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Abstract: Nowadays, short-term traffic flow forecasting has gained increasing attention from re-
searchers due to traffic congestion in many large and medium-sized cities that pose a serious threat
to sustainable urban development. To this end, this research examines the forecasting performance of
functional time series modeling to forecast traffic flow in the ultra-short term. An appealing feature
of the functional approach is that unlike other methods, it provides information over the whole day,
and thus, forecasts can be obtained for any time within a day. Within this approach, a Functional
AutoRegressive (FAR) model is used to forecast the next-day traffic flow. For empirical analysis,
the traffic flow data of Dublin airport link road, Ireland, collected at a fifteen-minute interval from
1 January 2016 to 30 April 2017, are used. The first twelve months are used for model estimation,
while the remaining four months are for the one-day-ahead out-of-sample forecast. For comparison
purposes, a widely used model, namely AutoRegressive Integrated Moving Average (ARIMA), is
also used to obtain the forecasts. Finally, the models’ performances are compared based on different
accuracy statistics. The study results suggested that the functional time series model outperforms
the traditional time series models. As the proposed method can produce traffic flow forecasts for
the entire next day with satisfactory results, it can be used in decision making by transportation
policymakers and city planners.

Keywords: traffic flow forecasting; autoregressive; functional time series; Dublin airport link road;
short-term prediction; functional data analysis; ARIMA

MSC: 62R10; 62M10; 62R07; 62M10; 62Hxx

1. Introduction

The invention of vehicles has certainly made transportation easy, but it has also
created multiple problems in today’s congested world, such as chronic, huge rush on
a road at a time. This could lead to different issues, for example, accidents, delays for
emergency travelers and wasting of precious time even for routine travelers. The accurate
modeling and forecasting of traffic flow are crucial in today’s advanced world to get rid of
such problems [1]. No one can subjectively predict the atypical conditions of traffic flow.
Therefore, an accurate forecast could prevent people from facing major problems [2]. The
United Nations Sustainable Development Goals (SDG) Agenda 2030 ties several goals to
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quality transportation and on-road mobility. There are a number of SDG targets directly
related to transport, including SDG 3 on health (increased road safety), SDG 7 on energy,
SDG 8 on decent work and economic growth, SDG 9 on resilient infrastructure, SDG
11 on sustainable cities (access to transport and expanded public transport), SDG 12
on sustainable consumption and production (ending fossil fuel subsidies) and SDG 14
on oceans, seas and marine resources (Sustainable Development Goals, UN knowledge
platform, 2016). In addition, the accuracy of short-term traffic flow prediction as an
indispensable measure is essential for the timely reporting of traffic conditions to the public
and for the decision making of law enforcement to resolve traffic congestion [3].

A huge array of literature focuses on an intelligent transportation system to have
better forecasting capability. Short-term traffic flow forecasting is essential for operations
management and the dynamic scheduling of transport networks due to variations in traffic
flow from hour to hour and day to day [4,5]. Most transportation management systems
use short-term traffic flow forecasting techniques to undertake immediate decisions. In
addition, these forecasts are helpful for policymakers to formulate policies accordingly for
the future. Furthermore, accurate traffic flow forecasting can be very helpful for travelers
to plan their travels accordingly. The realization of traffic control and guidance forms the
core issue of an intelligent transportation system, and the real-time prediction of short-term
traffic flow is a prerequisite for the scientific management and control of transport systems.
Therefore, the real-time prediction of short-term traffic flow with accuracy is of enormous
significance for effectively managing the traffic department and daily commuters [6].

In the past, different forecasting methods have been introduced in order to improve
traffic flow forecasting accuracy [7]. Despite massive investments in transportation-related
infrastructure, traffic congestion remains a societal and public policy problem of paramount
importance. Intelligent transportation systems (ITS) have been potentially proposed as a
solution to this issue, but their effectiveness remains vague in research and applied practices.
Ref. [8] stated that “ITS helps individual commuters to make better travel decisions, and it
helps local governments to develop an urban traffic management capability”. Their study
concluded that there is significant empirical evidence that supports the underlying theories
and shows that ITS helps commuters to schedule and sequence travel more efficiently,
opt for appropriate navigation routes, and optimize their work trip transportation mode.
Secondly, the social impact of ITS is highly dependent upon the available road network
and the widely accessible public transit services.

