
Citation: Fetecau, C.; Rauf, A.;

Qureshi, T.M.; Vieru, D. Steady-State

Solutions for MHD Motions of

Burgers’ Fluids through Porous

Media with Differential Expressions

of Shear on Boundary and

Applications. Mathematics 2022, 10,

4228. https://doi.org/10.3390/

math10224228

Academic Editor: João Cabral

Received: 9 October 2022

Accepted: 8 November 2022

Published: 12 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Steady-State Solutions for MHD Motions of Burgers’ Fluids
through Porous Media with Differential Expressions of Shear
on Boundary and Applications
Constantin Fetecau 1,* , Abdul Rauf 2 , Tahir Mushtaq Qureshi 3 and Dumitru Vieru 4

1 Section of Mathematics, Academy of Romanian Scientists, 050094 Bucharest, Romania
2 Department of Computer Science and Engineering, Air University Islamabad, Islamabad 44000, Pakistan
3 Department of Mathematics, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
4 Department of Theoretical Mechanics, Technical University of Iasi, 700050 Iasi, Romania
* Correspondence: fetecau@math.tuiasi.ro or c_fetecau@yahoo.com

Abstract: Steady-state solutions for two mixed initial-boundary value problems are provided. They
describe isothermal MHD steady-state motions of incompressible Burgers’ fluids over an infinite
flat plate embedded in a porous medium when differential expressions of shear stress are given
on a part of the boundary. The fluid is electrically conductive under the influence of a uniform
transverse magnetic field. For the validation of the results, the expressions of the obtained solutions
are presented in different forms and their equivalence is graphically proved. All of the obtained results
could easily be particularized to give exact solutions for the incompressible Oldroyd-B, Maxwell,
second-grade, and Newtonian fluids that were performing similar motions. For illustration, the
solutions corresponding to Newtonian fluids are provided. In addition, as an application, the velocity
fields were used to determine the time required to reach the steady or permanent state for distinct
values of magnetic and porous parameters. We found that this time declined with increasing values
of the magnetic or porous parameters. Consequently, the steady state for such motions of Burgers’
fluids was earlier reached in the presence of a magnetic field or porous medium.

Keywords: Burgers’ fluids; isothermal MHD motions; porous medium; steady-state solutions; steady
or permanent state

MSC: 76A05

1. Introduction

The isothermal motions of incompressible Newtonian or non-Newtonian fluids over
an infinite plate have been extensively studied in the past. They are some of the most
important motion problems near moving bodies and have multiple industrial applications
including the processing of polymers, food products, pharmaceuticals, clay suspensions,
and many others. Generally, in practice, an infinite plate cannot be used. However, its
dimensions can be large enough so that the solutions corresponding to motions over such
a plate can be sufficiently approximated by solutions for motions over an infinite plate.
In the existing literature, there are many studies on the motion problems of fluids over
an infinite plate or between two infinite parallel plates. The most recent results regarding
oscillatory motions of incompressible Burgers’ fluids over an infinite plate seem to be those
of Akram et al. [1]. The MHD motions of these fluids also have different applications
in hydrology, horticulture, and engineering structures. The exact solutions for the MHD
second Stokes flow of the same fluids can be obtained from the work of Khan et al. [2].
In addition, the study of different motions through porous media has a distinguished
importance in different fields, including those in the natural sciences and technology.
Hydrodynamic studies of the Maxwell fluid flow through a porous medium were recently
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provided by Ullah et al. [3] and Fetecau et al. [4]. Exact solutions for MHD unsteady
motions of incompressible non-Newtonian fluids over an infinite flat plate embedded in a
porous medium were previously established; for instance, by Hayat et al. [5] and Ali et al. [6]
for second-grade fluids, Khan et al. [7] for Oldroyd-B fluids, and Algahtani and Khan [8]
and Hussain et al. [9] for Burgers’ fluids. General solutions for isothermal MHD motions of
incompressible Newtonian fluids over an infinite plate embedded in a porous medium were
obtained by Fetecau et al. [10]. The combined effects of free convection MHD flow past a vertical
plate embedded in a porous medium were recently investigated by Vijayalakshmi et al. [11].

