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Abstract: The mathematical modelling and optimization of nonlinear problems arising in diversified
engineering applications is an area of great interest. The Hammerstein structure is widely used in the
modelling of various nonlinear processes found in a range of applications. This study investigates
the parameter optimization of the nonlinear Hammerstein model using the abilities of the marine
predator algorithm (MPA) and the key term separation technique. MPA is a population-based
metaheuristic inspired by the behavior of predators for catching prey, and utilizes Brownian/Levy
movement for predicting the optimal interaction between predator and prey. A detailed analysis of
MPA is conducted to verify the accurate and robust behavior of the optimization scheme for nonlinear
Hammerstein model identification.

Keywords: nonlinear systems; parameter estimation; swarm optimization; marine predator algorithm

MSC: 93C10; 68T20

1. Introduction

The identification of nonlinear systems is considered a challenging task because of the
inherent stiffness and complex system representation [1,2]. A nonlinear system modelled
through the block-oriented Hammerstein structure is relatively a simple approach, where
a nonlinear block is followed by a linear dynamical subsystem [3,4]. The identification
of Hammerstein models is of the utmost importance owing to their ability to model
various nonlinear processes [5–7]. The pioneering work for nonlinear Hammerstein systems
was presented by Narendra et al., in the 1960s, by proposing an iterative identification
algorithm [8]. Chang et al. proposed a non-iterative scheme [9]. Vörös et al. presented
a key term separation principle for the identification of a Hammerstein model [10,11].
Ding et al. introduced hierarchical least squares [12,13] and hierarchical gradient descent
algorithms [14] for the Hammerstein model. Chaudhary et al. introduced the concept
of fractional gradient algorithms for Hammerstein systems by proposing normalized
fractional least mean square (FLMS) [15], sign FLMS [16], multi-innovation FLMS [17],
hierarchical quasi fractional gradient descent [18], and fractional hierarchical gradient
descent [19] algorithms.

Different system identification scenarios have multimodal error surfaces, and tradi-
tional gradient descent-based approaches may converge to a sub-optimal solution [20,21].
The system identification may be expressed as an optimization problem that can be
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solved through a stochastic search methodology such as evolutionary and swarm heuris-
tics [20]. The research community proposed these population-based heuristics for Ham-
merstein model identification. For example, Raja et al. exploited genetic algorithms [22];
Mehmood et al. presented differential evolution [23], weighted differential evolution [24],
and backtracking search heuristics [25]; and Altaf et al. presented adaptive evolutionary
heuristics [26]. The swarm-based optimization heuristics for Hammerstein system iden-
tification include particle swarm optimization [27], cuckoo search algorithm [28], snake
optimizer algorithm [29], and fractional swarming optimization heuristics [30], etc.

Metaheuristics have been applied in different engineering optimization problems.
Heuristics are mainly categorized as (a) swarm intelligence, (b) physics-based, or (c) evo-
lutionary algorithms. Swarm intelligence mimics the behavior of herds present in nature.
Physics-based methods are inspired by the laws of physics, while evolutionary methods
are inspired by biological processes in nature. The significant methods proposed in all of
these domains are summarized in Table 1.

Table 1. Classification of metaheuristics.

Domain Technique

Swarm Intelligence

Particle swarm optimization (PSO) [31,32]
Dwarf Mongoose optimization (DMO) [33,34]

Ant Colony optimization (ACO) [35,36]
Cuckoo search [37,38]

Aquila Optimizer (AO) [39]
Spider monkey optimization [40]

Physics based

Simulated Annealing [41,42]
Gravitational search algorithm [43,44]

Circle search algorithm [45,46]
Colliding bodies optimizer [47]
Transient search optimizer [48]

Big bang big crunch [49]

Evolutionary

Differential Evolution [50,51]
Genetic algorithm [52,53]

Tree growth algorithm [54]
Arithmetic optimization algorithm [55,56]

Genetic programming [57]
Evolutionary strategy [58]

Among the various swarm-intelligence-based techniques, the Marine Predator Algo-
rithm (MPA) [59] has recently been proposed and applied in various applications such as
optimal power flow [60], economic load dispatch [61], wireless sensor network [62], and
path planning [63]. Wadood et al. [64] applied MPA to minimize breakdown in an electrical
power system. Lu et al. [65] applied MPA along with the convolutional neural network for
the optimal detection of lung cancer. Hoang et al. [66] utilized MPA in the optimization of
hyperparameters of support vector machines for remote sensing. Yang et al. [67] applied
multi strategy MPA for semi supervised extreme machine learning for classification.

In this study, we explored MPA for effective parameter estimation of the Hammerstein
structure. The detailed performance evaluation of the proposed scheme for Hammerstein
identification was conducted for different noise conditions. The reliability of the proposed
approach in comparison with the other recently introduced metaheuristics was established
through detailed analyses based on multiple independent executions and statistical tests.