The main aim of this research is to propose an efficient model for forecasting a day-
ahead traffic flow based on functional time series modeling. An appealing feature of
the functional approach is that unlike other methods, it provides information over the
whole day, and thus, forecasts can be obtained for any time within a day. In this study, a
functional datum is referred to the day profile of traffic flow collected at some discretized
points. Considering the day profile as a single functional datum solves the problem of high
dimension and enables use of the correlation among values within a functional datum. The
proposed model performs better on weekdays as well as on weekends. The forecasting
accuracy of the functional model is compared with the classical ARIMA models that are
frequently used in the literature for traffic flow forecasting.

The remaining article is organized as follows. Section 2 provides a literature review
concerning traffic flow forecasting. The methods and models used in this study are given
in Section 3. Section 4 presents an empirical investigation of the model’s performance on a
real data set, while Section 5 provides the conclusion and future recommendations.

2. Literature Review

In recent decades, researchers have proposed a variety of short-term traffic forecasting
models differing in complexity, methodology, and performances [9–13]. The researchers
used different traffic flow parameters to propose efficient models in different scenarios.
For example, ref. [14] compared three different models, i.e., the random walk model,
Holt–Winter’s exponential smoothing model, and the Seasonal AutoRegressive Integrated
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Moving Average (SARIMA) model for forecasting traffic flow. Holt–Winter’s exponential
smoothing model was declared the best, while the SARIMA was competitive. Ref. [15] used
the functional principle components analysis technique to develop high-quality internet
traffic volume projections. It was found that the functional principal components analysis
increases the forecasting ability. Ref. [16] used functional clustering to know the traffic
flow pattern. The functional mixture prediction approach used by [17] was found to
be better than the functional principal components approach. Ref. [18] implemented a
functional nonparametric kernel regression model to forecast the traffic flow. Ref. [19]
used the Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) model for
forecasting traffic flow. Ref. [20] considered the long-range temporal dependence and daily
temporal dependence for modeling the traffic flow time series and suggested that both the
dependencies are equally important and should be considered simultaneously.

A hybrid model for short-term traffic flow forecasting was proposed by [21] which
combines ARIMA and the support vector machine (SVM) technique. Ref. [22] introduced
a hybrid model namely dynamic spatio-temporal ARIMA for short-term traffic flow fore-
casting. Ref. [23] analyzed the correlation between the long short-term memory network
(LSTM) and the statistical characteristics of the traffic flow data to modify a long short-term
memory network model. The logistic regression model and ARIMA model were compared
by [24]. The study suggested that ARIMA produced better results than the logistic model.
Ref. [25] proposed a model which overcomes the memoryless property of the previous
nonparametric method. Ref. [26] compared four regression models for traffic flow fore-
casting: sequential minimal optimization (SMO) regression, linear regression, multilayer
perceptron, M5P model tree, and random forest. Ref. [4] proposed a novel method for
forecasting combining the framework of the heaped auto-encoder and radial basis function
neural network. Ref. [27] developed a hierarchical linear vector AutoRegressive model to
know the spatio-temporal relations of the traffic flow. Ref. [28] constructed a prediction
network to forecast traffic flow, i.e., long short-term memory, based on a deep learning
algorithm. An adaptive hybrid model that combines linear ARIMA and nonlinear wavelet
neural network to predict short-term traffic flow was proposed by [29]. Ref. [30] compared
the forecasting performance of gradient boosting decision tree and wavelet neural network
to propose a better model for traffic flow forecasting. Ref. [31] presented a combined deep
learning model for short-term traffic flow forecasting based on LSTM, Gater Recurrent Unit
(GRU), Convolution Neural Network (CNN), and Dynamic Optimal Weighted Coefficient
Algorithm (DOWCA).