Many exact solutions for MHD unsteady motions of the incompressible non-Newtonian
fluids over an infinite plate embedded in a porous medium were determined previously by
different authors. However, Khan et al. [2] seemed to be the first authors who established
exact solutions for such motions of incompressible Burgers’ fluids. The one-dimensional form
of the constitutive equation of incompressible Burgers’ fluids was proposed by Burgers [12];
his model is often used to describe the behavior of different viscoelastic materials such
as polymeric liquids, cheese, soil, and asphalt [13,14]. A good agreement between the
prediction of this model and the behavior of asphalt and sand-asphalt was found by Lee
and Markwick [15]. The extension of the one-dimensional Burgers’ model to a frame-
indifferent three-dimensional form was provided by Krishnan and Rajagopal [16], while
the first exact steady solutions for motions of such fluids seem to be those of Ravindran
et al. [17] for a fluid flow in an orthogonal rheometer. Other interesting solutions for
oscillatory motions of incompressible Burgers’ fluids were established by Hayat et al. [18],
Khan et al. [19,20], and recently Safdar et al. [21]. Exact steady-state solutions for isothermal
motions of same fluids when a differential expression of shear stress was given on a part of
the boundary were recently obtained by Fetecau et al. [22]. In order to study similar flows
of the same fluids in bounded domains, which are useful in industrial applications, readers
can use the recent works by Çolak et al. [23] and Abderrahmane et al. [24].

Earlier, Renardy [25,26] showed that boundary conditions containing differential
expressions of stresses must be imposed in order to formulate well-posed boundary value
problems for motions of rate-type fluids. The main purpose of this work was to provide
the first exact steady-state solutions for motions of incompressible Burgers’ fluids, which
are rate-type fluids, when differential expressions of the shear stress were given on a part
of the boundary and the magnetic and porous effects were taken into consideration. These
solutions, which are presented in simple forms, could easily be particularized to give exact
solutions for incompressible Oldroyd-B, Maxwell, second-grade and Newtonian fluids
that were performing similar motions. For illustration, the adequate solutions for the
Newtonian fluids are brought to light. In addition, for the validation of the results, all of
the solutions are presented in different forms and their equivalence is graphically proved.
Finally, as an application, the required time to reach the steady or permanent state was
graphically determined for distinct values of the magnetic and porous parameters.

2. Statement of the Problem

Consider an incompressible, electrically conducting Burgers’ fluid (IECBF) at rest over
an infinite horizontal flat plate embedded in a porous medium. Its constitutive equations,
as presented by Ravindran et al. [15], are given by the relations:

T = −pI + S, S + α
DS
Dt

+ β
D2S
Dt2 = µ

(
A + γ

DA
Dt

)
, (1)

where T is the Cauchy stress tensor; S is the extra-stress tensor; I is the unit tensor;
A = L + LT is the first Rivlin–Ericksen tensor (L being the gradient of the velocity
vector υ); p is the hydrostatic pressure; µ is the fluid viscosity; α, β, and γ (≤ α) are mate-
rial constants; and D/Dt denotes the well-known upper-convected derivative. Since the
incompressible fluids undergo isochoric motions only, the following continuity equation
must be satisfied:

divυ = 0 or equivalent tr A = 0. (2)
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We also most consider the fact that the fluids characterized by the constitutive Equation (1)
contain the incompressible Oldroyd-B, Maxwell, and Newtonian fluids as special cases if
β = 0, β = γ = 0, or α = β = γ = 0, respectively. For the motions to be considered here,
the governing equations corresponding to the incompressible second-grade fluids can also
be obtained as particular cases of the present equations.

In the following, and based on Khan et al. [2], we shall consider isothermal MHD
unsteady motions of an IECBF over an infinite flat plate embedded in a porous medium
for which

υ = υ(y, t) = u(y, t)ex, S = S(y, t), (3)

where ex is the unit vector along the x-direction of a convenient Cartesian coordinate system
of x, y, and z with the y-axis perpendicular to the plate. For such motions, the continuity
equation is identically satisfied. Substituting υ(y, t) and S(y, t) from Equation (3) in the
second equality from the relations in (1) and bearing in mind the fact that the fluid has been
at rest up to the initial moment t = 0, one can prove that the components Syy, Syz, Szz and
Szx of S are zero. On the other hand, the non-trivial shear stress τ(y, t) = Sxy(y, t) must
satisfy the next partial differential equation [18].(

