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Abstract: The estimation of large functional and longitudinal data, which refers to the estimation of
mean function, estimation of covariance function, and prediction of individual trajectory, is one of
the most challenging problems in the field of high-dimensional statistics. Functional Principal Com-
ponents Analysis (FPCA) and Functional Linear Mixed Model (FLMM) are two major statistical tools
used to address the estimation of large functional and longitudinal data; however, the former suffers
from a dramatically increasing computational burden while the latter does not have clear asymptotic
properties. In this paper, we propose a computationally effective estimator of large functional and
longitudinal data within the framework of FLMM, in which all the parameters can be automatically
estimated. Under certain regularity assumptions, we prove that the mean function estimation and
individual trajectory prediction reach the minimax lower bounds of all nonparametric estimations.
Through numerous simulations and real data analysis, we show that our new estimator outperforms
the traditional FPCA in terms of mean function estimation, individual trajectory prediction, variance
estimation, covariance function estimation, and computational effectiveness.

Keywords: functional data analysis; functional linear mixed model; functional principal components
analysis; longitudinal data analysis
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1. Introduction

Functional Data Analysis (FDA) is a field of statistics that examines data to provide
information about curves, surfaces, or anything else that varies along a continuum [1].
The concrete continuum of these functions can be time, spatial location, wavelength, and
probability, with applications to biomechanics, biomedicine, ecology, epidemiology, and
neurology, among many others [2,3]. Functional data can be classified into common design
data and independent design data, where the sampling locations of all individuals are the
same under the former setting, while the sampling locations are individual-wise under
the latter setting [4]. Longitudinal data can be regarded as a specific type of functional
data where the underlying continuum is just time [5]. In the field of longitudinal data
analysis, the counterparts of common design and independent design are called balanced
longitudinal data and unbalanced longitudinal data, respectively.

The coronavirus 2019 (COVID-19) data is typical balanced longitudinal data, which
records the daily infections (transformed in logarithm) of the COVID-19 pandemic from
51 states of the United States (US), where the date is from 16 March 2020 to 14 August 2020
(Johns Hopkins COVID-19 Case Tracker: https://www.kaggle.com/datasets/thecansin/
johns-hopkins-covid19-case-tracker?resource=download). Figure 1 demonstrates the pro-
files of daily increasing infections and the related trajectories predictions separately yielded
with the R package mgcv [6] of six states in the US. From this figure, it is easy to see some
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basic features of large longitudinal data: (1) functionality, the daily infections of states
are likely some smooth curves of time; (2) heterogeneity, different individuals usually
have different trends over time; and (3) high-dimensionality, the number of observations
(T = 152) much larger than the number of individuals (N = 51). How to deal with this
kind of large functional and longitudinal data is one of the most challenging problems in
the field of high-dimensional statistics.
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Figure 1. Illustration of the COVID-19 data. The X-axis records the dates from 16 March 2020 to
14 August 2020 and the Y-axis shows the numbers of the logarithm of the daily infections.

Functional Principal Components Analysis (FPCA) and Functional Linear Mixed
Model (FLMM) are two common approaches that estimate the dominant modes of vari-
ation of a sample of random trajectories around an overall mean function. FPCA and
FLMM share the same principle to estimate the mean function, but apply totally differ-
ent strategies to estimate the covariance function and predict the individual trajectory.
Specifically, FPCA first estimates the two-dimensional covariance function, then yields
the eigenfunctions through PCA, and finally predicts the individual trajectory with the
estimated eigenfunctions. In contrast, FLMM parameterizes the individual trajectories
through basis functions, in particular, it specifies a Gaussian prior distribution on the
coefficients of basis functions, then estimates the covariance matrix of these random co-
efficients using REstricted Maximum Likelihood (REML) [7], and eventually predicts the
individual trajectories through the Best Linear Unbiased Prediction (BLUP) [8] and yields
the covariance function of random curves using a weighted sum of inner products of basis
functions. Commonly-employed nonparametric techniques for FPCA include the kernel
method and local polynomial modeling ([9–11] and smoothing splines ([12–16]), while
frequently-used basis expansion functions include B-splines ([17–20]), wavelets ([21–23]), a
combination of linear mixed-effects modeling and local polynomial smoothing ([24,25]),
etc. See more aspects of functional data in the following monographs ([1,26]) and review
papers ([3,27,28]).

