(µ)→ tanh(µ), cn(µ)→ sech(µ),

dn(µ) → sech(µ), ds→ csch(µ).

4. Exact Solutions of mKdV

To find the parameter m, let us equalize ψ′′ with ψ3 in Equation (13) as

m + 2 = 3m =⇒ m = 1.

Rewriting Equation (15) with m = 1 as

ψ(µ) = h̄0 + h̄1F(µ). (16)

Differentiating Equation (16) twice and using (15), we obtain

ψ′′ = h̄1qF + h̄1 pF3. (17)

Plugging Equations (16) and (17) into Equation (13) we have

(h̄1 p + `1h̄3
1)F3 + 3h̄0h̄2

1`1F2 + (h̄1q + 3`1h̄2
0h̄1 + `2h̄1)F + (`1h̄3

0 + `2h̄0) = 0.

Comparing each coefficient of Fj with zero, we attain

h̄1 p + `1h̄3
1 = 0,

3h̄0h̄2
1`1 = 0,

h̄1q + 3`1h̄2
0h̄1 + `2h̄1 = 0,

and
`1h̄3

0 + `2h̄0 = 0.

When we solve these equations, we obtain

h̄0 = 0, h̄1 = ±
√−p

`1
, q = −`2.

Therefore, Equation (13) has the solution:

ψ(µ) = ±
√−p

`1
F(µ), (18)
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for p < 0 where `1 = 2
(µ2−µ1)2 > 0. There are many cases for the solutions ψ(µ) of

Equation (13) relying on p as shown in Table 1, as following Table 2:

Table 2. All solutions for wave Equation (13) when p < 0.

Case p q r F(µ) ψ(µ)

1 −κ2 2κ2 − 1 (1− κ2) cn(µ) ±
√
−p
`1

cn(µ)

2 −1 2− κ2 (κ2 − 1) dn(µ) ±
√
−p
`1

dn(µ)

3 −1
4

(κ2+1)
2

−(1−κ2)2

4
κcn(µ)± dn(µ) ±

√
−p
`1
[κcn(µ)± dn(µ)]

4 κ2−1
4

(κ2+1)
2

(κ2−1)
4

dn(µ)
1±sn(µ) ±

√
−p
`1

dn(µ)
1±sn(µ)

If κ → 1, then Table 2 degenerates to Table 3.

Table 3. All solutions for wave Equation (13) when κ → 1 and p < 0.

Case p q r F(µ) ψ(µ)

1 −1 1 0 sech(µ) ±
√

1
`1

sech(µ)

2 −1
4 2 0 2sech(µ) ±

√
1
`1

sech(µ)

Now, by utilizing Table 2 (or Table 3 when κ → 1), we can have the exact solutions of
the SmKdV Equation (5) as follows:

ϕ(x, y, t) = ψ(µ)e[σβ(t)−σ2t]. (19)

Remark 1. We can use various methods, including the Adomian decomposition, exp(−ϕ)-expansion
method, improved tan( φ(ρ)

2 )expansion, extended tanh method, Exp-function, Hirota bilinear, Weier-
strass elliptic function, extended trial equation, complex hyperbolic function, etc., to obtain various
solutions.

5. The Effect of Noise on SmKdV Solutions

Here, we address the effect of white noise on the analytical solutions of the SmKdV
Equation (5). We give various figures to describe the behavior of these solutions. For
various σ (noise strength), we simulate some figures for obtained solutions, such as

ϕ(x, y, t) =
κ√
2
|µ2 − µ1|cn(µ1x + µ2y + µ3t)e[σβ(t)−σ2t], (20)

and
ϕ(x, y, t) =

1√
2
|µ2 − µ1|sech(µ1x + µ2y + µ3t)e[σβ(t)−σ2t]. (21)

Let us first fix the parameters µ1, µ2, and µ3 as follows: µ1 = 1, µ2 = 0.5, µ3 = −2,
and κ = 0.5. Additionally, let y = 0, x ∈ [0, 5] and t ∈ [0, 5]. In the next Figure 1, when
there is no noise (i.e., σ = 0), we observe that the surface fluctuates
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case p q r F (µ) ψ(µ)

1 −1 1 0 sech(µ) ±
√

1
`1
sech(µ)

