Fractal Analytical Solutions for Nonlinear Two-Phase Flow in Discontinuous Shale Gas Reservoir
Abstract
:1. Introduction
2. Governing Equations for Shale Gas and Water Two-Phase Flows
2.1. Capillary Pressure
2.2. Governing Equations of the Two-Phase Flow
3. Analytical Solutions
3.1. Conversion to the Traveling Wave Solution
3.2. Local Variational Iteration Method
3.3. Final Solution of Water-Phase Pressure
4. Parametric Study and Discussions
4.1. Pressure Variation of the Two-Phase Flow
4.2. Impact of Fractional Dimension on Gas Pressure
4.3. The Impact of Entry Capillary Pressure on Gas Pressure
4.4. Impact of Traveling Wave Velocity on Gas Pressure
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, B.W.; Wang, J.G.; Li, Z.Q.; Wang, H.M. Evolution of fractal dimensions and gas transport models during the gas recovery process from a fractured shale reservoir. Fractals 2019, 27, 1950129. [Google Scholar] [CrossRef]
- Shang, X.J.; Wang, J.G.; Zhang, Z.Z.; Gao, F. A three-parameter permeability model for the cracking process of fractured rocks under temperature change and external loading. Int. J. Rock Mech. Min. 2019, 123, 104106. [Google Scholar] [CrossRef]
- Clarkson, C.R.; McGovern, J.M. Optimization of coalbed-methane-reservoir exploration and development strategies through integration of simulation and economics. SPE Reserv. Eval. Eng. 2005, 8, 502–519. [Google Scholar] [CrossRef]
- Wang, H.M.; Wang, J.G.; Gao, F.; Wang, X.L. A Two-Phase Flowback Model for Multiscale Diffusion and Flow in Fractured Shale Gas Reservoirs. Geofluids 2018, 2018, 5910437. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.R.; Cheng, L.S.; Xue, Y.C. A Semi-Analytical Method for Simulating Two-Phase Flow Performance of Horizontal Volatile Oil Wells in Fractured Carbonate Reservoirs. Energies 2018, 11, 2700. [Google Scholar] [CrossRef] [Green Version]
- Adibifard, M. A novel analytical solution to estimate residual saturation of the displaced fluid in a capillary tube by matching time-dependent injection pressure curves. Phys. Fluids 2018, 30, 082107. [Google Scholar] [CrossRef]
- Yu, B.M.; Cheng, P. A fractal permeability model for bi-dispersed porous media. Int. J Heat Mass Tran. 2002, 45, 2983–2993. [Google Scholar] [CrossRef]
- Shou, D.H.; Fan, J.T.; Ding, F. A difference-fractal model for the permeability of fibrous porous media. Phys. Lett. A 2010, 374, 1201–1204. [Google Scholar] [CrossRef]
- Yang, F.; Ning, Z.F.; Liu, H.Q. Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China. Fuel 2014, 115, 378–384. [Google Scholar] [CrossRef]
- Bu, H.L.; Ju, Y.W.; Tan, J.Q.; Wang, G.C.; Li, X.S. Fractal characteristics of pores in non-marine shales from the Huainan coalfield, eastern China. J. Nat. Gas Sci. Eng. 2015, 24, 166–177. [Google Scholar] [CrossRef]
- Hu, B.W.; Wang, J.G.; Wu, D.; Wang, H.M. Impacts of zone fractal properties on shale gas productivity of a multiple fractured horizontal well. Fractals 2019, 27, 1950006. [Google Scholar] [CrossRef]
- Baigereyev, D.; Alimbekova, N.; Berdyshev, A.; Madiyarov, M. Convergence analysis of a numerical method for a fractional model of fluid flow in fractured porous media. Mathematics 2021, 9, 2179. [Google Scholar] [CrossRef]
- Ibrahim, A.F.; Nasr-El-Din, H.A. A comprehensive model to history match and predict gas/water production from coal seams. Int. J. Coal Geol. 2015, 146, 79–90. [Google Scholar] [CrossRef]
- Lomize, G.M. Flow in Fractured Rocks; Gosenergoizdat: Moscow, Russia, 1951; pp. 127–197. [Google Scholar]
- Kang, J.H.; Zhou, F.B.; Xia, T.Q.; Ye, G.B. Numerical modeling and experimental validation of anomalous time and space subdiffusion for gas transport in porous coal matrix. Int. J. Heat Mass Tran. 2016, 100, 747–757. [Google Scholar] [CrossRef]
- Yang, X.J.; Baleanu, D. Local Fractional Integral Transforms and Their Applications; Academic Press: New York, NY, USA, 2015. [Google Scholar]
