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Abstract: Effective prediction of wastewater treatment is beneficial for precise control of wastewater
treatment processes. The nonlinearity of pollutant indicators such as chemical oxygen demand (COD)
and total phosphorus (TP) makes the model difficult to fit and has low prediction accuracy. The
classical deep learning methods have been shown to perform nonlinear modeling. However, there
are enormous numerical differences between multi-dimensional data in the prediction problem of
wastewater treatment, such as COD above 3000 mg/L and TP around 30 mg/L. It will make current
normalization methods challenging to handle effectively, leading to the training failing to converge
and the gradient disappearing or exploding. This paper proposes a multi-factor prediction model
based on deep learning. The model consists of a combined normalization layer and a codec. The
combined normalization layer combines the advantages of three normalization calculation methods:
z-score, Interval, and Max, which can realize the adaptive processing of multi-factor data, fully retain
the characteristics of the data, and finally cooperate with the codec to learn the data characteristics
and output the prediction results. Experiments show that the proposed model can overcome data
differences and complex nonlinearity in predicting industrial wastewater pollutant indicators and
achieve better prediction accuracy than classical models.

Keywords: wastewater treatment; combined normalization; codec; pollutant indicators; predict

MSC: 68T07

1. Introduction

In order to protect water resources and reduce the pollution of production and do-
mestic wastewater to the environment, it is necessary to reduce the discharge of pollutants
through the harmless treatment of wastewater [1]. Therefore, the effect of wastewater
treatment has received extensive attention, and innovative technologies and management
methods have become a current research focus.

Anaerobic biological treatment technology, also known as anaerobic digestion (AD),
is widely used in the sewage treatment link of wastewater treatment plants (WWTPs) [2].
Its processing cost includes anaerobic granular sludge (AnGS) bed reactors, e.g., the up-
flow anaerobic sludge blanket (UASB) reactor, the expanded granular sludge bed (EGSB)
reactor, and the internal circulation (IC) reactor [3], etc. Due to the complexity of sludge
composition, its application has limitations, mainly in the inability to fully use functional
anaerobic microorganisms, resulting in a slow hydrolysis rate and poor biodegradability [4].
Although ultrasonic irradiation and other methods can improve the efficiency of anaerobic
treatment, improper use of parameters will inhibit sludge metabolism and affect the
economy of wastewater treatment [5]. Moreover, the anaerobic biological action in the
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reactor is vulnerable to the impact of influent water, and thus the action is reduced. For
example, during heavy rain, the anaerobic biological reactor is under a high hydraulic load
to treat low-concentration sewage. It will lead to a period of famine.

In the case of industrial wastewater, the influent composition and flow rate are more
prone to large fluctuations or even complete disruptions, affecting the microbial activity
and the treatment capacity of wastewater treatment systems [2]. A large amount of surplus
sludge will be discharged with the effluent, affecting the environment [6,7]. Therefore,
effectively removing sludge from anaerobic reactors or reducing sludge production has
become an essential topic in recent years. Another disadvantage is that the removal rate of
nitrogen and phosphorus is low. The enhancement of endogenous microbial metabolism
will also promote the release of nutrients such as nitrogen and phosphorus in microbial
cells, increasing the nutrients in the water and affecting the removal efficiency of nitrogen
and phosphorus [7].

Anaerobic/aerobic conditions (A/O) biological nitrogen removal process is a biologi-
cal sewage treatment system composed of anoxia and aerobic reaction. After the sewage
enters the anoxic pool, it successively goes through the stages of anoxic denitrification,
aerobic removal of organic matter, and nitrification. The advantages of the A/O process are
lower operating costs, higher organic matter removal efficiency, less aerobic sludge, and no
pH correction [8]. In the cycle of aerobic sludge treatment, the endogenous respiration rate
is high, so the content of aerobic sludge in the effluent is small [7].