1 + α
∂

∂t
+ β

∂2

∂t2

)
τ(y, t) = µ

(
1 + γ

∂

∂t

)
∂u(y, t)

∂y
; y > 0, t > 0. (4)

The balance of linear momentum in the presence of conservative body forces and of a
transverse magnetic field of the magnitude B but in the absence of a pressure gradient in
the flow direction reduces to the following partial differential equation [2]:

ρ
∂u(y, t)

∂t
=

∂τ(y, t)
∂y

− σB2u(y, t) + R(y, t); y > 0, t > 0, (5)

where ρ is the constant density of the fluid, σ is its electrical conductivity, and the Darcy’s
resistance R(y, t) satisfies the relation [2].(

1 + α
∂

∂t
+ β

∂2

∂t2

)
R(y, t) = −µϕ

k

(
1 + γ

∂

∂t

)
u(y, t); y > 0, t > 0. (6)

In the above relation, ϕ and k are the porosity and the permeability, respectively, of
the porous medium.

The appropriate initial conditions of:

u(y, 0) =
∂u(y, t)

∂t

∣∣∣∣
t=0

=
∂2u(y, t)

∂t2

∣∣∣∣
t=0

= 0; τ(y, 0) =
∂τ(y, t)

∂t

∣∣∣∣
t=0

= 0; y ≥ 0, (7)

have been already used to show that some of the components of the extra-stress S are zero.
The boundary conditions to be here used are given by the following relations:(

1 + α
∂

∂t
+ β

∂2

∂t2

)
τ(0, t) = µ

(
1 + γ

∂

∂t

)
∂u(y, t)

∂y

∣∣∣∣
y=0

= S cos(ω t), lim
y→∞

u(y, t) = 0; t > 0, (8)

or(
1 + α

∂

∂t
+ β

∂2

∂t2

)
τ(0, t) = µ

(
1 + γ

∂

∂t

)
∂u(y, t)

∂y

∣∣∣∣
y=0

= S sin(ω t), lim
y→∞

u(y, t) = 0; t > 0. (9)

In the above relations, S is a constant shear stress and ω is the frequency of the oscillations.
The second condition from the relations (8) and (9) assures us that the fluid is quies-

cently far away from the plate. We also assume that there is no shear in the free stream; i.e.,:

lim
y→∞

τ(y, t) = 0. (10)
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For convenience, we also assume that the fluid is finitely conducting so that the
Joule heating due to the presence of external magnetic field is negligible. In addition, the
magnetic Reynolds number is small enough so that the induced magnetic field can be
neglected and the electromagnetic energy does not penetrate the boundary for computing
the Umov–Poynting vector [27]. Moreover, there is no surplus electric charge distribution
present in the fluid and the Hall effects can be ignored due to moderate values of the
Hartman number.

In order to provide exact solutions that are independent of the flow geometry, let us
introduce the next dimensionless functions, variables and parameters:

u∗ = u
√

ρ
S , τ∗ = τ

S , R∗ = ν
√

ρ

S
√

S
R, y∗ = y

√
S

µν , t∗ = S
µ t,

α∗ = S
µ α, β∗ = S2

µ2 β, γ∗ = S
µ γ, ω∗ = µ

S ω .
(11)

Using the non-dimensional entities from the relations in (11) in the equalities (4)–(6)
and abandoning the star notation for writing simplicity, one obtains the non-dimensional
forms of these equations:(

1 + α
∂

∂t
+ β

∂2

∂t2

)
τ(y, t) =

(
1 + γ

∂

∂t

)
∂u(y, t)

∂y
; y > 0, t > 0, (12)

∂u(y, t)
∂t

=
∂τ(y, t)

∂y
−Mu(y, t) + R(y, t); y > 0, t > 0, (13)(

1 + α
∂

∂t
+ β

∂2

∂t2

)
R(y, t) = −K

(
1 + γ

∂

∂t

)
u(y, t); y > 0, t > 0, (14)

where the constants M and K are the magnetic and porous parameters, respectively, which
are defined by the following relations:

M =
σB2

ρ

µ

S
=

ν

S
σB2, K =

µνϕ

kS
=

µϕ

k
ν

S
. (15)

When eliminating τ(y, t) between Equations (12) and (13) and bearing in mind
Equation (14), one obtains for the dimensionless velocity field u(y, t) the following partial
differential equation:(

1 + α ∂
∂t + β ∂2

∂t2

)
∂u(y,t)

∂t =
(

1 + γ ∂
∂t

)
∂2u(y,t)

∂y2

−M
(

1 + α ∂
∂t + β ∂2

∂t2

)
u(y, t)− K

(
1 + γ ∂

∂t

)
u(y, t); y > 0, t > 0.

(16)

The corresponding boundary conditions are given by the next equalities:(
1 + α

∂

∂t
+ β

∂2

∂t2

)
τ(0, t) =

(
1 + γ

∂

∂t

)
∂u(y, t)

∂y

∣∣∣∣
y=0

= cos(ω t), lim
y→∞

u(y, t) = 0; t > 0, (17)

or(
1 + α

∂

∂t
+ β

∂2

∂t2

)
τ(0, t) =

(
1 + γ

∂

∂t

)
∂u(y, t)

∂y

∣∣∣∣
y=0

= sin(ω t), lim
y→∞

u(y, t) = 0; t > 0. (18)

The adequate initial conditions have the same forms as in Equation (7) but they
will not be used in the following because only steady-state (permanent or long-term)
solutions will be provided. The non-dimensional shear stress τ(y, t) also must satisfy the
following condition:

lim
y→∞

τ(y, t) = 0. (19)
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The form of the boundary conditions in (17) and (18), as well as the fact that the fluid
was at rest at the moment t = 0, suggests that the two motions become steady in time.
For such motions, a very important problem for experimental researchers is to know the
time needed to reach the steady or permanent state. This is the time after which the fluid
moves according to the steady-state solutions. In the following, in order to avoid a possible
confusion, we denote by uc(y, t), τc(y, t), Rc(y, t) and us(y, t), τs(y, t), Rs(y, t) the starting
solutions corresponding to the two fluid motions whose boundary conditions are given
by the relations in (17) and (18), respectively. These solutions, which characterize the fluid
motion some time after its initiation, can be written as sum of their respective steady-state
and transient components; i.e.,:

uc(y, t) = ucp(y, t) + uct(y, t), τc(y, t) = τcp(y, t) + τct(y, t), Rc(y, t) = Rcp(y, t) + Rct(y, t), (20)

and

us(y, t) = usp(y, t) + ust(y, t), τs(y, t) = τsp(y, t) + τst(y, t), Rs(y, t) = Rsp(y, t) + Rst(y, t). (21)

After this time, when the transients disappear or can be negligible, the fluid behavior
is described by the steady-state or permanent solutions ucp(y, t), τcp(y, t), Rcp(y, t) or
usp(y, t), τsp(y, t), Rsp(y, t). In order to determine this time for a given motion, at least the
steady-state or transient solutions have to be known. Since, for the transient solutions
of the motions, we do not know a modality to verify their correctness, in the following
we shall provide closed-form expressions for the steady-state solutions of the two above-
mentioned motion problems. These steady-state solutions, which are independent of the
initial conditions, satisfy the boundary conditions and governing equations.

3. Dimensionless Steady-State Solutions

In this section, we provide closed-form expressions for the dimensionless steady-state
velocity and shear stress fields ucp(y, t), usp(y, t) and τcp(y, t), τsp(y, t), respectively, and
the corresponding Darcy’s resistances Rcp(y, t), Rsp(y, t). For a check of the obtained results,
these expressions are presented in different forms and their equivalence is graphically proved.