For short-term traffic flow forecasting, the proposed model by [32] decomposes data
into three modeling components, i.e., periodic trend by introducing spectral analysis
technique, the volatility estimated by the GRU-GARCH model, and a deterministic part
modeled by the ARIMA model. Ref. [33] presented a hybrid Particle Swarm Optimization
(PSO)-SVR method for short-term traffic flow forecasting. A PSO-ELM (Extreme Learning
Machine) model based on particle swarm optimization for short-term traffic flow forecasting
was proposed by [34]. The model was capable of controlling the nonlinear relationship
effect that could result in lower forecast accuracy. Ref. [35] compared the forecasting
performance of a nonparametric K-Nearest Neighbor (KNN)-based regression model with
a neural network. The KNN method was more effective than the neural network, which
had the advantage of strong transplant ability compared to the neural network. Ref. [36]
proposed a hybrid model for short-term traffic flow forecasting by combining a deep
polynomial neural network and SARIMA model. In addition, researchers also compared
statistical models with artificial intelligence models. For example, ref. [37] compared
ARIMA, neural network, and nonparametric regression models. Nonparametric regression
performed better when traffic flow fluctuates quickly. However, it was concluded that
all the models perform equally when traffic flow does not fluctuate quickly. Ref. [38]
analyzed statistical methods for short-term traffic flow forecasting. The methods include
average history methods, ARIMA, SARIMA, space-time ARIMA, nonparametric methods,
neural networks, support vector machine, and hybrid models. The hybrid techniques were
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declared the best among these models. Ref. [15] proposed a novel compound model for
short-term traffic flow forecasting in the presence of both typical and atypical traffic flow
conditions. Ref. [39] compared the proposed model “SVRs

RBF” with several statistical and
artificial intelligence-based models. Ref. [40] compared different statistical and artificial
intelligence-based models, such as historical average, back-propagation neural network,
time series and nonparametric regression. The nonparametric regression model was the
best among the three models. Ref. [41] considered three models for forecasting the traffic
flow of major urban areas. Among the three models, the neural network model was
more effective.

3. Methods and Models

The main goal of this study is to forecast a day-ahead traffic flow by using a func-
tional time series model. For this purpose, a Functional Autoregressive (FAR) is used
for forecasting a day-ahead traffic flow. The functional model FAR is compared with the
popular ARIMA(p,d,q). Before going into details of the models mentioned above, a brief
introduction to the functional data analysis is given below.

3.1. Functional Data Analysis

Functional data analysis (FDA) is a group of methods analyzing data over a curve,
surface, or continuum. FDA considers each curve as a single observation instead of a
collection of discrete data points [42–44]. In FDA, the data collected at discretized points,
often equally spaced, are converted to functional data by implementing a suitable basis
functions system. The functional data are then represented in the form of curves. The basis
functions have the ability to eliminate the common noise and represent each data curve that
resembles the original data by means of smoothing. A basis functions system is defined as
a set of functions that is a linear combination of the coefficients ck and basis functions φk.
The linear combination of coefficient ck and φk explains the functional observations. For
example, a functional observation x(t) is defined as

x(t) =
K

∑
k=1

ckφk(t), (1)

where ck are parameters (coefficients) and φk are known basis functions. Here, K denotes
the number of basis functions used in the basis function system that is generally computed
by the cross-validation technique. Different basis functions are available that can capture
the underlying process more efficiently. For periodic data, Fourier basis functions are
generally used. Fourier basis are a linear combination of sine and cosine functions of
increasing frequency. Mathematically, the Fourier basis can be written as

x̂(t) = c0 + c1 sin ωt + c2 cos ωt + c3 sin 2ωt + c4 cos 2ωt + · · · .

Here, c0 = 1 is a constant, and c1, c2,. . . ,ck are the coefficients of K basis functions. In
addition, K will always be odd number because of one constant. The ω defines the period
2π/ω.

3.2. Functional Autoregressive Model

Functional data analysis is a modern and relatively less explored field for forecasting
traffic flow, where analysis is performed by using the traffic flow information over an entire
day. In this research, the FAR model is used, which is an extension of the autoregressive
model but in the functional context. The time series values are formed functionally via
discretized points representing discrete data collected at some intervals of a day. Mathe-
matically, the FAR(1) model is given as:

Yt(j) = ψYt−1(j) + εt(j). (2)
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Here, Yt(j) and εt(j) are curves evaluated at j discretized points, and ψ is an operator called
a projector (parameter). The εt(j) is a random error, such that εt(j) is normally distributed
with mean zero and variance σ2

ε (j). The Yt(j) is an observed functional datum which is
assumed a causal process for any j [45]. The estimation of autoregressive operator of the
FAR(1) model can be estimated under the conditions that there exists an integer j0 ≥ 0 such
that ‖ ψj0 ‖ < 1 and the process {Yt} satisfies E ‖ Y0 ‖4< ∞. The first condition is denoted
by C0, while the second condition is denoted by C1. To understand the estimation of the
FAR(1) model, first consider the traditional AR(1) model given as