Aerobic/anoxic/anaerobic conditions(A/A/O), an anoxic tank was added to the
A/O. Part of the mixed liquid from the aerobic tank was returned to the front of the
anoxic tank to achieve the purpose of nitrification and denitrification. It can keep the
function of nitrogen and phosphorus removal of activated sludge to the maximum extent.
Moreover, the standby time is greatly improved, quickly recovering the activity when the
wastewater is fed back [9]. This combination process combines the advantages of each of
the three reactors. The combined process is more energy efficient. Although most chemical
oxygen demand (COD) and suspended solids can be removed under anaerobic and anoxic
conditions, the aerobic process can further reduce the concentration of pollutants in the
wastewater [10].

China has strict discharge standards for wastewater pollutants and has limited water
quality indicators such as COD and suspended solids (SS) in the treated wastewater. Take
the beer industry pollutant discharge standard (GB19821-2005) [11] as an example: COD,
SS, total nitrogen (TN), and total phosphorus (TP) should be lower than 80 mg/L, 70 mg/L,
15 mg/L, and 3 mg/L respectively. To ensure that the wastewater can be discharged up to
the standard, some studies consider using the time series prediction method to model and
predict the COD and other indicators at historical moments to provide a basis for adjusting
treatment strategies.

The modeling methods commonly used in current research include machine learn-
ing [12] and deep learning models [13]. Machine learning methods, such as K-nearest
neighbor (KNN), artificial neural network (ANN), etc., have the advantages of convenient
modeling and few parameters and have specific applications in some simple prediction
tasks. However, in the face of multi-factor and complex nonlinear data, its prediction
accuracy is difficult to meet expectations. Deep learning methods are currently the most
widely used methods, mainly including recurrent neural network (RNN), long short-term
memory (LSTM) neural network, and so on. Deep learning is a method that relies on big
data for modeling, and it often achieves better results than other classical methods in robust
nonlinear and stochastic modeling tasks [14].

However, in the prediction of wastewater treatment indicators, classical deep learning
methods also face some difficulties [15]. The first is the difficulty of data processing. Because
wastewater treatment requires multi-factor forecasting, many forecasted indicators and the
values of each indicator vary greatly, making it difficult for a single normalization method
to achieve sound treatment effects for all indicators. The second is the high data complexity.
In prediction tasks, it is often necessary to learn from long historical data, coupled with
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the nonlinearity and strong randomness of the data, which seriously affects the model’s
prediction accuracy.

The solution to this problem is to modify the normalization processing part of the
model so that the data can be reasonably limited to a specific range, reducing the complexity
of the data, and speeding up the convergence of the model. The current research considers
adaptive normalization layer, automatic selection of normalization layer, etc., and adopts
a data-driven way to select a suitable normalization method adaptively. However, these
improvements are primarily for univariate forecasting, and the final calculation method is
still one. In the prediction task with multiple factors and significant data differences, it is
practical to consider multiple normalization processing methods.

In summary, this paper considers a combined normalization codec (CNC) model
for predicting water quality indicators in wastewater treatment. The model consists of a
combined normalization layer, a renormalization layer, and a codec. The advantages of the
processing method can be improved to improve the model’s prediction accuracy.

The main contributions of this paper are summarized as follows:

(1) A combined normalized encoder structure is proposed for the multi-factor prediction
problem of wastewater pollutant indicators. This structure combines the advantages
of three normalization methods, which can adaptively normalize and encode pollutant
index data of different magnitudes, simplify complex index data processing processes,
and improve the data processing capability in multi-factor prediction.

(2) A combined renormalized decoder structure is proposed for the prediction task. The
structure uses three renormalization methods to adaptively renormalize the output
value of the decoder and map to obtain the actual prediction result. Its feature of
adaptively adjusting parameters in model optimization can improve model prediction
accuracy.