3.1. Calculation of the Steady-State Velocities ucp(y, t) and usp(y, t)

To determine the dimensionless velocity fields ucp(y, t) and usp(y, t) that satisfy the
governing Equation (16) and the respective boundary conditions (17) and (18), we follow
two different methods. Firstly, while bearing in mind the linearity of the governing
Equation (16) and the form of the boundary conditions (17) and (18), we define the steady-
state complex velocity:

up(y, t) = ucp(y, t) + iusp(y, t); y > 0, t ∈ R, (22)

where i is the imaginary unit and is searching for a solution of the form:

up(y, t) = U(y)eiωt; y > 0, t ∈ R, (23)

where U(·) is a complex function. Of course, the dimensionless complex velocity up(y, t)
must satisfy the governing Equation (16) and the boundary conditions.(

1 + γ
∂

∂t

)
∂up(y, t)

∂y

∣∣∣∣
y=0

= eiωt, lim
y→∞

up(y, t) = 0; t ∈ R. (24)

Direct computations show that up(y, t) can be presented in the following form:

up(y, t) = − 1
(1 + iωγ)δ

e−δy+iωt; y > 0, t ∈ R, (25)
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while the dimensionless steady-state velocity fields ucp(y, t) and usp(y, t) are given by the
following relations:

ucp(y, t) = −Re
{

1
(1 + iωγ)δ

e−δ y+iωt
}

, usp(y, t) = −Im
{

1
(1 + iωγ)δ

e−δ y+iωt
}

, (26)

where Re and Im denote the real and imaginary parts, respectively, of that which fol-
lows, and:

δ =

√
(1− βω2 + iωα)(M + iω) + K(1 + iωγ)

1 + iωγ
. (27)

Secondly, in order to determine the equivalent forms for the dimensionless steady-state
solutions given by Equation (26), we use the dimensionless steady-state solutions:

uScp(y, t) = e−my cos(ω t− ny), uSsp(y, t) = e−my sin(ω t− ny), (28)

of the second problem of Stokes for incompressible Burgers’ fluids. It is the fluid motion
over an infinite flat plate that oscillates in its plane with the dimensionless velocity cos(ωt)
or sin(ωt). In these solutions, which were determined by direct computations, the constants
m and n are given by the following relations:

m =

√
ω

2

√
aω +

√
(aω)2 + b2

1 + (γω)2 , n =

√
ω

2

√
−aω +

√
(aω)2 + b2

1 + (γω)2 , (29)

which satisfy the algebraic system of equations:

m2 − n2 =
aω2

1 + (γω)2 , mn =
bω

2[1 + (γω)2]
, (30)

where a and b are defined by following equalities:

a = γ(1− βω2)− α, b = 1− βω2 + αγω2. (31)

More precisely, we are looking for the present dimensionless steady-state velocity
fields ucp(y, t) and usp(y, t) under the following forms:

ucp(y, t) = p1uScp(y, t) + q1uSsp(y, t), usp(y, t) = p2uScp(y, t) + q2uSsp(y, t). (32)

They must satisfy the respective boundary conditions in (17) and (18). Lengthy but
straightforward computations show that ucp(y, t) and usp(y, t) can be presented in the
following simple forms:

ucp(y, t) = −
√

p2 + q2 e−m̃y cos(ω t− ñy + ϕ),
usp(y, t) = −

√
p2 + q2 e−m̃y sin(ω t− ñy + ϕ).

(33)

In the last two relations, the angle ϕ = arctg(q/p) while the constants m̃, ñ, p, and q
have the following expressions:

m̃ =

√
ω

2

√√√√ cω +
√

(c ω)2 + d2

1 + (γω)2 , ñ =

√
ω

2

√
−cω +

√
(cω)2 + d2

1 + (γω)2 , (34)

p =
ñωγ− m̃

(m̃ωγ + ñ)2 + (ñωγ− m̃)2 , q =
m̃ωγ + ñ

(m̃ωγ + ñ)2 + (ñωγ− m̃)2 , (35)
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in which c and d are given by the following relations:

c = γ(1− βω2)− α + (1−βω2+αγω2)M+[1+(γω)2]K
ω2 ,

d = 1− βω2 + αγω2 + [α− γ(1− βω2)]M.
(36)