One of the greatest advantages of FPCA may be its clear asymptotic properties. Under
mild regularity conditions, Yao et al. [11] showed the convergence rates of estimates of
mean function covariance function, variance, eigenfunctions, and eigenvalues. Li and
Hsing [10] further derived the strong uniform convergence rates of these estimates. Cai
and Yuan [4] investigated the minimax risks of the mean function and covariance function
estimates and Cai and Yuan [29] showed the minimax risk of mean function estimate in
functional linear regression. However, because FPCA needs to estimate a two-dimensional
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covariance surface, its computational burden will dramatically increase as the number
of observations T rises. In addition, since most FPCA methods employ local polynomial
modeling [30] as the estimator, it is very difficult to select the optimal bandwidth in the
two-dimensional kernel function in practice. On the other hand, FLMM suffers from more
problems compared with FPCA, preventing its practical application in the field of FDA.
First, FLMM requires estimating the covariance matrix of the basis expansion coefficients
(which are treated as normal variables in LMM), but the estimation of this covariance
matrix is usually unreliable if the number of employed bases is large. James et al. [17]
provided a dimension reduction to estimate this covariance matrix, which resulted in a
more complex estimator. Besides, the asymptotic properties of FLMM are difficult to study.
Proper regularity conditions and proof techniques are lacking for FLMM.

In this paper, we propose a computationally effective estimator of large functional
and longitudinal data by using FLMM, in which all the parameters can be automatically
estimated. We also investigate the large sample property of the proposed automatic and
flexible estimation of large functional data. Under mild regularity conditions, we prove that
the estimation error of the mean curve estimator is bounded by O(N−1 + T−2s) and the
prediction error of the individual trajectory estimator is bounded by O(T−2s/(2s+1)), where
s > 1 is a constant governing the smoothness of tge mean function and individual trajectory.
In particular, both these two convergence rates reach the minimax lower boundaries of the
mean function estimation and individual trajectory prediction derived by Cai and Yuan [4],
meaning that our estimation enjoys the minimax efficiency. To the best of our knowledge,
our work is the first to investigate the large sample property of FLMM estimation when
both T and N are diverging.

The rest of the paper is organized as follows. In Section 2, we present the primal
representation of FLMM to analyze the functional data. In Section 3, the new estimator of
large balanced longitudinal data and its large sample property are illustrated. In Section 4,
we exhibit the simulation studies. In Section 5, we apply our method to study the COVID-19
data. The concluding remarks are summarized in Section 6 and all the technical proofs of
the theorems are relegated to the Appendix.

2. Preliminary

In this section, we introduce the functional data and the top two statistical methods,
i.e., FPCA and FLMM, to deal with the functional data briefly.

2.1. Settings

For a vector a = (aj)p×1, ||a||q = (∑
p
j=1 |aj|q)1/q with q ∈ [0, ∞]. For a symmetric matrix

A = (Aij)p×p, λmax(A) and λmin(A) denote the maximum and minimum eigenvalues of
matrix A, and ||A||q = max{||Aa||q, ||a||q = 1}. Besides, an � bn if there are positive
constants c and C such that c ≤ an/bn ≤ C. In addition, O(·) and o(·) are the infinitely
large and small quantities, respectively, while OP(·) and oP(·) mean that such relationships
hold with a probability tending to 1.

2.2. Functional Data Model

Let X(t) be a second-order stochastic process defined in the compact interval T , which
is usually set as T = [0, 1] for convenience. The covariance function of X(t) is given by

C(s, t) = E[{X(s)− E(X(s))}{X(t)− E(X(t))}], (s, t) ∈ T × T . (1)

Besides, let X1(t), · · · , XN(t) be N independent realizations of X(t), {t1, . . . , tT} be T
sampling locations of the realizations, and the observations of Xi(tj) be