2. Related Work

Currently, some studies use machine learning methods to predict the quality of wastew-
ater treatment. Arismendy et al. [16] developed an intelligent system based on multilayer
perceptrons. The system can predict the COD index to support the relevant decision-
making of the sewage treatment plant. Hilal et al. [17] used the model combining KNN
and extreme learning machine (ELM) to predict the SS index, and the prediction accuracy
reached 93.56%. Liu et al. [18] used the least squares support vector machine (LS-SVM)
to build a prediction model, which was validated in the COD prediction of an anaerobic
wastewater treatment system. These models based on machine learning can complete the
prediction of water quality indicators in practice but generally target a single factor. Because
the models are relatively simple, the prediction accuracy still needs to be improved.

Therefore, there are studies considering prediction models based on deep learning.
Han et al. [19] used an adaptive fuzzy neural network to achieve multi-objective predictive
control. They dealt with conflicting control objectives by capturing the nonlinear behavior of
the sewage treatment plant to improve its operational performance of the sewage treatment
plant. Farhi et al. [20] used LSTM to build a wastewater prediction model, which showed
better results than machine learning in predicting ammonia and nitrate concentrations in
wastewater. Wan et al. [21] comprehensively considered spatial, temporal, and probabilistic
reliability, and used convolutional neural network (CNN), shared-weight long short-term
memory (SWLSTM), and Gaussian process regression (GPR) to jointly build a model to
predict water quality. And it is applied to high-precision point prediction and interval
prediction monitoring of papermaking wastewater treatment systems.

These applications demonstrate the superiority of deep learning methods in wastewa-
ter treatment quality prediction. However, with the increase in pollutant index modeling
needs and training data, deep learning methods also expose some problems. When faced
with multiple factors and numerical differences, due to the enormous amount of train-
ing data, the existing data processing methods are complicated to operate and difficult
to meet the processing requirements. Studies have shown improper normalization can
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significantly affect model performance, reducing model generalization and prediction
accuracy [22]. Therefore, more efficient data processing methods must be adopted to cope
with the growing demand for forecasting [23].

Passalis et al. [24] combined the z-score normalization method with a neural layer to
design an adaptive normalization layer and applied it to the field of time series forecasting.
The model adaptive optimization method can achieve better processing results than a
fixed normalization scheme. Since this study only considers one basic normalization
method, it is challenging to adapt widely to multiple forecasting scenarios. Jin et al. [25]
combined z-score, Interval, decimal, and Min-Max normalization methods to design the
normalization layer and renormalization layer and obtained the best predictions for a
greenhouse weather dataset.

Based on the above analysis, this paper proposes the CNC model in combination
with the actual characteristics of the deep learning state estimation method. In this paper,
the combined normalization method is adopted, the advantages of various normalization
methods are integrated, the data processing effect is improved, and the normalization
layer and renormalization layer for the prediction task of wastewater treatment indicators
are designed.

3. Combined Normalized Codec Prediction Model

The structure of the proposed combined normalized codec prediction model is shown
in Figure 1. The model contains a variety of data normalization methods, which can
adaptively integrate the advantages of multiple data processing methods through the
end-to-end model optimization process. Thereby, the learning effect of the model on multi-
dimensional data is improved, and the purpose of improving the prediction accuracy is
finally achieved.
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The CNC model comprises three parts: combined normalization encoder, attention
mechanism [26], and combined renormalization decoder. The combined normalization en-
coder integrates an adaptive combined normalization layer containing three normalization
calculation methods: z-score [27], Interval [25], and Max [28] normalization. During the
model training process, the unprocessed pollutant indicator data are directly input into
the adaptive combined normalization layer in batches. Three normalized calculations are
obtained by separately obtaining the batch data’s mean, variance, and other statistics. In
order to synthesize the advantages of the three calculation methods and get the optimal pro-
cessing effect, the results of the three normalization calculations are weighted and selected
based on the Softmax function [29]. The weights are obtained from the model training to
finally generate the weighted normalized processing results. These results are scaled and
panned by the learnable parameters α and β that can be dynamically adjusted according
to the current model training effect. The exponential weighted average method is used to
fit the global distribution of the data, and the iterative estimation is performed according
to the statistics of each batch of data. The optimal global statistics are retained, and the
prediction accuracy of the data by the final training model is improved. The normalized
data are encoded by a multilayer LSTM [30].