The remainder of the paper is outlined as follows: Section 2 describes the Hammerstein
model structure. Section 3 presents the MPA methodology with a flow chart description.
Section 4 provides the results of detailed simulations in terms of graphical and tabular
representation. Finally, Section 5 concludes the study by presenting the main findings of
the current investigation.
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2. System Model

Considering the Hammerstein output error (HOE) model, whose output is written as

ym(t) = y(t) + ε(t), (1)

where y(t) is the noise free output and ε(t) is the additive white noise. The noise free
output of HOE model is presented in (2)

y(t) +
ng

∑
s=1

gsy(t− s) =
nh

∑
s=0

hsµ(t− s), (2)

where µ(t) is the output of nonlinear block with basis (k1, k2, . . . , kp) and o1, o2, . . . , op
are the corresponding parameters represented as

µ(t) =
p

∑
l=1

olkl(µ(t)).

By choosing µ(t) as the keyterm and applying the keyterm separation principle [18,19],
and letting h0 = 1, then (2) can be expressed as

y(t) = −
ng

∑
s=1

gsy(t− s) +
nh
∑

s=0
hsµ(t− s),

y(t) = −
ng

∑
s=1

gsy(t− s) + h0µ(t) +
nh
∑

s=1
hsµ(t− s),

y(t) = −
ng

∑
s=1

gsy(t− s) +
nh
∑

s=1
hsµ(t− s) +

p
∑

l=1
olkl(µ(t)).

(3)

The parameter vectors g, h, o and information vector δg(t), δh(t), k(t) are presented
in (4) and (5), respectively

g =


g1
g2
...

gng

 ∈ Rng , h =


h1
h2
...

hnh

 ∈ Rnh , o =


o1
o2
...

op

 ∈ Rp, (4)

δg(t) =


−y(t− 1)
−y(t− 2)

...
−y
(
t− ng

)
 ∈ Rng , δh(t) =


µ(t− 1)
µ(t− 2)

...
µ(t− nh)

 ∈ Rnh , k(t) =


k1(µ(t))
k2(µ(t))

...
kp(µ(t))

 ∈ Rp.

(5)
Then, (3) can be expressed as presented in (6)

y(t) = δg
T(t)g + δh

T(t)h + kT(t)o. (6)

3. Methodology

In this section, the MPA-based methodology for the parameter estimation of the
Hammerstein model is presented.

3.1. Marine Predator Algorithm

The MPA is a population-based metaheuristic inspired from the behavior of predators
when catching prey [59]. It utilizes Brownian and Levy movement for the optimal inter-
action between predator and prey. Its mathematical model, pseudocode, and algorithm
flowchart are presented below.



Mathematics 2022, 10, 4217 4 of 22

3.1.1. Formulation

MPA starts with the initialization of the population uniformly distributed over the
search space, as presented in (7).

J0 = Jmin + rand (Jmax − Jmin). (7)

Two matrices were also constructed, the Elite matrix (EM) and Prey matrix (PM), which
consist of the position vector with the best fitness and the proposed random positions
during initialization, respectively, as presented in (8) and (9).

EM =

 JI
1,1 · · · JI

1,b
...

. . .
...

JI
Np,1 · · · JI

Np,b


Np×b

(8)

PM =

 J1,1 · · · J1,b
...

. . .
...

JNp,1 · · · JNp,b


Np×b

, (9)

where JI represents the top predator and Ja,b is the dimension of the prey.

3.1.2. Optimization

The optimization of MPA consists of three phases, as presented below.

Phase I

In this phase, the predator moves faster than the prey by using Brownian movement
for first third of the iterations. The prey matrices are updated as presented in (10) and (11)

→
SSi =

→
RB ⊗

( →
EMi − (

→
RB ⊗

→
PMi)

)
, i = 1, 2, . . . , Np, (10)

→
PMi =

→
PMi + (C.

→
R ⊗

→
SSi), (11)

where RB is the normal distributed vector representing the Brownian movement, C = 0.5,
and R is a vector ∈ [0.1].

Phase II

In this phase, both the prey and predator are moving at the same pace. The prey
moves on Levy movement, while the predator moves using Brownian movement between
one third and two third of the maximum iterations. The updated matrices are presented
in (12)–(15)

→
SSi =

→
RL ⊗

( →
EMi − (

→
RL ⊗

→
PMi)

)
, i = 1, 2, . . . , Np/2, (12)

→
PMi =

→
PMi + (C.

→
R ⊗

→
SSi), (13)

→
SSi =

→
RB ⊗

(→
RB ⊗ (

→
EMi −

→
PMi)

)
, i = 1, 2, . . . , Np, (14)

→
PMi =

→
EMi + (C.DF⊗

→
SSi), (15)

where DF = (1− It
T )

(2 It
T ) is adaptive factor to control stepsize of the predator movement.
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Phase III

In this phase, the predator is moving faster than the prey. The predator moves by
using Levy movement and the prey matrix is updated as presented in (16) and (17)

→
SSi =

→
RL ⊗

(→
RL ⊗ (

→
EMi −

→
PMi)

)
, i = 1, 2, . . . , Np, (16)

→
PMi =

→
EMi + (C.DF⊗

→
SSi). (17)

3.1.3. Fish Aggregating Devices’ (FAD’s) Effect

The fish aggregating devices’ (FAD’s) effect is added in MPA to simulate the natural
behavior of fish, as they spend 80% of their time in immediate locations and 20% of the
time searching for other spaces [59], as presented in (18) and (19)

→
PMi =


→

PMi + DF[Jmin +
→
R ⊗ (Jmax − Jmin)]⊗

→
U, if q ≤ FAD′s (18)

→
PMi + [FAD′s(1− q) + q](

→
PMq1 −

→
PMq2), if q > FAD′s (19)

where FAD′s = 0.2,
→
U is a binary vector, q is a random number ∈ [0, 1], Jmax and Jmin are

the upper and lower bounds, respectively, q1 and q2 are subscripts of the prey matrix. The
flowchart for MPA is shown in Figure 1.