- Yang, X.J.; Machado, D.B.; Tenreiro, J.A. Systems of Navier-Stokes equations on cantor sets. Math. Probl. Eng. 2013, 2013, 769724. [Google Scholar] [CrossRef] [Green Version]
- Shang, X.J.; Wang, J.G.; Zhang, Z.Z. Analytical solutions of fractal-hydro-thermal model for two-phase flow in thermal stimulation enhanced coalbed methane recovery. Therm. Sci. 2019, 23, 1345–1353. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.G.; Peng, Y. Numerical modeling for the combined effects of two-phase flow, deformation, gas diffusion and CO2 sorption on caprock sealing efficiency. J. Geochem. Explor. 2014, 144, 154–167. [Google Scholar] [CrossRef]
- Altundas, Y.B.; Ramakrishnan, T.S.; Chugunov, N.; de Loubens, R. Retardation of CO2 caused by capillary pressure hysteresis: A new CO2 trapping mechanism. SPE J. 2011, 16, 784–794. [Google Scholar] [CrossRef]
- Hekmatzadeh, M.; Gerami, S. A new fast approach for well production prediction in gas-condensate reservoirs. J. Petrol. Sci. Eng. 2018, 160, 47–59. [Google Scholar] [CrossRef]
- Yu, B.B.; Xu, P.; Zou, M.Q.; Cai, J.C.; Zheng, Q. Transport Physics of Fractal Porous Media; Science Press: Beijing, China, 2014; pp. 131–149. [Google Scholar]
- Bachu, S.; Bennion, B. Effects of In-situ Conditions on Relative Permeability Characteristics of CO2–brine Systems. Environ. Geol. 2008, 54, 1707–1722. [Google Scholar] [CrossRef]
- Bennion, B.; Bachu, S. Drainage and Imbibition Relative Permeability Relationships for Supercritical CO2/brine and H2S/brine Systems in Intergranular Sandstone, Carbonate, Shale, and Anhydrite Rocks. SPE Reserv. Eval. Eng. 2008, 11, 487–496. [Google Scholar] [CrossRef]
- Yang, R.; Huang, Z.; Li, G.; Yu, W.; Sepehrnoori, K.; Tian, S.C.; Song, X.Z.; Sheng, M. An Innovative Approach to Model Two-phase Flowback of Shale Gas Wells with Complex Fracture Networks. In Proceedings of the SPE Technical Conference and Exhibition, Dubai, United Arab Emirates, 26 September 2016. [Google Scholar]
- Shang, X.J.; Wang, J.G.; Zhang, Z.Z. Iterative analytical solutions for nonlinear two-phase flow with gas solubility in shale gas reservoirs. Geofluids 2019, 2019, 4943582. [Google Scholar] [CrossRef]
Parameter | Unit | Value | Physical Meanings |
---|---|---|---|
0.15 | Shale gas residual saturation | ||
0.2 | Water residual saturation | ||
Pa*s | Water viscosity | ||
Pa*s | Shale gas viscosity | ||
c | m/s | Travel wave velocity | |
1 | Pore size distribution index | ||
MPa | 27.4 | Initial reservoir pressure | |
MPa | 19.67 | Well pressure | |
mD | 0.1 | Initial shale permeability | |
0.18 | Initial shale porosity | ||
MPa | 2 | Entry capillary pressure | |
0.004 | End-point relative permeability for water | ||
1 | End-point relative permeability for shale gas | ||
2 | Water reference parameter | ||
1 | Shale gas reference parameter | ||
Fractional dimension | |||
1 | Tortuosity fractal dimension | ||
2 | Diameter size fractal dimension |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, X.; Zhang, Z.; Zhang, Z.; Wang, J.G.; Zhou, Y.; Yang, W. Fractal Analytical Solutions for Nonlinear Two-Phase Flow in Discontinuous Shale Gas Reservoir. Mathematics 2022, 10, 4227. https://doi.org/10.3390/math10224227
Shang X, Zhang Z, Zhang Z, Wang JG, Zhou Y, Yang W. Fractal Analytical Solutions for Nonlinear Two-Phase Flow in Discontinuous Shale Gas Reservoir. Mathematics. 2022; 10(22):4227. https://doi.org/10.3390/math10224227
Chicago/Turabian StyleShang, Xiaoji, Zhizhen Zhang, Zetian Zhang, J. G. Wang, Yuejin Zhou, and Weihao Yang. 2022. "Fractal Analytical Solutions for Nonlinear Two-Phase Flow in Discontinuous Shale Gas Reservoir" Mathematics 10, no. 22: 4227. https://doi.org/10.3390/math10224227
APA StyleShang, X., Zhang, Z., Zhang, Z., Wang, J. G., Zhou, Y., & Yang, W. (2022). Fractal Analytical Solutions for Nonlinear Two-Phase Flow in Discontinuous Shale Gas Reservoir. Mathematics, 10(22), 4227. https://doi.org/10.3390/math10224227