The attention mechanism [27] focuses on the encoded features, selecting the most favor-
able traits for the model output values and ignoring the unimportant ones, thus reducing the
model’s internal parameters, and learning more distant historical information. The features
filtered by the attention mechanism are fed into the combined renormalization decoder.
The combined renormalization decoder decodes the data features. The decoding of fea-
tures is mainly achieved by multilayer LSTMs containing sophisticated gating mechanisms
that preserve and learn long-term information about the sequence. After decoding the
prediction values, the final prediction values are output through the adaptive combined
renormalization layer. Corresponding to the adaptive combined normalization layer, this
layer contains three renormalization algorithms, which respectively perform renormaliza-
tion calculation on the output features of the LSTM according to the statistics during data
normalization. This layer also uses the Softmax function [29] to weigh the three sets of
renormalized results and comprehensively considers the three sets of results through the
trainable combined weights to obtain the best estimation results. Moreover, this layer adds
similar trainable parameters λ and ν to correct the results, and the values of λ and ν can
also be trained by backpropagation. The structure of the combined normalization encoder
and the combined renormalization decoder is described below.

3.1. Combined Normalized Encoder

The schematic structure of the combined normalized encoder is shown in Figure 2. The
combined normalization encoder integrates the combined normalization layer on top of the
conventional encoder. It can combine the computational results of multiple normalizations
by improving the effect of normalization processing and ultimately improving the feature
encoding capability of the encoder. There are three normalization methods used in the
combined normalization layer, including z-score [27], Interval [25], and Max [28], which
are calculated as:

x̂ =
x−mean√

σ2 + ∆
(1)

x̂ = a +
(b− a)(x−min)

max−min
(2)

x̂ =
x

|x|max
(3)

where x represents the source data, x̂ represents the calculation result. min, max, mean, and
σ2 represent the minimum, maximum, mean, and variance of the source data, respectively,
and a, b represents the normalized interval. ∆ represents a fixed, smaller positive number.
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Each of the three normalizations has its strengths and can process the input data to the
standard normal distribution, (a, b) specific interval, and between (−1, 1), respectively, to
exert different effects on the data. Among them, z-score [27] processing can obtain data con-
forming to the standard normal distribution and reduce data distribution differences [31];
Interval method [25] processing fixes the results in a specific interval to prevent gradient
disappearance and gradient explosion problems; Max [28] is scaling normalization scales
down the input data without changing the scale characteristics of the input data.

In order to use the effect of the three normalization methods on the input data, this
paper uses the adaptive combined normalization method to weigh the calculation results
of normalization and determine the most suitable normalization calculation method. In the
combined normalization layer, the Softmax function [29] acts as a combined function and is
calculated as follows:

Softmax(ti) =
eti

n
∑

i=1
eti

(4)

where t is the trainable parameter. It can optimize end-to-end by error backpropagation
and is dynamically adjusted according to the model training effect. In this paper, three
trainable parameters are set to output the combined weights for the results of the three
normalization calculations to enhance the effectiveness of the combined normalization
method. The calculation formula for combining using the Softmax function [29] is:

X= Softmax(t1)⊗ x1 + Softmax(t2)⊗ x2 + Softmax(t3)⊗ x3 (5)

where t1, t2, and t3 denote the three selected trainable parameters, x1, x2, and x3 denote
the results obtained from the three normalization calculations, Softmax means the Softmax
function [29], X represents the final output, and ⊗means matrix multiplication.