1 

 

 

Figure 1. MPA flowchart.

4. Performance Analysis

The detailed performance analysis of MPA for the HOE model is presented in this
section. HOE model identification was conducted on numerous noise levels, several
generations, and population sizes. The proposed scheme is examined in terms of accuracy,
and is measured by the fitness function presented in (20)
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Fitness Function =
1
J

J

∑
w=1

[ym(tw)− ỹm(tw)]
2, (20)

here, ỹm is the estimated response through MPA, and ym is the actual response of the
HOE model.

4.1. Case Study 1

For the simulation study, we considered the following HOE model

ym(t) = y(t) + ε(t),

y(t) + g1y(t− 1) + g2y(t− 2) = h0µ(t) + h1µ(t− 1) + h2µ(t− 2), h0 = 1,
(21)

µ(t) = o1k1(µ(t)) + o2k2(µ(t)) + o3k3(µ(t)) = o1µ(t) + o2µ
2(t) + o3µ

3(t) (22)

g = [g1, g2]
T = [−1.100, 0.900]T (23)

h = [h1, h2]
T = [−0.800,−0.600]T (24)

o = [o1, o2, o3]
T = [−0.900, 0.600, 0.200]T (25)

ω = [g1, g2, h1, h2, o1, o2, o3]
T = [−1.100, 0.900,−0.800,−0.600,−0.900, 0.600, 0.200]T (26)

The input is taken as zero mean unit variance random signal with the data length
as 25 and the number of generations taken as 500 and 1000. The performance of MPA is
assessed by introducing AWGN noise with five variations, i.e., [60 dB, 50 dB, 40 dB, 30 dB,
10 dB] to the HOE model for two variations of generation (T) [500, 1000] and populations
(Np) [50, 100], and the fitness plots are demonstrated in Figure 2.
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The fitness curves in Figure 2a correspond to the best fitness of the MPA algorithm for
generation T = 500, while Figure 2b correspond to same variation for generation T = 1000.
It is noted from Figure 2a,b that the fitness of MPA for the two generation variations, i.e.,
[500, 1000], reduces with the increase in population sizes.

The performance of MPA is also evaluated in terms of the generation variations as
demonstrated by the fitness curves in Figure 3.
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Figure 3. Fitness plots for MPA w.r.t generation variations for case study 1.

The fitness curves in Figure 3a correspond to the best fitness of the MPA algorithm for
population size Np = 50, whereas Figure 3b is related to the same variation for population
Np = 100. It is noted from Figure 3a,b that the fitness of MPA for the two population sizes,
i.e., [50, 100], is reduced significantly with the increase in generations.

The behavior of MPA for different noise variations is evaluated by fixing the population
size [50, 100] and changing the generation size [500, 1000] for five values of noise levels
[60 dB, 50 dB, 40 dB, 30 dB, 10 dB], and the fitness plots are presented in Figure 4.

It is noted from the fitness plots demonstrated in Figure 4a–d that for a fixed population
size and number of generations, the fitness achieved by MPA for a low level of noise, i.e.,
[60 dB], is quite a lot less compared with the fitness for a high noise level, i.e., [50 dB, 40 dB,
30 dB, 10 dB]. Yet, MPA achieves the minimum value of fitness for the smallest value of
noise, i.e., [60 dB] for Np = 100 and T = 1000. Therefore, it is confirmed from the curves in
Figure 4 that the performance of MPA is lower for higher noise values.

To further investigate MPA, it is compared with other metaheuristics, namely the
prairie dog optimization (PDO) [68], sine cosine algorithm (SCA) [69], and whale optimiza-
tion algorithm (WOA) [70], for Np = 100 and T = 1000, and noise levels of [60 dB, 50 dB,
40 dB, 30 dB, 10 dB] are presented in Figure 5.
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Figure 5a–e demonstrates the convergence of MPA with SCA, WOA, and PDO at
Np = 100 and T = 1000 over all of the noise levels, i.e., [60 dB, 50 dB, 40 dB, 30 dB, 10 dB].
It is noted from Figure 5a–e that with the increase in noise level, the fitness value also
increases. However, MPA achieves the lowest fitness compared with SCA, WOA, and PDO
for all of the noise levels.