Yt = ψYt−1 + εt. (3)

In this model, all the quantities are scalars. It is assumed that |ψ| < 1, which indicates the
process is stationary. AR(1) is multiplied by Yt−1 followed by taking expectation on both
sides that results, γ1 = ψγ0. Similarly, γk = E[Yt,Yt+k] is defined. The γk autocovariance
is estimated by γ̂k which denotes the sample autocovariance. Finally, the estimator of ψ
is ψ̂ = γ̂1

/
γ̂0. This technique is extended to the functional time series model to estimate

FAR(1) model [46] as follows.

E
[
〈Yt, y〉 Yt−1

]
= E

[
〈ψ(Yt−1), y〉Yt−1

]
.

Now, the lag 1 autocovariance operator is defined by,

C1(y) = E
[
〈Yt, y〉 Yt+1

]
.

It is denoted by the adjoint operator, i.e., superscript ·T . Then, C1
T = CψT because it is

already known that C1
T = E

[
〈Yt, y〉Yt+1

]
, i.e.,

C1 = ψC (4)

Since Equation (4) is similar to the scalar case, the estimate of ψ can be obtained by imple-
menting a finite sample version of the relation ψ = C1C−1. Since the operator C has no
bounded inverse on the H (Hilbert-space), which means that C−1(C(y)) = y, where

C−1(x) =
∞

∑
j=1

λ−1
j
〈

x, νj
〉
νj .

The operator C−1 can be defined if all λj are positive. If λ1 ≥ λ2 ≥ · · · ≥ λp >

λp+1 = 0, then { Yt } is in the space spanned by {ν1, · · · , νp}. The C−1 can be defined by
C−1(x) = ∑

p
j=1 λ−1

j 〈x, νi〉 νi on the subspace. The ‖ C−1 ‖ = λ−1
t → ∞, as t tends to ∞, so,

it is unbounded. This scenario makes it burdensome to estimate the bounded operator
Ψ using the relation Ψ = C1C−1. The solution to this problem is to utilize the first p most
important empirical functional principal components (EFPC’s) ν̂j. Thus,

ÎCp(y) =
p

∑
j=1

λ̂−1
j 〈y, ν̂j〉ν̂j .

The operator ÎCp is defined on the whole space L2. This operator will be bounded if
λ̂j > 0 for j ≤ p. The p components are chosen in such a way that the balance between
maintaining the admissible information contained in the sample and the risk of dealing
with reciprocals of small eigenvalues λ̂j. For a computable estimator of Ψ, an empirical
version of Equation (4) is used. It is known that C1 is estimated as,

Ĉ1(y) =
1

N − 1

N−1

∑
k=1
〈Yk, y〉Yk+1,
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so, the following form is obtained, for any y ∈ L2,

Ĉ1 ÎCp(y) = Ĉ1

(
p

∑
j=1

λ̂−1
j
〈
y, ν̂j

〉
ν̂j

)

=
1

N − 1

N−1

∑
k=1

〈
Yk,

p

∑
j=1

λ̂−1
j
〈
y, ν̂j

〉
ν̂j

〉
Yk+1

=
1

N − 1

N−1

∑
k=1

p

∑
j=1

λ̂−1
j
〈
y, ν̂j

〉〈
Yk, ν̂j

〉
Yk+1.

This estimator can be implemented, but commonly, an additional smoothing step is intro-
duced by utilizing the approximation Yk+1 ≈ ∑

p
i=1

〈
Yk+1, ν̂i

〉
ν̂i. This leads to the estimator,

Ψ̂(y) =
1

N − 1

N−1

∑
k=1

p

∑
j=1

p

∑
i=1

λ̂−1
j
〈
y, ν̂j

〉〈
Yk, ν̂j

〉〈
Yk+1, ν̂i

〉
ν̂i. (5)

The estimator in Equation (5) is a kernel operator with kernel,

ψ̂p(t, s) =
1

N − 1

N−1

∑
k=1

p

∑
j=1

p

∑
i=1

λ̂−1
j
〈
Yk, ν̂j

〉〈
Yk+1, ν̂i

〉
ν̂j(s)ν̂i(t).