In order to make the output of combined normalization better adaptable to complex
data, in this paper, the trainable parameters α and β are used as scaling and translation
factors, respectively. These two parameters can be updated with the training process of
the model to better correct the calculation results. The output of the combined normal-
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ization method is adjusted according to the training effect. The trainable parameters are
calculated as:

Y = αX + β (6)

where Y represents the final output of the normalized layer of the batch, X denotes the value
of the batch after normalization calculation, α and β are correction parameters. Finally, the
combined normalized output adjusted by trainable parameters is encoded by an encoding
structure composed of LSTMs to obtain the encoded features.

In the model training, in order to grasp the global distribution of the data according to
the batch data and ensure the fitting effect of the model to the input data at the end of the
training, this paper uses the exponential weighted moving average (EWMA) method [32] to
iteratively estimate the statistics of each batch and record the optimal statistical distribution.
It is calculated as:

running_mint = m ∗ running_mint−1 + (1− k) ∗mint
running_maxt = m ∗ running_maxt−1 + (1− k) ∗maxt
running_meant = m ∗ running_meant−1 + (1− k) ∗meant
running_σ2

t = m ∗ running_σ2
t−1 + (1− k) ∗ σ2

t

(7)

where mint, maxt, meant, and σ2
t denote the minimum, maximum, mean, and variance

statistics of the batch data at the moment t. running_mint and running_mint−1 denote
the estimates of the minimum value at the moment with t and t − 1, running_maxt and
running_maxt−1 denote the estimates of the maximum value at the moment with t and
t−1, running_meant and running_meant−1 denote the estimates of the mean value at the
moment with t and t−1, running_σ2

t and running_σ2
t−1 denote the estimates of the variance

at the moment with t and t − 1, and k denotes the weight of retaining the information of
the previous moment, respectively. In this paper, the value of k is set to 0.6. The flow of the
algorithm for combined normalization layer is shown in Algorithm 1.

Algorithm 1: Pseudocode for combinatorial normalization algorithm.

Input: data : R= {x1, . . . , xm},Interval : a, b, Forgetting weight : k,
Parameters : α, β, t1, t2, t3

Output:
{

yi = CNLayerα,β(xi)}

minR ← xmin , maxR ← xmax , µR ← 1
m

m
∑

i=1
xi , σ2

R ←
1
m

m
∑

i=1
(xi − µR)

2 , dR = 10ˆ
⌈

log10
∣∣x∣∣max

⌉
Softmax(t1) =

et1

et1+et2+et3
, Softmax(t2) =

et2

et1+et2+et3
, Softmax(t3) =

et3

et1+et2+et3

running_maxt ← m ∗ running_maxt−1 + (1− k) ∗maxR
running_mint ← m ∗ running_mint−1 + (1− k) ∗minR
running_meant ← m ∗ running_meant−1 + (1− k) ∗ µR
running_vart ← m ∗ running_vart−1 + (1− k) ∗ σ2

R
running_dt ← m ∗ running_dt−1 + (1− k) ∗ dR

output1 ←
xi−running_meant√

running_vart+1×10−5

output2 ← a + (b−a)(xi−running_mint)
running_maxt−running_mint

output3 ← xi
running_dt

output = Softmax(t1)⊗ output1 + Softmax(t2)⊗ output2 + Softmax(t3)⊗ output3
yi ← outputi ∗ α + β ≡ CNLayerα,β(xi)

3.2. Attention Mechanism

In this paper, the scaled dot product attention mechanism [33,34] is used to pay
attention to the input features of the combined normalization encoder. By adaptively
selecting relevant feature information, highly relevant features are retained, and irrelevant
features are ignored, thereby improving the renormalization encoding. The structure of the
scaled dot product attention mechanism is shown in Figure 3.
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It can be seen that the feature vectors from the combined normalized coder are passed
through three different linear layers to obtain the query vector Q, the key vector K, and
the value vector V. First, the dot product calculation is performed on Q and K to obtain
the similarity matrix of Q and K. Next, the similarity matrix is scaled. Then, the attention
weights are obtained by normalizing the values of the similarity matrix using the Softmax
function [29]. The purpose of using the Softmax function [29] is to ensure that the sum of
the weights is 1. Then, the attention weights and V are computed as a dot product to obtain
the final result. The calculation process is as follows:

Attention
(

Q, K, V) = Softmax(
Q•KT
√

d

)
•V (8)

where d denotes the scaling multiplier, Q, K, and V denote the query vector, key vector, and
value vector, respectively, Softmax denotes the Softmax function [31], and Attention (Q, K,
V) denotes the final result.