MPA is further evaluated statistically against PDO, WOA, and SCA at Np = 100 and
T = 1000 for 20 independent runs. Figure 6 shows the fitness value of MPA, SCA, WOA,
and PDO on run#1, run#10, and run#20 for all of the noise levels.
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100 −1.0730 0.8670 −0.7100 −0.6694 −0.9522 0.5646 0.2155 0.0039 0.1848 

SCA 

500 
50 −1.1554 0.8944 −1.2713 −0.3910 −1.3633 0.2760 0.0024 0.0785 0.1676 

100 −1.0469 0.8100 −0.9144 −0.3546 −1.8413 0.2371 0.2565 0.0719 0.1567 

1000 
50 −0.9063 0.6642 −0.8466 −0.6712 −1.7836 −0.0064 0.0990 0.1167 0.1977 

100 −1.0292 0.8255 −1.0403 −0.3248 −1.2033 0.5034 0.1878 0.0464 0.1285 

WOA 

500 
50 −1.1307 0.9794 −1.0294 −0.7458 −0.0103 0.8304 0.2124 0.1346 0.3724 

100 −1.1050 0.9013 −0.8204 −0.7087 −0.8466 0.5344 0.1570 0.0042 0.3019 

1000 
50 −1.0270 0.8621 −0.4477 −0.6913 −0.7818 0.8436 0.3795 0.0294 0.3219 

100 −0.9356 0.7506 −0.5725 −0.6927 −1.4624 0.4017 0.2705 0.0521 0.2748 

True Values −1.1000 0.9000 −0.8000 −0.6000 −0.9000 0.6000 0.2000 0 0 
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Figure 6. Run# fitness comparison of MPA with PDO, SCA and WOA at Np = 100 and T = 1000 for
case study 1.

It is noted from Figure 6a–e that MPA achieves the lowest fitness compared with SCA,
WOA, and PDO for different independent runs for all of the noise levels. Moreover, it is
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also observed that fitness increases with the increase in noise levels for all of the methods.
Further statistical analysis on all of the independent runs is demonstrated in Figure 7.
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It is noted from Figure 7a–e that MPA outperforms SCA, WOA, and PDO for noise
levels of [60 dB, 50 dB, 40 dB, 30 dB, 10 dB] in all of the independents runs. Moreover, it
is also observed that there is an increase in fitness values for high noise levels for all of
the methods.

Tables 2–6 show the performance of all of the algorithms in terms of the average
fitness, best fitness, and estimated weights for the [60 dB, 50 dB, 40 dB, 30 dB, 10 dB] noise
levels. It is noted that for lower noise levels, i.e., 60 dB, MPA gives better results compared
with higher noise levels. Moreover, at a low noise level, the estimated weights are closer
to the true value. It is also observed from Table 2 that the best fitness achieved for noise
level = 60 dB is 2.6× 10−7. Similarly, the best fitness value for noise levels = [50 dB, 40 dB,
30 dB, 10 dB], provided in Tables 3–6, are [2.6× 10−6, 2.9× 10−5, 2.4× 10−4, 2.6× 10−2],
respectively. Therefore, it is validated from Tables 2–6 that the fitness of MPA increases
with the increase in noise levels and it decreases by increasing the population size and
number of generations.

Table 2. Estimated weight analysis w.r.t generation and population sizes at 60 dB noise for case
study 1.

Methods T Np
Design Parameters

Best Fitness Avg Fitness
g1 g2 h1 h2 o1 o2 o3

MPA

500
50 −1.0999 0.9003 −0.7999 −0.6007 −0.8994 0.5998 0.1998 3.6× 10−7 6.6× 10−7

100 −1.1004 0.9004 −0.8003 −0.5999 −0.8983 0.6010 0.1999 4.3× 10−7 5.5× 10−7

1000
50 −1.0997 0.8997 −0.7998 −0.5993 −0.9028 0.5992 0.2003 3.5× 10−7 5.2× 10−7

100 −1.0999 0.9000 −0.7997 −0.5998 −0.9003 0.6002 0.2002 2.6× 10−7 4.9× 10−7

PDO

500
50 −1.0518 0.8524 −0.6261 −0.7220 −0.9588 0.5851 0.2329 0.0097 0.1631

100 −1.0600 0.8566 −0.7128 −0.6272 −1.0817 0.5417 0.2249 0.0059 0.1618

1000
50 −1.0701 0.8637 −0.6899 −0.8059 −0.8724 0.5222 0.1791 0.0119 0.1677

100 −1.0730 0.8670 −0.7100 −0.6694 −0.9522 0.5646 0.2155 0.0039 0.1848

SCA

500
50 −1.1554 0.8944 −1.2713 −0.3910 −1.3633 0.2760 0.0024 0.0785 0.1676

100 −1.0469 0.8100 −0.9144 −0.3546 −1.8413 0.2371 0.2565 0.0719 0.1567

1000
50 −0.9063 0.6642 −0.8466 −0.6712 −1.7836 −0.0064 0.0990 0.1167 0.1977

100 −1.0292 0.8255 −1.0403 −0.3248 −1.2033 0.5034 0.1878 0.0464 0.1285

WOA

500
50 −1.1307 0.9794 −1.0294 −0.7458 −0.0103 0.8304 0.2124 0.1346 0.3724

100 −1.1050 0.9013 −0.8204 −0.7087 −0.8466 0.5344 0.1570 0.0042 0.3019

1000
50 −1.0270 0.8621 −0.4477 −0.6913 −0.7818 0.8436 0.3795 0.0294 0.3219

100 −0.9356 0.7506 −0.5725 −0.6927 −1.4624 0.4017 0.2705 0.0521 0.2748

True Values −1.1000 0.9000 −0.8000 −0.6000 −0.9000 0.6000 0.2000 0 0

Table 3. Estimated weights analysis w.r.t generation and population sizes at 50 dB noise for case
study 1.