This is verified by noting that,

Ψ̂p(y)(t) =
∫

ψ̂p(t, s)y(s)ds.

Since ψ(·,·) is a Hilbert–Schmidt kernel, then

ψ̂p(t, s) =
p

∑
i,j=1

ψ̂ijν̂i(t)ν̂j(s),

where ψ̂ij =
∫ ∫

ψ̂(t, s)ν̂i(t)ν̂j(s)dtds. Therefore,

∫
ψ̂p(t, s)Yk(s)ds =

p

∑
i,j=1

ψ̂ijν̂i(t)
〈
Yk, ν̂j

〉
.

For any 1 ≤ i ≤ p, we have

Yk+1,i =
p

∑
j=1

ψ̂ijξkj + ek+1,i + ηk+1,i (6)

where
Yk+1,i =

〈
Yk+1, i

〉
, ξkj =

〈
Yk, ν̂j

〉
, ek+1,i =

〈
εk+1, ν̂i

〉
and ηk+1,i =

p

∑
j=1

ψ̂ij
〈
Yk, ν̂j

〉
.

The errors ek+1,i and ηk+1,i are combined,

σk+1,i = ek+1,i + ηk+1,i.

It is to be noted that σk+1,i are no longer IID. Now,

Yk = [ξk1, . . . , ξkp]
T , Yk+1 = [Yk+1(1), . . . , Yk+1(p)]

T , σk+1 = [σk+1(1), . . . , σk+1(p)]
T ,
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ψ̂ = [ψ11, . . . , ψ1p, ψ21, . . . , ψ2p . . . , ψp1, . . . , ψpp]
T

Equation (6) can be rewritten as,

Yk+1 = Zkψ̂ + σk+1, k + 1 = 1, 2, . . . , N k = 1, 2, . . . , N

where each Zk is a p × p2 matrix,

Zk =


YT

k 0T
p . . . 0T

p
0T

p YT
k . . . 0T

p
...

...
...

...
0T

p 0T
p . . . YT

k


with 0p = [0, . . . , 0]T . Finally, the Np× 1 vectors Y, σ and the Np× p2 matrix Z are defined as,

Y =


Y1
Y2
...

YN

 σ =


σ1
σ2
...

σN

 Z =


Z1
Z2
...

ZN


As a result, the following linear model is obtained,

Y = Zψ̂ + σ. (7)

It is worth noting that Equation (7) is not a traditional linear model. First of all, the design
matrix Z is random. Secondly, Z and σ are not independent. The error term σ is the
combination of ε (projections of the error term) and η. Thus, Equation (7) looks like a linear
model, but the current asymptotic results do not apply to it. A new asymptotic analysis
involving the interaction of the various approximation errors is needed. Equation (7) leads
to the formal least squares estimator for Ψ as follows [46],

ψ̂ = (ẐT Ẑ)−1ẐTŶ

3.3. Autoegressive Integrated Moving Average (ARIMA) Model

ARIMA models are one of the most popular and frequently used forecasting models
to model and forecast traffic flow. An ARIMA model is a combination of three compo-
nents: AR(p), I(d), and MA(q). The choice of the values of p,d, and q is very important,
and the Box and Jenkins methodology is generally used to select them. When a time
series is nonstationary, it is differentiated (d times) to convert it to stationary series. In
ARIMA(p,d,q), the AR(p) denotes p lagged values of a time series, I(d) denotes the order of
differencing, and MA(q) term represents the number of lags error terms included in the
model. Mathematically, an ARIMA(p,d,q) can be written as

Yd
t = β0 +

p

∑
r=1

ϕrYd
t−r +

q

∑
i=1

Φiεt−i + εt (8)

where Yd
t represents the dth difference of series, and ϕr (r = 1, 2, . . . , p) and Φi (i =

1, 2, . . . , q) are the parameters of AR and MA terms, respectively. Moreover, εt is an error
term such that εt ∼ N(0, σ2

ε ). The values for p, d, and q are selected by inspecting the
autocorrelation (ACF) and partial autocorrelation (PACF) plots of the series. Once the
model parameters are identified, they can be estimated using the maximum likelihood
estimation (MLE) method. A flowchart of the proposed modeling framework is presented
in Figure 1.
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Original Data 
Functional 

Data 

Weekdays Weekend 

FAR(1) ARIMA 

Weekdays Weekend 

Forecasts 

Figure 1. Flowchart of the proposed modeling framework.