3.3. Combined Renormalized Decoder

The combined renormalization decoder consists of an LSTM model and an adaptive
combined renormalization layer. Figure 4 shows the schematic structure of the combined
renormalization decoder layer. The output features of the attention mechanism first go
through a decoder consisting of multiple layers of LSTMs, which decode the features into
normalized predicted values. In order to get the actual predicted value, this value needs to
be processed using a combined renormalization layer. Corresponding to the normalization
calculation, the adaptive merging and renormalization layer includes three renormalization
calculations, which are calculated as follows:

x = x̂ ∗
√

σ2 + ∆ + mean (9)

x =
(max−min)(x̂− a)

b− a
+ min (10)

x = x̂∗|x|max (11)
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where x represents the data after renormalization, x̂ represents the data without renormal-
ization, and min, max, mean, and σ2 represent the maximum, minimum, mean, and variance
value of the input data, respectively, which all share the statistics from the normalization
calculation and are updated with different batches of values. a and b, on the other hand,
represent the interval set by the renormalization method and ∆ represents a fixed smaller
positive number.
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To combine the results of the three renormalization calculations and improve the
overall data processing, the Softmax [29] combining function is also added to the combined
renormalization layer to select the results. This function is used as a combining function
to calculate three trainable parameters and output the combined weights for the results
of the three renormalization calculations. Three trainable parameters can be optimized by
error backpropagation to improve the effectiveness of the renormalization combination.
The Softmax function [29] for combining is calculated as follows:

H= Softmax(c1)⊗ h1 + Softmax(c2)⊗ h2 + Softmax(c3)⊗ h3 (12)

Softmax(c) =
1

1 + e−c (13)

where c1, c2, and c3 denote the three selected trainable parameters, h1, h2, and h3 denote the
results obtained from the three renormalization calculations, Softmax denotes the Softmax
function [29], H denotes the final output, and ⊗ denotes the matrix multiplication.

Similarly, the combined renormalization layer incorporates the learnable correction
parameters λ and ν as the scaling and translation factors, respectively. The expression
at the output of the renormalization layer modified by the correction parameter can be
expressed as:

O = λH + ν (14)

where O represents the predicted output of the renormalization layer, H represents the
value after the renormalization calculation, λ is the scaling factor, and ν is the translation
factor. Finally, the output O is used as the predicted value of the model. The flow of the
algorithm for combined renormalization layer is shown in Algorithm 2.
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Algorithm 2: Pseudocode for Combined renormalized algorithm.

Input: data : R̂= {x̂1, . . . , x̂m
}

, Interval : a, b, Forgetting weight : m,
Learning parameters : λ, ν, c1, c2, c3

Output:
{

ŷi = CRNLayerλ,ν(x̂i)}
Softmax(c1) =

ec1
ec1+ec2+ec3 , Softmax(c2) =

ec2
ec1+ec2+ec3 , Softmax(c3) =

ec3
ec1+ec2+ec3

output21 ← x̂ ∗
√

running_var + 1× 10−5 + running_mean
output22 ←

(running_max−running_min)(x̂i−a)
b−a + running_min

output23 ← x̂ ∗ running_d
output = Softmax(c1)⊗ output21 + Softmax(c2)⊗ output22 + Softmax(c3)⊗ output23

ŷi ← output ∗ λ + ν ≡ CRNLayerλ,ν(x̂i)