Methods T Np
Design Parameters

Best Fitness Avg Fitness
g1 g2 h1 h2 o1 o2 o3

MPA

500
50 −1.0990 0.8998 −0.7971 −0.6027 −0.9000 0.6006 0.2000 3.5× 10−6 5.4× 10−6

100 −1.1007 0.9007 −0.8010 −0.6005 −0.8976 0.5999 0.1995 3.2× 10−6 4.7× 10−6

1000
50 −1.1007 0.9007 −0.8016 −0.6004 −0.9021 0.5988 0.1989 3.1× 10−6 4.6× 10−6

100 −1.0999 0.8996 −0.7972 −0.6010 −0.9034 0.5994 0.2006 2.6× 10−6 4.2× 10−6

PDO

500
50 −1.0989 0.8856 −0.6730 −0.8708 −0.8491 0.4867 0.1613 0.0122 0.2468

100 −1.0950 0.8850 −0.7609 −0.6493 −1.0193 0.5226 0.1898 0.0026 0.1971

1000
50 −1.0568 0.8489 −0.6975 −0.6522 −1.0537 0.5183 0.2255 0.0070 0.2406

100 −1.0821 0.8792 −0.6982 −0.7261 −0.8873 0.5679 0.2011 0.0031 0.1237
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Table 3. Cont.

Methods T Np
Design Parameters

Best Fitness Avg Fitness
g1 g2 h1 h2 o1 o2 o3

SCA

500
50 −1.0086 0.7452 −0.4993 −0.7635 −1.4064 0.4192 0.2437 0.0902 0.1928

100 −1.1220 1.0084 −0.3534 −1.1780 −0.1565 0.8028 0.2544 0.0801 0.1949

1000
50 −1.1596 0.8947 −1.0397 −0.4481 −1.0611 0.3793 0.1573 0.0295 0.1382

100 −0.9708 0.7561 −0.4713 −0.7527 −1.2920 0.4789 0.2752 0.0588 0.1212

WOA

500
50 −1.0691 0.8544 −0.9376 −0.4316 −1.1141 0.5184 0.2023 0.0104 0.3667

100 −0.9926 0.8132 −0.6119 −0.6398 −1.0712 0.6237 0.2896 0.0216 0.3111

1000
50 −1.0723 0.9288 −0.2641 −0.9755 −0.2221 0.9602 0.3590 0.0657 0.4094

100 −1.0765 0.8998 −0.3190 −1.1725 −0.5884 0.6273 0.2237 0.0370 0.2990

True Values −1.1000 0.9000 −0.8000 −0.6000 −0.9000 0.6000 0.2000 0 0

Table 4. Estimated weight analysis w.r.t generation and population sizes at 40 dB noise for case
study 1.

Methods T Np
Design Parameters

Best Fitness Avg Fitness
g1 g2 h1 h2 o1 o2 o3

MPA

500
50 −1.0976 0.9002 −0.8108 −0.5990 −0.9099 0.5912 0.1952 3.8× 10−5 5.5× 10−5

100 −1.0992 0.8985 −0.7965 −0.6014 −0.9045 0.5973 0.2016 3.2× 10−5 5.0× 10−5

1000
50 −1.0978 0.8969 −0.7999 −0.6023 −0.9044 0.5961 0.1984 3.1× 10−5 4.2× 10−5

100 −1.0978 0.8965 −0.7981 −0.5994 −0.9046 0.5976 0.2016 2.9× 10−5 3.9× 10−5

PDO

500
50 −1.1077 0.8619 −0.7954 −0.8527 −0.6526 0.5071 0.1500 0.0260 0.2769

100 −1.0527 0.8379 −0.7737 −0.6079 −0.9045 0.5709 0.2188 0.0071 0.1967

1000
50 −1.0243 0.8187 −0.8046 −0.5028 −1.2278 0.5109 0.2319 0.0110 0.1863

100 −1.1020 0.8933 −0.8539 −0.5378 −0.9603 0.5789 0.1965 4.3× 10−4 0.1612

SCA

500
50 −1.2458 1.0114 −1.2823 −0.5958 −0.4440 0.6779 0.0084 0.1362 0.2290

100 −1.1005 0.9112 −0.7042 −0.7149 −0.7310 0.6718 0.2431 0.0195 0.1565

1000
50 −1.0389 0.8189 −0.8901 −0.5615 −1.1855 0.4103 0.2097 0.0556 0.1500

100 −1.1279 0.8664 −1.1919 −0.3155 −1.4402 0.2008 0.1338 0.0530 0.1164

WOA

500
50 −1.1736 0.9365 −1.3780 −0.3366 −0.5491 0.6183 0.0930 0.0515 0.4267

100 −0.4672 0.3825 −0.4320 −1.1173 −1.9501 −0.1694 0.1607 0.1660 0.4192

1000
50 −1.0051 0.8141 −0.2655 −0.9009 −1.0431 0.5755 0.3375 0.0660 0.4354

100 −0.7311 0.6054 −0.3689 −1.0833 −1.0464 0.3766 0.2605 0.1053 0.2973

True Values −1.1000 0.9000 −0.8000 −0.6000 −0.9000 0.6000 0.2000 0 0

Table 5. Estimated weight analysis w.r.t generation and population sizes at 30 dB noise for case
study 1.