The equivalence of the dimensionless steady-state solutions given by the equalities in
(26) and (33) is graphically proved in Figure 1a,b.
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The dimensionless steady-state velocity fields ucp(y, t) and usp(y, t) corresponding
to isothermal motions of the same fluids in the absence of magnetic or porous effects can
immediately be obtained by taking M = 0, respectively K = 0 in Equations (26) and
(33), respectively. In the absence of both effects, when M = K = 0, the present solutions
reduce to those obtained by Fetecau et al. [22] (Equations (19) and (20)). Moreover, the
dimensionless steady-state solutions corresponding to incompressible Oldroyd-B, Maxwell,
and Newtonian fluids that are performing similar motions are immediately obtained by
taking β = 0, β = γ = 0 or α = β = γ = 0, respectively, in the previous relations. The
dimensionless steady-state velocity fields corresponding to motions of the incompressible
Newtonian fluids over an infinite flat plate that apply an oscillatory shear stress S cos(ωt)
or S sin(ωt) to the fluid, for instance, have the following simple forms:

uNcp(y, t) = −Re
{

1√
Ke f f +iω

e−y
√

Ke f f +iω+iωt
}

,

uNsp(y, t) = −Im
{

1√
Ke f f +iω

e−y
√

Ke f f +iω+iωt
}

,
(37)

or the equivalent

uNcp(y, t) = − 1
4
√

K2
e f f +ω2

e− f y cos(ω t− gy + ψ),

uNsp(y, t) = − 1
4
√

K2
e f f +ω2

e− f y sin(ω t− gy + ψ),
(38)

where

f =

√√√√Ke f f +
√

K2
e f f + ω2

2
, g =

√√√√−Ke f f +
√

K2
e f f + ω2

2
, ψ = arctg

Ke f f −
√

K2
e f f + ω2

ω

 (39)
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and Ke f f = M + K is the effective permeability [10]. The equivalence of the solutions in
(37) and (38) is graphically proved in Figure 2a,b.
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3.2. Exact Expressions for τcp(y, t),τsp(y, t) and Rcp(y, t), Rsp(y, t)

In order to determine the dimensionless steady-state shear stresses τcp(y, t),τsp(y, t)
and the Darcy’s resistances Rcp(y, t), Rsp(y, t) corresponding to the two unsteady motions
of the IECBF when magnetic and porous effects are taken into account, we firstly use the
complex shear stress and Darcy’s resistance:

τp(y, t) = τcp(y, t) + iτsp(y, t), Rp(y, t) = Rcp(y, t) + iRsp(y, t) (40)

and follow the same method as for the steady-state velocities. The obtained results when
using for ucp(y, t) and usp(y, t) the expressions from the equalities in (26) are given by the
following respective relations:

τcp(y, t) = Re
{

1
1− βω2 + iωα

e−δ y+iωt
}

, τsp(y, t) = Im
{

1
1− βω2 + iωα

e−δ y+iωt
}

, (41)

and
Rcp(y, t) = KRe

{
1

(1−βω2+iωα)δ
e−δ y+iωt

}
,

Rsp(y, t) = KIm
{

1
(1−βω2+iωα)δ

e−δ y+iωt
}

.
(42)

Direct computations clearly show that the dimensionless steady-state velocity, shear
stress, and Darcy’s resistance fields ucp(y, t), τcp(y, t), Rcp(y, t) and usp(y, t), τsp(y, t),
Rsp(y, t) given by the relations in (26), (41), and (42) satisfy the governing Equations
(12)–(14) and the respective boundary conditions in (17) and (18).

Equivalent expressions for τcp(y, t), τsp(y, t) and Rcp(y, t), Rsp(y, t), namely:

τcp(y, t) =
√

p2
1 + q2

1 e−m̃y cos(ω t− ñy + ϕ− χ),

τsp(y, t) =
√

p2
1 + q2

1 e−m̃y sin(ω t− ñy + ϕ− χ),
(43)

and
Rcp(y, t) =

√
p2

2 + q2
2 e−m̃y cos(ω t− ñy + ϕ− θ),

Rsp(y, t) =
√

p2
2 + q2

2 e−m̃y sin(ω t− ñy + ϕ− θ),
(44)
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were obtained by using the corresponding velocity fields ucp(y, t) and usp(y, t) from the
equalities in (33). In these relations:

p1 = (1−βω2)(m̃−ñωγ)+αω(ñ+m̃ωγ)

(1−βω2)
2
+(αω)2

√
p2 + q2,

q1 = αω(m̃−ñωγ)−(1−βω2)(ñ+m̃ωγ)