4. Experiment

In this experiment, the change data of pollutant indicators at the water inlet and outlet
when treating brewery wastewater was used. Beer is an alcoholic beverage brewed with
malt grain, hops, and water as the primary raw materials, through liquid gelatinization and
saccharification and then through liquid fermentation [35]. Beer is the fifth largest consumer
beverage globally, second only to tea, carbonated beverages, milk, and coffee, with an
average consumption of 23 L per person per year [36]. Beer production requires a lot of
water; for each cubic meter of beer produced, the water consumed in general is 10–20 m3, of
which more than 90% will be discharged into a sewer system, and wastewater is produced
at all stages of production [37]. Moreover, beer wastewater has a high concentration
of soluble organic pollutants and SS [38], and the COD of the wastewater produced in
the production process is high because the most organic matter in the water is made up
of sugars, starches, and proteins [39]. The biological methods commonly used for beer
wastewater treatment include aerobic sequential batch reactor, cross-flow ultrafiltration
membrane anaerobic reactor, and UASB [40]. Beer wastewater produces methane [39],
and better wastewater treatment strategies could lead to better economic benefits while
protecting the environment.

The concentration of pollutants such as COD, SS, TN, and TP detected in the wastew-
ater treatment process is an essential indicator of wastewater treatment, and whether it
meets the national discharge standards is the determining factor for judging the effect of
wastewater treatment. Predicting the future treatment effect according to the pollutant
concentration index of the input wastewater at a historical time to assist in decision-making
is a hot issue in current research. However, due to the multi-factor, complex, and non-
linear characteristics of forecasting tasks, higher requirements are placed on forecasting
models’ data processing and modeling capabilities. Therefore, this study uses COD, SS,
TN, and TP data before and after brewery wastewater treatment to verify the model’s
prediction accuracy.

4.1. Experimental Procedure and Evaluation Index

Based on the data of pollutant concentration indicators in the actual brewery wastew-
ater treatment process, the prediction accuracy of the proposed model and seven classical
prediction models, including ANN [41], deep neural network (DNN) [42], LSTM [43],
gated recurrent unit (GRU) [44], Attention_LSTM [45], Attention_GRU [46], and Codec [47]
are compared.

The predictive model is built on the open-source Tensorflow deep learning framework.
In comparative experiments, the hyperparameters of the model need to be set. Specifi-
cally, all prediction models were optimized using the Adam hyperparameter optimization
algorithm, and the optimized learning rate was set to 0.0001; the batch size of the data
input network was set to 10, and the number of iterations per training was 300. To avoid
the influence of random errors of the model on the prediction results, all comparative
experiments were repeated ten times independently, and the average value was taken as
the final result.
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In this paper, four evaluation indicators are used to evaluate the experimental results:
root mean square error (RMSE) [48], mean absolute error (MAE) [49], mean absolute per-
centage error (MAPE) [50], and Pearson correlation coefficient (R) [51]. All four evaluation
indicators can measure the difference between the prediction value given by the model and
the actual value and evaluate the model’s performance. The smaller RMSE [48], MAE [49],
and MAPE [50] values represent the minor difference between the prediction value given
by the model and the actual value. In comparison, the larger R [51] values represent the
model’s better-fitting ability.

4.2. Validation Results

The dataset consists of four pollutant concentration indicators of COD, SS, TN, and
TP detected during the brewery wastewater treatment. The data set was collected from a
wastewater treatment station. About 720 sets were collected from 11 June to 11 July 2022.
The data sampling interval was 1 h. Each data set includes four pollutant concentration
indicators at the inlet and outlet. The structure of the dataset used is shown in Figure 5.
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suspended solids, total nitrogen, and total phosphorus detected at the outlet.

In the experiment, the CNC model proposed in this paper is compared with other clas-
sical prediction models, and the superiority of the CNC model in the prediction of the actual
wastewater treatment effect is verified by comparing the experimental results. The com-
parison models include: ANN [41], DNN [42], LSTM [43], GRU [44], Attention_LSTM [45],
Attention_GRU [46], and Codec model [47]. The pollutant concentration index of the water
inlet from time t−30 to t was used to predict the pollutant concentration index of the water
outlet at time t + 1. The dataset is divided into 90% training set and 10% test set.