2 −1
4 2 0 2sech(µ) ±

√
1
`1
sech(µ)

Table 3. All solutions for wave Eq. (13) when κ→ 1 and p < 0

Now, by utlizing the previous Table 2 (or Table 3 when κ→ 1), we can have
the analytical solutions of the SmKdV Eq. (5) as follows:

ϕ(x, y, t) = ψ(µ)e[σβ(t)−σ
2t]. (19)

Remark 1 We can use various methods, including the Adomian decomposition

method, the exp(−ϕ)-expansion method, improved tan(φ(ρ)2 )-expansion, extend-
ed tanh-method, Exp-function, Hirota bilinear, Weierstrass elliptic function, ex-
tended trial equation, complex hyperbolic-function, and etc. to get some various
solutions.

5 The influence of noise on SmKdV solutions

Here, we address the influence of white noise on the analytical solutions of the
SmKdV Eq. (5). We provide various graphical representations to describe the
behavior of these solutions. For various σ (noise strength), we simulate some
figures for some obtained solutions such as

ϕ(x, y, t) =
κ√
2
|µ2 − µ1| cn(µ1x+ µ2y + µ3t)e

[σβ(t)−σ2t], (20)

and

ϕ(x, y, t) =
1√
2
|µ2 − µ1| sech(µ1x+ µ2y + µ3t)e

[σβ(t)−σ2t]. (21)

Let us first fix the parameters µ1, µ2 and µ3 as follows µ1 = 1, µ2 = 0.5,
µ3 = −2 and κ = 0.5. Also, let y = 0, x ∈ [0, 5] and t ∈ [0, 5]. In the next
Figure 1, When there is no noise (i.e. σ = 0), we observe that the surface
fluctuates

σ = 0 σ = 0
Fig.1, 3D-diagram of solution ϕ(x, y, t) in Eqs. (20) and (21)

6

Figure 1. 3D-diagram of solution ϕ(x, y, t) in Equations (20) and (21).

While we see that in Figures 2 and 3, after minor transit behaviors, the surface turn
into more planar:

While we see that in Figures 2, 3 after minor transit behaviors, the surface
becomes more planar:

σ = 1 σ = 2
Fig.2, 3D-diagram of solution ϕ(x, y, t) in Eq. (20) for different σ = 1, 2

σ = 1 σ = 2
Fig.3, 3D-diagram of solution ϕ(x, y, t) in Eq. (21) for different σ = 1, 2

In the Figures 4, 5, we draw a two-dimensional graph representing of the
solution ϕ(x, y, t) in Eq. (20) and Eq. (21) to illustrate our previous results as
follows:

7

Figure 2. 3D-diagram of solution ϕ(x, y, t) in Equation (20) for different σ = 1, 2.

While we see that in Figures 2, 3 after minor transit behaviors, the surface
becomes more planar:

σ = 1 σ = 2
Fig.2, 3D-diagram of solution ϕ(x, y, t) in Eq. (20) for different σ = 1, 2

σ = 1 σ = 2
Fig.3, 3D-diagram of solution ϕ(x, y, t) in Eq. (21) for different σ = 1, 2

In the Figures 4, 5, we draw a two-dimensional graph representing of the
solution ϕ(x, y, t) in Eq. (20) and Eq. (21) to illustrate our previous results as
follows:

7

Figure 3. 3D-diagram of solution ϕ(x, y, t) in Equation (21) for different σ = 1, 2.

In Figures 4 and 5, we draw a two-dimensional graph representing the solution
ϕ(x, y, t) in Equations (20) and (21) to illustrate our previous results as follows:
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Figure 4. 2D-diagram of solution ϕ(x, y, t) in Equation (20).

Figure 5. 2D-diagram of solution ϕ(x, y, t) in Equation (21).

6. Conclusions

In this paper, we took into account the stochastic mKdV equation, which was created
in the Stratonovich sense by multiplicative white noise. Utilizing the mapping method, we
were able to obtain exact solutions. These solutions play a vital role in describing a number
of interesting and complicated physical phenomena. Finally, the MATLAB package was
used to demonstrate the effect of multiplicative white noise on the exact solution of the
SmKdV equation.
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