Yij = Xi(tj) + εij, (i, j) ∈ {1, . . . , N} × {1, . . . , T}, (2)

where εij are independent and identically distributed (IID) random errors with mean 0
and variance σ2. In addition, the sampling location is considered as fixed numbers in T ,
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and {Xi(tj)} and {eij} are two mutually independent groups. In a more general case, the
sampling locations can vary from individual, i.e.,

Yij = Xi(tij) + εij, (i, j) ∈ {1, . . . , N} × {1, . . . , Ti}, (3)

where tij is a random sampling location and Ti is the individual-wise sampling locations.
In the literature, the setting of functional data subject to (2) is called common design, while
the setting subject to (3) is termed independent design. In longitudinal data analysis where
t is just time, the data subject to (2) is named as balanced longitudinal data or panel data,
while the data subject to (3) is named as the unbalanced longitudinal data.

2.3. Methodologies of FPCA and FLMM

FPCA is almost the most frequently used technique to deal with the functional data
in which the Karhunen–Loève representation of the stochastic process plays a central role.
Specifically, let covariance function C(s, t) satisfy the definition of a Mercer kernel, i.e.,

n

∑
i=1

n

∑
j=1

C(si, tj)cicj ≥ 0 (4)

for all finite sequence of points (si, tj) ∈ T × T and all choices of real numbers c1, . . . , cn.
Then, according to Mercer’s theorem, there consequently exists a series of eigenfunctions
{φk(t)} and a series of non-increasing eigenvalues {λk} satisfying ∑∞

k=1 λk < ∞ such that

C(s, t) =
∞

∑
k=1

λkφk(t)φk(s), (s, t) ∈ T × T . (5)

In particular, under the condition of Mercer kernel, the Karhunen–Loève representation
theory is able to guarantee that the ith realization of X(t) can be expressed as

Xi(t) = µ(t) +
∞

∑
k=1

ξikφk(t), t ∈ T , (6)

where µ(t) is termed the mean function and ξi1, . . . , ξik, . . . are uncorrelated random coor-
dinates with mean 0 and variance E(ξ2

ik) = λk.
FLMM deals with the functional data in a more direct way than FPCA. Specifically,

FLMM expresses each random function by some known basis functions:

Xi(t) =
p

∑
k=1

Ψk(t)bik + δi(t), (7)

where {Ψk(t)} are a set of basis functions, {bik} are the corresponding random coordinates,
and δi(t) is the approximation bias. In practice, the basis functions can be the Tikhonov
basis (as defined in T = [0, 1]):

Ψk(t) =
√

2 cos((k− 1)πt). (8)

Alternatively, B-splines [31] are common bases that are generated in an iterative procedure.
If δi(t) is negligible, the uncertainty of random function Xi(t) is almost described by the
random coordinates {bik}. In the literature, it is routine to assume

bi1
bi2
...

bip

 ∼ N



β1
β2
...

βp

,


Γ11 Γ12 · · · Γ1p
Γ21 Γ22 · · · Γ2p

...
...

. . .
...

Γp1 Γp2 · · · Γpp


, (9)
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where β1, . . . , βp are the mean parameters and Γ = (Γij)p×p is a covariance matrix. As a result,

µ(t) ≈
p

∑
k=1

Ψk(t)βk, C(s, t) ≈
p

∑
k=1

p

∑
h=1

ΓkhΨk(s)Ψh(t). (10)

In addition, if {Ψk(t)} are chosen as the eigenfunctions of the covariance function C(s, t),
the covariance matrix Γ will reduce into a diagonal matrix with the eigenvalues {λk}. On
the other hand, FPCA can reduce to an FLMM if the eigenfunctions are rotated for a better
practical interpretation, which is subject to a similar idea of factor analysis [32]. Generally,
since C(s, t) is never known in advance, FLMM will employ certain commonly-used basis
functions and estimate Γ empirically.

2.4. Comparison between FPCA and FLMM

FLMM is more efficient than FPCA in terms of both estimation and prediction. Due to
the space limitation, we directly give the conclusions and show the estimation procedures
of FPCA and FLMM in Appendix B.