4. Analysis and Results

This section contains a description of the data, provides results, and discusses the
important findings of the research.

4.1. Data Description

Taking advantage of technology, nowadays, traffic flow data are gathered with the
help of scanners. With the availability of massive data, researchers are trying to improve
the forecasting accuracy of different modeling techniques. In this research, the traffic flow
data of a busy highway (airport road) in Dublin, Ireland, have been used. In particular,
the data were collected at M01 Airport Link Road between R132 Swords Road and Jn2
Dublin Airport. This airport link road is one of the busiest roads and remains very busy
throughout the day. People used this road to access the airport as well as their workplaces.
The data are freely available from the TII Traffic Data website (https://trafficdata.tii.ie,
accessed on 11 October 2021). For empirical analysis, the data from 1 January 2016 to 30
April 2017 were obtained at each 15-min interval, leading to 96 data points for a single
day. The data were divided into two sets, i.e., the first twelve months are used as a model
estimation period, and the last four months are used for the one-day-ahead out-of-sample
forecast. The main reason to use a larger window for the out-of-sample forecast is to assess
the forecasting performance of different models in different situations. An example of the
traffic flow data set collected at the Dublin airport link road for different days of a week
and different periods of a day is given in Table 1.

Table 1. An example of the traffic flow data set collected at the Dublin airport link road for different
days of a week and different time periods of a day.

Date 1/1/2016 2/1/2016 3/1/2016 4/1/2016 5/1/2016 6/1/2016 7/1/2016

9:30 544 1141 918 1510 1642 1733 1784

11:30 986 1688 1437 1582 1624 1533 1585

13:30 1432 1697 1935 1861 1775 1739 1654

15:30 1543 1833 2083 2002 1838 1896 1993

17:30 1323 1621 1862 2565 2264 2527 2479

19:30 917 1209 1361 1344 1360 1294 1474

21:30 622 621 788 712 777 763 915

23:30 373 545 473 497 445 399 481

https://trafficdata.tii.ie
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4.2. Discrete Noisy Data Conversion to Functional Data

The first step of the analysis involved the conversion of the discrete noisy data to
smooth functions. The daily traffic flow profile consists of 96 discrete points corresponding
to a 15-min interval collected data. As the data were periodic, we used the Fourier basis.
Using the Fourier basis functions, the raw data were converted to functional data by
implementing nine basis functions. For illustration, Figure 2 provides the smoothed daily
profile for the data used in this study. From the figure, it is evident that there are two
patterns of traffic flow corresponding to working days and weekend days. To account
for weekly periodicity, the traffic flow data are separated into two datasets, i.e., working
days and weekends. Both the raw data are converted into functional data using the
aforementioned method. The polts of both data sets are depicted in Figure 3. It is noticed
from the plot that there is a substantial difference in traffic flow between working days
and weekend days. Concerning the working day’s pattern, the traffic flow has its first
peak in the morning time as people go to their workplaces and educational institutes. The
traffic flow gradually decreases in the afternoon time and then again increases around
3:00–4:00 PM as people return from educational institutes and workplaces. As the data are
from the airport link road, it is also possible that most air travels are scheduled around
these times. In contrast, the weekend traffic flow is significantly different from working
days. The weekend traffic flow is a bit high in the afternoon because of the airport route.
Although both patterns are very consistent, however, some days behave a bit differently as
compared to their general patterns. It might be because of some exceptional holidays such
as bank holidays, festival holidays, etc.
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Figure 2. Daily traffic flow curves for the period 01/01/2016–30/04/2017.

4.3. Models Estimation

The main aim of the article is to model and forecast one-day-ahead traffic flow. To this
end, the models are applied to the data in two different scenarios: (i) when ignoring the
weekly periodicity, i.e., the models are directly applied to the whole data, and (ii) when
considering the weekly periodicity, i.e., in this case, the models are applied to weekday
data and weekend data separately. Note that in both cases, the parameter values of the
models are different. The FAR(1) model is applied in both cases separately in the functional
modeling approach.