Methods T Np
Design Parameters

Best Fitness Avg Fitness
g1 g2 h1 h2 o1 o2 o3

MPA

500
50 −1.0993 0.9027 −0.8065 −0.5937 −0.9485 0.5739 0.2001 3.0× 10−4 5.2× 10−4

100 −1.0884 0.8840 −0.7943 −0.6330 −0.8651 0.5970 0.1908 2.4× 10−4 4.5× 10−4

1000
50 −1.1002 0.8957 −0.7948 −0.5956 −0.9017 0.5975 0.2046 2.7× 10−4 4.1× 10−4

100 −1.1034 0.9003 −0.8125 −0.5908 −0.9229 0.5861 0.1983 2.4× 10−4 3.8× 10−4

PDO

500
50 −0.9118 0.6720 −1.0179 −0.4754 −1.3536 0.2024 0.1578 0.0461 0.2711

100 −1.0106 0.8154 −0.6439 −0.8667 −0.9536 0.4742 0.1776 0.0095 0.2513

1000
50 −0.8903 0.7105 −0.6975 −0.6399 −1.3032 0.3473 0.2361 0.0230 0.2707

100 −1.0686 0.8515 −0.9238 −0.4909 −0.9426 0.5455 0.1848 0.0048 0.1520
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Table 5. Cont.

Methods T Np
Design Parameters

Best Fitness Avg Fitness
g1 g2 h1 h2 o1 o2 o3

SCA

500
50 −1.0744 0.8886 −0.8612 −0.4488 −1.3053 0.3867 0.1863 0.0784 0.2060

100 −1.1646 0.8605 −1.3450 −0.1424 −1.3534 0.1530 0.1114 0.0709 0.1638

1000
50 −1.0843 0.9227 −0.6941 −0.8631 −1.0894 0.4127 0.1170 0.0719 0.1513

100 −1.0649 0.8689 −0.8942 −0.4560 −0.9881 0.6281 0.2674 0.0489 0.1265

WOA

500
50 −1.1271 0.9493 0.5670 −1.9626 0.0465 0.8384 0.3408 0.1945 0.4343

100 −0.9911 0.8016 0.0386 −1.9189 −0.5169 0.4345 0.1694 0.0826 0.3993

1000
50 −1.2537 0.8268 −1.9499 0.4810 −1.8826 −0.1519 0.0787 0.1643 0.3945

100 −1.1938 0.9840 −0.8044 −0.4657 0.0998 1.1197 0.3217 0.0991 0.3120

True Values −1.1000 0.9000 −0.8000 −0.6000 −0.9000 0.6000 0.2000 0 0

Table 6. Estimated weight analysis w.r.t generation and population sizes at 10 dB noise for case
study 1.

Methods T Np
Design Parameters

Best Fitness Avg Fitness
g1 g2 h1 h2 o1 o2 o3

MPA

500
50 −1.0044 0.9248 −0.6585 −0.5989 −1.2175 0.5851 0.2879 0.0266 0.0651

100 −0.4721 0.3117 0.0368 −1.0912 −1.7806 0.1460 0.4641 0.0350 0.0585

1000
50 −1.0797 0.8075 −1.0865 −0.3263 −0.8897 0.5562 0.2113 0.0257 0.0537

100 −1.0986 0.9158 −0.6987 −0.6994 −0.9153 0.5574 0.1941 0.0263 0.0417

PDO

500
50 −0.4146 0.2163 −0.3158 −1.3845 −1.1701 0.0619 0.1626 0.0591 0.3364

100 −1.0651 0.6972 −1.6685 −0.2576 −0.5222 0.4760 0.0516 0.0810 0.2740

1000
50 −0.7514 0.5082 −0.2147 −0.6914 −1.2349 0.8102 0.5757 0.0707 0.3043

100 −0.7529 0.5434 −0.3480 −1.1650 −0.9728 0.3101 0.1813 0.0390 0.2830

SCA

500
50 −0.6897 0.4400 −0.8164 −0.9964 −1.5210 −0.0562 0.1077 0.1750 0.2764

100 −1.1314 0.8923 −1.5527 −0.7299 −0.8486 0.2096 0.0101 0.0933 0.1738

1000
50 −0.0228 0.0203 −0.0002 −2.0000 −1.7703 −0.2665 0.1090 0.1005 0.1781

100 −0.2253 −0.0028 −0.1909 −1.6631 −1.0498 0.1043 0.2336 0.0966 0.1620

WOA

500
50 −0.1134 −0.0868 −0.3416 −0.7243 −0.4913 0.7683 0.4553 0.1016 0.3102

100 −1.3169 0.8183 −1.6177 0.1795 −1.4909 0.0159 0.1090 0.0760 0.2376

1000
50 −0.7933 0.6662 −1.2328 −0.5992 −1.9345 −0.2411 0.0103 0.0824 0.2924

100 0.0301 0.1867 −1.9827 −1.9827 −1.0564 −0.1705 0.0200 0.1355 0.2732

True Values −1.1000 0.9000 −0.8000 −0.6000 −0.9000 0.6000 0.2000 0 0

4.2. Case Study 2

The performance of the MPA is also considered for another Hammerstein model based
on the autoregressive exogenous input structure, i.e., H-ARX [13,14], with the same model
parameters as considered in case study 1. The H-ARX model is mathematically defined as

y(t) =
H(q)
G(q)