(1−βω2)
2
+(αω)2

√
p2 + q2,

(45)

p2 = K
1− βω2 + αγω2

(1− βω2)2 + (αω)2

√
p2 + q2, q2 = ωK

α− γ(1− βω2)

(1− βω2)2 + (αω)2

√
p2 + q2, (46)

where χ = arctg(q1/p1) and θ = arctg(q2/p2). The equivalence of the dimensionless
shear stresses τcp(y, t), τsp(y, t) and of the Darcy’s resistances Rcp(y, t), Rsp(y, t) given by
Equation (41) and (42), respectively, to those from the relations in (43) and (44) is proved in
Figures 3 and 4.
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The dimensionless steady-state shear stresses and Darcy’s resistances corresponding
to the velocity fields uNcp(y, t) and uNsp(y, t) of incompressible Newtonian fluids given by
the relations in (37) and (38) have the following simple forms:

τNcp(y, t) = Re
{

e− y
√

Ke f f +iω+iωt
}

, τNsp(y, t) = Im
{

e− y
√

Ke f f +iω+iωt
}

, (47)

RNcp(y, t) = KRe
{

1√
Ke f f +iω

e− y
√

Ke f f +iω+iωt
}

,

RNsp(y, t) = KIm
{

1√
Ke f f +iω

e− y
√

Ke f f +iω+iωt
}

,
(48)

or the equivalent:

τNcp(y, t) = e− f y cos(ωt− gy), τNsp(y, t) = e− f y sin(ωt− gy), (49)

RNcp(y, t) = K
4
√

K2
e f f +ω2

e− f y cos(ωt− gy + ψ),

RNsp(y, t) = K
4
√

K2
e f f +ω2

e− f y sin(ωt− gy + ψ).
(50)

4. Some Numerical Results and Applications

Closed-form expressions for the dimensionless steady-state solutions ucp(y, t), τcp(y, t),
Rcp(y, t) and usp(y, t), τsp(y, t), Rsp(y, t) corresponding to two isothermal MHD motions
of an IECBF over an infinite flat plate embedded in a porous medium were presented in
simple forms in the previous section. They are the first exact solutions for MHD motions of
an IECBF with differential expressions of shear stress on the boundary. For validation, all so-
lutions are presented in double forms and their equivalence was graphically proved. These
solutions can easily be particularized to give corresponding solutions for incompressible
Oldroyd-B, Maxwell, and Newtonian fluids that are performing similar motions.

As an application, some of the obtained results were used to determine the required
time to reach the steady or permanent state. From a mathematical point of view, this was
the time after which the diagrams of the starting velocities uc(y, t) and us(y, t) (numerical
solutions) were almost identical to those of their steady-state components ucp(y, t) and
usp(y, t), respectively. The convergence of the two starting velocities to their steady-state
components was proved in Figures 5–8 for increasing values of the time t at distinct values
of M and K and fixed values of the other parameters. Based on these figures, it was clear
that the required time to reach the steady state diminished with increasing values of the
magnetic or porous parameters (M and K, respectively). Consequently, the steady state for
isothermal motions of the IECBF was earlier reached in the presence of a magnetic field or
porous medium. In addition, as expected, in all cases the fluid velocity tended to zero with
increasing values of the spatial variable y.

For comparison, as well as to bring to light some characteristic features of the two
motions, the spatial distributions of the dimensionless starting velocity fields uc(y, t) and
us(y, t) (numerical solutions) are presented together in Figure 9a,b, respectively, for the
same values of the physical parameters. The oscillatory behavior of the two motions, as well
as the phase difference between them, can be easily observed. In addition, the initial and
boundary conditions were clearly satisfied. Blue and yellow colors were used in the current
figure to designate the minimum and maximum values of the two solutions, respectively.
The intermediate values between the maximum and minimum are denoted by the gradient
of the colors between yellow and blue.
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for α = 0.8, β = 0.7, γ = 0.6, ω = π/12, M = 0.6, and K = 0.4.