On the other hand, ARIMA model parameters were identified by analyzing the ACF
and PACF plots of the series. A restricted ARIMA(7,1,0) model where lag = 3, 4, 5, and 6
equal to zero due to their insignificance is found to be the best fitted model for the combined
data set. In case two, the best model for working days is a restricted ARIMA(5,1,0) with
lag = 3 and 4 equal to zero, as they were insignificant. For the weekend, the ARIMA(2,1,0)



Mathematics 2022, 10, 4279 10 of 16

is found to be the best model and fitted to the data. Mathematically, these models are
given as

Y1
t = β0 + ϕ1Y1

t−1 + ϕ2Y1
t−2 + ϕ7Y1

t−7 + εt (9)

Y1
t = β0 + ϕ1Y1

t−1 + ϕ2Y1
t−2 + ϕ5Y1

t−5 + εt (10)

Y1
t = β0 + ϕ1Y1

t−1 + ϕ2Y1
t−2 + εt (11)

where Y1
t denotes the integrated series. The ϕi is the associate coefficient to the lag and εt is

the error term.

0 5 10 15 20

0
10

00
20

00

Hours

N
o.

 o
f v

eh
ic

le
s

Weekdays

0 5 10 15 20

0
50

0
15

00

Hours

N
o.

 o
f v

eh
ic

le
s

Weekend

Figure 3. Daily traffic flow curves for (top) weekdays (bottom) weekends, for the period 01/01/2016–
30/04/2017.

4.4. Out-of-Sample Forecasting

The models are trained using the first twelve months, and the last four months are
used for one-day-ahead out-of-sample forecasting. Both models are used to forecast a day-
ahead traffic flow in both data cases. The models’ performance is assessed by four different
accuracy statistics, including mean square error (MSE), mean absolute error (MAE), mean
absolute percentage error (MAPE), and mean squared percentage error (MSPE). In addition,
day-specific mean absolute percentage error (DS-MAPE) is also calculated to assess the
forecasting performance of different models on different days of a week. Mathematically,
these accuracy measures can be written as
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MSE =
1
tj ∑

(
Yt,j − Ŷt,j

)2

MAE =
1
tj ∑

(∣∣Yt,j − Ŷt,j
∣∣)

MAPE =
1
tj ∑

(∣∣Yt,j − Ŷt,j
∣∣

Yt,j

)
× 100

MSPE =
1
tj ∑

(∣∣Yt,j − Ŷt,j
∣∣

Yt,j

)2

× 100

DS-MAPEday =
1
tj ∑

∣∣Yt,j − Ŷt,j
∣∣
t∈day,j

Yt,j

× 100

where Yt,j and Ŷt,j are the observed and forecasted traffic flow for the tth day (t =
1, 2, . . . , 120) and jth time-period (j = 1, 2, . . . , 96), respectively. Meanwhile, t ∈ day, j,
denotes specific days (Monday,· · · , Sunday).

The accuracy results concerning the one-day-ahead out-of-sample forecast using the
functional and traditional models are given in Table 2.

Table 2. Accuracy statistics for a one-day ahead out-of-sample traffic flow forecasts.

Days Model MSE MAE MAPE MSPE

Full data FAR(1) 24,762.96 102.01 9.94 2.75
ARIMA(7,1,0) 38,871.68 118.13 11.80 3.90

Working-days only FAR(1) 21,445.71 86.94 8.24 2.19
ARIMA(5,1,0) 28791.97 99.20 9.41 2.58

Weekend days only FAR(1) 12,228.96 80.73 9.36 2.170
ARIMA(2,1,0) 19,632.88 97.40 10.30 2.48

From the table, it is evident that our proposed functional model performs relatively
better than ARIMA models. For example, when working with the complete data set,
the MAPE value of the restricted ARIMA(7,1,0) model is 1.86% higher than the MAPE
of FAR(1), which is a significant difference. In this case, FAR(1) produces the values for
MSE, MAE, MAPE, and MSPE of 24762.96, 102.01, 9.94, and 2.75, respectively, whereas
these values for ARIMA(7,1,0) are 38871.68, 118.13, 11.80, and 3.90. On the other hand,
the accuracy statistics of the restricted ARIMA(5,1,0) model are higher than the FAR(1)
model when considering data only corresponding to the working days. In this case, the
MAPE value of the FAR(1) model is 8.24, which is considerably lower than the MAPE value
obtained with restricted ARIMA(5,1,0). The MAPE value of the restricted ARIMA(5,1,0)
exceeds 1.17% of the MAPE of FAR(1). In the case of considering only weekend days data,
all the accuracy statistics of FAR(1) are lower than the ARIMA(2,1,0), which indicates the
superiority of the FAR(1) model. The MAPE value of 10.30 obtained by the ARIMA(2,1,0) is
slightly higher than the MAPE value of 9.36 obtained by the FAR(1). It is worth mentioning
that in all the cases, the proposed FAR model outperforms the competitors as the accuracy
statistics values are considerably lower for FAR than ARIMA. For illustration purposes, the
MAPE values are also depicted in Figure 4. This figure clearly shows that the FAR model
produces lower MAPE values than the competitors.