The prediction accuracy evaluation indexes of each comparative model are shown in
Table 1. Figure 6 compares the predicted and actual values of each model. We can see that
the RMSE [48], MAE [49], and MAPE [50] of the CNC model proposed in this paper are
reduced by 1.5%, 3.2%, and 0.5%, respectively, and the R [51] indicator is increased by 0.1%
compared with the suboptimal Codec model. The comparison results show that the model
proposed in this paper has better performance indicators, and the prediction results are
closer to the actual situation.
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Table 1. Comparison of evaluation indexes based on prediction results of actual brewery wastewater
pollutant index data.

Model RMSE [48] MAE [49] MAPE [50] R [51]

ANN [41] 4.5633 3.3221 1.0059 0.9722
DNN [42] 4.5525 3.3194 0.9983 0.9723
LSTM [43] 4.4786 3.2571 1.0215 0.9733
GRU [44] 4.4888 3.2808 1.0135 0.9731

Attention_LSTM [45] 4.4478 3.2330 1.0086 0.9735
Attention_GRU [46] 4.4221 3.2171 1.0121 0.9738

Codec [47] 4.4221 3.2171 1.0121 0.9738
The proposed CNC 4.3547 3.1126 1.0071 0.9749
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Figure 6. Comparison of predicted and actual values given by the model, based on four pollutant
indicators. (a) Chemical oxygen demand, (b) suspended solids, (c) total nitrogen, (d) total phosphorus.
The last orange-red band is the actual ground-truth value, and the prediction results of all methods
are compared using dashed lines. It can be seen that the red band (the method proposed in this paper)
is the closest to the actual value.

Consistent with how other deep learning models used in engineering are deployed [52,53],
the models first need to take a long time to be pre-trained using historical data, which can
take hours or even days. The training effect of the model is optimized by continuously
adjusting the model’s hyperparameters until the gap between the model’s predicted output
during training and the reference value meets the requirements. Then save the trained
model parameters for practical application. Through this deployment method, in the
practical application of the model, new data are input into the trained model, and it no
longer takes a lot of time to perform operations. Therefore, the predicted value can be given
within 100 ms, meeting the real-time requirement.

5. Conclusions

The organic and inorganic pollutants in the wastewater produced by factories will
not only pollute the soil and water bodies but also endanger human health through the
enrichment effect of the food chain. However, due to wastewater treatment’s volatility and
nonlinear characteristics, it is not easy to carry out predictive modeling and guide early
regulation, which seriously affects treatment efficiency [54].

Considering the prediction of pollutant indicators in brewery wastewater treatment to
assist management, a combined normalized codec (CNC) prediction model was proposed.
The model is based on a combined normalized codec prediction for multi-factor and



Mathematics 2022, 10, 4283 13 of 15

strongly nonlinear scenarios prediction tasks. In this model, the multi-factor pollutant index
data such as COD and SS are first input into the combined normalization encoder. The data
are adaptively processed by combining the advantages of the three normalization methods.
The encoder extracts the features of the data. Then, the decoder performs feature decoding
after the features are paid attention to by the attention mechanism. Finally, a combined
renormalization layer adaptively renormalizes the data and outputs the prediction results.
The constructed CNC model was used to predict the four pollutant indicators of COD, SS,
TN, and TP in brewery wastewater treatment and compared with the classical prediction
model. The proposed model’s RMSE [47], MAE [48], and MAPE [49] indicators were 4.355,
3.113, and 1.007, and the R [50] index reached 0.975, which is better than the comparison
model. The experimental results show that the model is more suitable for managing and
applying wastewater treatment.

In future work, the model should continue to be improved to ensure prediction
accuracy. Meanwhile, the method’s applicability is verified by applying the model to
more scenarios.
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