We illustrate the features of FPCA from two aspects: estimation and prediction. For
estimation, FLMM does not require estimating a two-dimensional covariance surface C(s, t),
which is the most time-consuming component for FPCA. Besides, all terms in FLMM can be
automatically estimated using many mature and effective algorithms, such as the Newton–
Raphson algorithm. Whereas the main approaches for FPCA to estimate the mean µ(t)
and covariance C(s, t) are local linear modeling [10], which is based on the Kernel function,
it requires determining three different bandwidths hu, hC, hv (see details in Appendix B),
which is supposedly very complex in practice. For prediction, FPCA will use all the
observations in addition to the local linear coefficients â0, . . . , ĉ1, which are generated in the
estimation process, to predict the values of µ(t), Xi∗(t), C(s, t) at any new locations ti∗ j (and
si∗ j), which is extremely costly in implementation. In contrast, predicting these functions
is trivial for FLMM: it only needs to generate a new vector Ψi∗ = (Ψ(ti∗1), . . . , Ψ(ti∗Ti∗ ))

>

and then predict the values by using β̂, b̂i, Γ̂ and σ̂2.
However, the most serious problem of FLMM is the lack of statistical theory in com-

parison with the numerous theoretical investigations of FPCA. One theoretical burden of
FLMM is inherited from the LMM and generalized linear model (GLM, [33]): the statistical
properties of LMM and GLM are different to analyze. As far as we are concerned, the tool
to investigate the asymptotic properties of GLM is first given by Vonesh et al. [34], who
pointed out that the convergence rate of the mean parameter is of O(T−1/2

min ), where Tmin is
the minimum number of observations among all individuals. However, this convergence
rate is not ideal because Tmin can be less than 10 in many longitudinal data. Many works
aim to improve the GLM estimation by removing the high-order bias of Laplace approxi-
mation, such as [35–37]; however, these bias-corrections make the asymptotic properties
more difficult to analyze.

Another theoretical burden of FLMM is inherited from the basis expansion method,
approximating a smooth function through a series of basis functions. As Ruppert et al. [38]
once commented: "The literature on inference in smoothing is large and varied. Much of
it is in the local polynomial or kernel smoothing context, where theoretical properties are
more tractable. Inference for spline-based smoothing is less studied." Indeed, it is unclear
under what conditions the FLMM using the basis expansion method is consistent. In the
next section, we improve the traditional FLMM in terms of these two burdens.

3. Optimal Estimation for Large Balanced Longitudinal Data

In this paper, we propose a novel FLMM estimation for large balanced longitudinal
data, which is effective in terms of computation and optimal in terms of statistical theory.
Our new FLMM estimation for large balanced longitudinal data is motivated by the COVID-
19 data, in which the number of sampling locations (i.e., the dates from 16 March 2020
to 14 August 2020) is much larger than the number of individuals (i.e., the 50 states plus
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the District of Columbia). The traditional estimation of FLMM may encounter numerical
instability and becomes extremely time-consuming because the complexity of the REML
estimator dramatically increases with the dimension of the covariance matrix Σy. In contrast,
our new estimator for the variance components remains efficient and stable even when the
dimension of Σy is very high. Note that under the setting of balanced longitudinal data, the
sampling locations are the same for all individuals, i.e., t = (t1, . . . , tT)

>, the covariance
matrix Σyi will become a universal one Σy and the basis function matrix Ψi will reduce to a
universal matrix Ψ for all individuals.

3.1. Novel Estimating Procedure

The biggest difference between our new estimation and the traditional one is that
we will use different numbers of basis functions to estimate the mean function and the
individual trajectory. In order to guarantee both the mean function estimation and individ-
ual trajectory prediction meet the optimal convergence rates, we approximate the mean
function and individual trajectory as follows. Specifically:

µ(t) ≈
q

∑
k=1

Ψk(t)βk, Xi(t) ≈ µ(t) +
p

∑
k=1

Ψk(t)cik, (11)

where 1 ≤ p ≤ q ≤ T. Regarding the matrix form, we have

µ ≈ Ψqβ, X i ≈ µ + Ψpci, (12)

where Ψq = (Ψk(tj))T×q, Ψp = (Ψk(tj))T×p, β = (β1, . . . , βq)>, ci = (ci1, . . . , cip)
>. Here,

the vector of random coordinates ci is considered to follow a normal distribution

ci ∼ N (0, Γ), (13)

where Γ = (Γjk) is a (p× p) positive definite symmetric matrix. It is used to describe the
local variability of individual trajectory Xi(t) beyond the mean function µ(t).