The accuracy results can be differentiated by looking at graphs in the above figure. The
day-specific MAPE (DS-MAPE) values for different models are listed in Table 3. Again, the
functional model can be easily compared with the traditional model in terms of forecasting
accuracy for the traffic flow on different days of the week. The MAPE values for the FAR(1)
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model are comparatively lower than those of the ARIMA models. The lowest MAPE values
are obtained on Thursday, while Monday produces higher MAPE values. The DS-MAPE
values are also depicted graphically in Figure 5. In Figure 5, it can be seen that the FAR(1)
model performs relatively better than ARIMA models comparing the traffic flow forecast
on specific days.

Table 3. Day-specific MAPE from Monday to Sunday.

MAPE for Each Day of the Week
Days Models

M T W T F S S

Working-days and FAR(1) 13.09 7.66 7.13 7.80 8.63 11.40 13.66
weekend combine ARIMA(7,1,0) 14.65 11.47 8.37 7.09 12.13 16.33 12.54

Working-days FAR(1) 11.51 7.33 6.70 6.20 9.45
ARIMA(5,1,0) 11.87 9.38 7.74 6.85 11.21

Weekend FAR(1) 9.27 9.44
ARIMA(2,1,0) 10.08 10.52
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Figure 4. Out-of-sample forecasts MAPE values for traffic flow data by (upper panel) FAR(1) and
ARIMA(7,1,0) for full data (middle panel) FAR(1) and ARIMA(5,1,0) for weekdays only and (lower
panel) FAR(1) and ARIMA(2,1,0) weekends only.
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Figure 5. Out-of-sample forecasts day specific MAPE (DS-MAPE) values for traffic flow data by
(upper panel) FAR(1) and ARIMA(7,1,0) for full data (middle panel) FAR(1) and ARIMA(5,1,0) for
weekdays only and (lower panel) FAR(1) and ARIMA(2,1,0) weekends only.

5. Conclusions and Recommendations

The functional data analysis approach is a modern and less explored field for modeling
and forecasting short-term traffic flow. This paper proposes a functional time series model
to forecast a day-ahead traffic flow. In particular, this research work utilized a functional
autoregressive model and compared it with the most frequently used classical time series
models, ARIMA. The traffic flow data of Dublin airport link road is used to assess the
forecasting performance of the functional model and the traditional time series models.
The data set ranges over 16 months, collected at every 15-min interval, thus leading to
46,956 data points. The first twelve months are used for model estimation, whereas the last
four months are used for one-day-ahead out-of-sample forecasts. The forecasting accuracy
of models is measured by four different accuracy measures, namely, RMSE, MAE, MAPE,
and MSPE. Finally, the models are applied to the complete data set as well as by splitting
the data into weekdays and weekends to account for the weekly periodicity.
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The results provided by the accuracy statistics suggest that the functional model
outperforms the traditional models in all cases. The FAR(1) model produces significantly
lower forecasting errors than the ARIMA models used in the study. The day-specific MAPE
suggests that the errors vary over the whole week, with a high observed on Monday and
Thursday producing lower errors. In addition, an appealing feature of the functional
approach is that unlike other methods, it provides information over the whole day, and
thus, forecasts can be obtained for any time within a day. As the proposed method can
produce traffic flow forecasts for the entire next day with satisfactory results, it can be used
in decision making by transportation policymakers and city planners. In the future, other
exogenous information, such as weather information, unforeseen disruptions, etc., can
be used in the functional model to evaluate its significance on the forecasting results. In
addition, machine learning models’ performance can be compared with functional models.
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