µ(t) +
1

G(q)
ε(t), (27)

where G(q) and H(q) are polynomials in the shift operator, and rearranging (27) gives
the following

G(q)y(t) = H(q)µ(t) + ε(t)

y(t) = −g1y(t− 1)− g2y(t− 2) + h0µ(t) + h1µ(t− 1) + h2µ(t− 2) + ε(t), h0 = 1,
(28)

µ(t) = o1k1(µ(t)) + o2k2(µ(t)) + o3k3(µ(t)) = o1µ(t) + o2µ
2(t) + o3µ

3(t)
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ω = [g1, g2, h1, h2, o1, o2, o3]
T = [−1.100, 0.900,−0.800,−0.600,−0.900, 0.600, 0.200]T.

The input data are generated in the same way as mentioned in case study 1, while the
noise in the ARX model is taken as white Gaussian with constant variance, i.e., [0.01, 0.05,
0.10]. Two variations of generation (T) [500, 1000] and population Np = 50 are considered.
The fitness for case study 2 is calculated through (20) by using y instead of ym, and the
fitness plots are demonstrated in Figure 8.
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Figure 8. Fitness plots for MPA w.r.t generation variations for case study 2.

The fitness curves in Figure 8 correspond to the best fitness of the MPA algorithm
for population size Np = 50. It is noted from Figure 8 that the fitness of MPA reduces
significantly with the increase in generations.

The behavior of MPA for different noise variations is evaluated at population size
Np = 50 and changing the generation size [200, 500] for three values of noise levels
[0.01,0.05,0.10], and the fitness plots are presented in Figure 9.
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It is noted from the fitness plots demonstrated in Figure 9a,b that for a fixed population
size and number of generations, the fitness achieved by MPA for a low level of noise,
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i.e., [0.01], is quite a lot less compared with the fitness for a high noise level, i.e., [0.05,0.10].
Yet, MPA achieves the minimum value of fitness for the smallest value of noise, i.e., [0.01]
for Np = 50 and T = 500. Therefore, it is confirmed from the curves in Figure 9 that the
performance of MPA is lower for higher noise values.

Similar to example 1, it is further compared with the prairie dog optimization (PDO) [68],
sine cosine algorithm (SCA) [69], and whale optimization algorithm (WOA) [70] for Np = 50
and T = 500, and noise levels of [0.01,0.05,0.10] are presented in Figure 10.
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case study 2.

Figure 10a–c demonstrates the convergence of MPA with SCA, WOA, and PDO
at Np = 50 and T = 500 over all the noise levels, i.e., [0.01,0.05,0.10]. It is noted from
Figure 10a–c that with the increase in noise level, the fitness value also increases. How-
ever, MPA achieves the lowest fitness compared with SCA, WOA, and PDO for all of the
noise levels.

MPA is further evaluated statistically against PDO, WOA, and SCA at Np = 50 and
T = 500 for 20 independent runs. Figure 11 shows the fitness value of MPA, SCA, WOA,
and PDO on run#1, run#10, and run#20 for all of the noise levels.
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It is noted from Figure 11a–c that MPA achieves the lowest fitness compared with
SCA, WOA, and PDO for different independent runs for all noise levels. Moreover, it is also
observed that the fitness increases with the increase in noise levels for all of the methods.
Further statistical analysis on all independent runs is demonstrated in Figure 12.

It is noted from Figure 12a–c that MPA outperforms SCA, WOA, and PDO for noise
levels of [0.01,0.05,0.10] in all of the independents runs. Moreover, it is also observed that
there is an increase in fitness value for high noise levels for all of the methods

Tables 7–9 show the performance of all of the algorithms in terms of the average fitness,
best fitness, and estimated weights for [0.01,0.05,0.10] noise levels at Np = 50. It is noted that
for lower noise levels i.e., 0.01, MPA gives better results compared with the higher noise
levels. Moreover, at a low noise level, the estimated weights are closer to the true value. It is
also observed from Table 7 that the best fitness achieved for noise level = 0.01 is 5.2× 10−5.
Similarly, the best fitness value for noise levels = [0.05,0.10] provided in Tables 8 and 9 are
[1.3× 103, 5.3× 10−3,], respectively. Therefore, it is validated from Tables 7–9 that the
fitness of MPA increases with the increase in noise levels and it decreases by increasing the
number of generations.
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study 2.

Table 7. Estimated weight analysis w.r.t generations at a 0.01 noise level for case study 2.