The three-dimensional distributions of the same non-dimensional starting velocities
uc(y, t) and us(y, t) are also visualized by means of the two-dimensional contour graphs
(see, for example, the paper of Fullard and Wake [28]) in Figure 10a,b, respectively, for
α = 0.8, β = 0.7, γ = 0.6, ω = π/12, M = 0.6, and K = 0.4.
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Figure 10. Contours profiles of the dimensionless starting solutions uc(y, t) and.us(y, t) (numerical
solutions) for α = 0.8, β = 0.7, γ = 0.6, ω = π/12, M = 0.6, and K = 0.4. The trajectory paths with
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the minimum value are denoted in blue colors while those with the maximum value are marked in
yellow colors. The trajectory paths with intermediate values are represented by the gradient of blue
and yellow colors. The oscillatory behavior of the fluid motions is represented by an alternation of
two distinct sets of almost-closed trajectories along the time t with blue and yellow colors.

5. Conclusions

Some unsteady motions of incompressible fluids become steady or permanent in time
if the fluid is at rest at the initial moment. Of course, this also depends on the boundary
conditions. For such motions, in practice, a very important problem is to know the time
required to reach the steady or permanent state. This is the time after which the fluid
moves according to the steady-state solutions. In order to determine this time for a given
motion, it is sufficient to know the corresponding steady-state solutions. This is the reason
why we established closed-form expressions for the dimensionless steady-state solutions
corresponding to two isothermal MHD unidirectional motions of an IECBF over an infinite
flat plate embedded in a porous medium. The boundary conditions that were used, contrary
to what is usually found in the existing literature, contained differential expressions of
the non-trivial shear stress on a part of the boundary. For a check of results that were
obtained here, all solutions have been presented in different forms and their equivalence
was graphically proved.

It is worth pointing out the fact that all of the obtained solutions could easily be
particularized to give dimensionless steady-state solutions for the incompressible Oldroyd-
B, Maxwell, second-grade and Newtonian fluids that were performing similar motions. By
taking α = β = γ = 0, for instance, dimensionless steady-state solutions corresponding
to motions of an incompressible Newtonian fluid induced by the flat plate that applied
a shear stress S cos(ωt) or S sin(ωt) to the fluid were brought to light. In addition, the
solutions for motions of Burgers’ fluids were used to determine the required time to reach
the steady state. This time, which in practice is very important for experimental researchers,
was graphically determined by showing the convergence of the starting solutions to the
corresponding steady-state solutions. The oscillatory behavior of the two motions, as well
as the phase difference between them, was graphically underlined. The main outcomes
that were here obtained are:

- The first exact solutions for MHD motions of Burgers’ fluids through a porous
medium were determined when differential expressions of shear stress were given on
the boundary.

- The solutions corresponding to Oldroyd-B, Maxwell, and Newtonian fluids that
were performing similar motions were immediately obtained as limiting cases of the
present results.

- The convergence of the dimensionless starting velocities uc(y, t) and us(y, t) to their
respective steady-state components ucp(y, t) and usp(y, t) was graphically proved. In
addition, all of the obtained solutions were presented in different forms and their
equivalence was proved.

- The steady state for isothermal motions of incompressible Burgers fluids’ was earlier
reached in the presence of a magnetic field or porous medium.

Author Contributions: Conceptualization, C.F., D.V. and A.R.; Methodology, C.F., D.V. and A.R.;
Software, T.M.Q. and A.R.; Validation, C.F., D.V., A.R. and T.M.Q.; Writing—review and editing, C.F.,
D.V., A.R. and T.M.Q. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors would like to express their gratitude to the Editor and reviewers for
their careful assessments, kind appreciations, and fruitful suggestions regarding the first version of
the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2022, 10, 4228 14 of 15

Nomenclature

T Cauchy stress tensor S Extra-stress tensor
A First Rivlin–Ericksen tensor L Velocity gradient
u Fluid velocity S Constant shear stress
p Hydrostatic pressure x, y, Z Cartesian coordinates

R(y, t) Darcy’s resistance k
Permeability of porous
medium

M Magnetic parameter K Porous parameter
B Magnitude of magnetic field Syy, Syz, Szz, Szx Components of S
Greek Symbols
τ Non-trivial shear stress ρ Fluid density
µ Dynamic viscosity ν Kinematic viscosity
υ Velocity vector σ Electrical conductivity
α, β, γ Material constants ϕ Porosity
ω Frequency of oscillations
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