Methods T
Design Parameters

Best Fitness Avg Fitness
g1 g2 h1 h2 o1 o2 o3

MPA
200 −1.1017 0.8978 −0.8044 −0.5999 −0.8932 0.6001 0.1980 5.2× 10−5 1.9× 10−3

500 −1.1018 0.8979 −0.8044 −0.5996 −0.8920 0.6010 0.1982 5.2× 10−5 5.2× 10−5

PDO
200 −1.0836 0.8766 −0.7975 −0.6473 −1.0023 0.5269 0.1740 6.3× 10−3 0.5494
500 −1.0899 0.8948 −0.5766 −0.6963 −0.7177 0.7521 0.2727 0.0146 0.3834

SCA
200 −1.1650 0.9793 −1.8630 −1.2628 0.0036 0.6294 0.0072 0.2384 0.8104
500 −1.1364 0.8896 −1.6057 −0.2327 −0.7748 0.5465 0.0233 0.0867 0.4969

WOA
200 −0.9963 0.7957 −0.3799 −0.7507 −1.3856 0.6501 0.3586 0.2331 1.0182
500 −1.1450 0.9706 −0.2738 −0.6472 0.3553 1.4730 0.4975 0.1753 0.6517

True Values −1.1000 0.9000 −0.8000 −0.6000 −0.9000 0.6000 0.2000 0 0
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Table 8. Estimated weight analysis w.r.t generations at a 0.05 noise level for case study 2.

Methods T
Design Parameters

Best Fitness Avg Fitness
g1 g2 h1 h2 o1 o2 o3

MPA
200 −1.1109 0.8910 −0.8271 −0.5952 −0.8589 0.6044 0.1903 1.3× 10−3 3.7× 10−3

500 −1.1109 0.8910 −0.8262 −0.5954 −0.8583 0.6049 0.1906 1.3× 10−3 1.3× 10−3

PDO
200 −1.0406 0.8332 −0.4206 −1.3664 −0.7828 0.4256 0.1194 0.0872 0.6333
500 −1.0866 0.8555 −0.8423 −0.6316 −1.0984 0.4647 0.1520 0.0172 0.4124

SCA
200 −1.1050 0.8054 −1.4742 −0.1922 −1.0218 0.5351 0.0089 0.2073 0.8758
500 −1.0695 0.8453 −1.1957 −1.4701 −0.1459 0.5871 0.0042 0.1845 0.4258

WOA
200 −0.9064 0.7102 −0.3235 −1.1091 −1.2099 0.4528 0.2038 0.3539 1.1520
500 −1.0549 0.8315 −1.0059 −0.9560 −1.2754 0.1507 −0.0263 0.1994 0.5828

True Values −1.1000 0.9000 −0.8000 −0.6000 −0.9000 0.6000 0.2000 0 0

Table 9. Estimated weight analysis w.r.t generations at a 0.10 noise level for case study 2.

Methods T
Design Parameters

Best Fitness Avg Fitness
g1 g2 h1 h2 o1 o2 o3

MPA
200 −1.1267 0.8856 −0.8717 −0.5808 −0.8127 0.6069 0.1776 5.3× 10−3 6.8× 10−3

500 −1.1265 0.8857 −0.8653 −0.5835 −0.8107 0.6093 0.1794 5.3× 10−3 5.3× 10−3

PDO
200 −1.0194 0.7655 −0.6219 −0.9296 −1.1517 0.3711 0.1296 0.1452 0.7990
500 −1.0938 0.8706 −0.6854 −0.7346 −0.8723 0.5692 0.2007 0.0172 0.3089

SCA
200 −1.0574 0.9286 −0.0290 −1.3075 −0.6739 0.5813 0.3124 0.2892 0.6840
500 −1.1517 0.8870 −1.4557 −0.1035 −1.4434 0.2615 0.0165 0.1655 0.4139

WOA
200 −1.1503 0.8178 −1.9646 0.2299 −1.9588 −0.0416 −0.0822 0.3225 1.0572
500 −1.0863 0.8635 −0.3088 −0.8407 −0.6800 0.8381 0.3392 0.0734 0.6578

True Values −1.1000 0.9000 −0.8000 −0.6000 −0.9000 0.6000 0.2000 0 0

The results of the detailed simulations imply that the MPA-based swarming optimiza-
tion heuristics efficiently approximates the parameters of the Hammerstein systems.

5. Conclusions

The main findings of the investigation are as follows:
The parameter optimization of the nonlinear mathematical model represented through

the Hammerstein structure is studied using the marine predator algorithm, MPA, and the
key term separation principle. The mathematical model and working principle of the MPA
are inspired from the behavior of predators when catching prey. The optimal interaction
between the predator and prey is modelled using Brownian and Levy movement. The key
term separation is a technique used to avoid redundancy in the estimation of Hammerstein
model parameters, thus making the MPA more efficient. The accuracy and robustness of
the MPA based optimization scheme with key term separation technique is established for
HOE and H-ARX estimation through the simulation results for different noise scenarios.

Future work may extend the application of MPA to optimize the muscle fatigue
systems [71,72] and solve fractional order problems [73–75].
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