The first step of our estimator is estimating the mean coefficient β:

β̂ = arg min
β

{ N

∑
i=1

(Y i −Ψqβ)>Σ̂−1
y (Y i −Ψqβ) + γβ>Qβ

}

= (NΨ>q Σ̂−1
y Ψq + γQ)−1Ψ>q Σ̂−1

y

( N

∑
i=1

Y i

)
,

(14)

where Σ̂y = σ̂2IT + ΨpΓ̂Ψ>p , γ is a smoothing parameter, and Q is a known semi-positive
definite symmetric matrix ensuring∫

t∈T
[µ
′′
(t)]2dt ≈ β>Qβ. (15)

Compared with traditional FLMM, which estimates µ(t) by (A51), we add a ridge penalty
β>Qβ to control the smoothness of µ(t). If Ψ(t) is chosen as the Tikhonov bases, then Q is
a diagonal matrix with the jth entry Pjj = 2((j− 1)π)4. If Ψ(t) is chosen as the Bsplines,
then Q = D>2 D2 where the expression of D2 can be found in Eilers and Marx [31]. In
addition, the covariance matrix of β̂ is given by

cov(β̂) = (NΨ>q Σ̂−1
y Ψq + γQ)−1. (16)

When T is large, we recommend the Sherman–Morrison–Woodbury formula to yield Σ̂−1
y :

Σ̂−1
y =

1
σ̂2

(
IT −Ψp(Ψ

>
p Ψp + σ̂2Γ̂−1)−1Ψ>p

)
. (17)
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The mean function is then given by µ̂ = Ψq β̂ and its asymptotic covariance matrix is

cov(µ̂) = Ψq(NΨ>q Σ̂−1
y Ψq + γQ)−1Ψ>q . (18)

The confidence band of µ̂ is constructed by using the diagonal elements of cov(µ̂).
The second step is to predict ci by using BLUP:

ĉi = arg min
ci

{
1
σ̂2 ||Y i − µ̂−Ψpci||22 + c>i Γ̂−1ci}

= (Ψ>p Ψp + σ̂2Γ̂−1)Ψ>p (Y i − û). (19)

This estimator is called BLUP because ĉi can be regarded as the mean of the posterior
distribution of ci. The prediction of X i is X̂ i = µ̂ + Ψĉi. In addition, the asymptotic
covariance matrix of ĉi is

cov(ĉi) = σ̂2(Ψ>p Ψp + σ̂2Γ̂−1)−1, (20)

and the asymptotic covariance matrix of X̂ i is given by

cov(X̂ i) = Ψq(NΨ>q Σ̂−1
y Ψq + γQ)−1Ψ>q + σ̂2Ψp(Ψ

>
p Ψp + σ̂2Γ̂−1)−1Ψ>p , (21)

which is used to constructed the confidence band of X̂ i.
The novelty of our new estimating procedure is the estimator of Γ and σ2. Specifically,

our method employs the Laplace Approximation Marginal Likelihood (LAML) [39] to
estimate Γ and σ2, which has a much lower computational cost than REML. The objective
function of Γ and σ2 based on LAML is given by

L(σ2, Γ) =
N

∑
i=1

{
1
σ̂2 ||Y i − µ̂−Ψp ĉi||22 + ĉ>j Γ−1ĉj + log det Γ−1 + log(σ2IT)

}

+ log det
(

Ψ>p Ψp

σ2 + Γ−1
)

.

(22)

In this objective function, the first four components come from the joint log-likelihood
function of {Y i} and {ci}, while the fifth term is resulted by the Laplace approximation of
integral

∫
f (Y i|ci) f (ci)dci, where f (Y i|ci) is the density function of Y i conditioned on ci

and f (ci) is the density function of ci. The derivative of L(σ2, Γ) with respective to σ−2 is

∂L(σ2, Γ)

∂σ−2 = 0 = −NTσ2 +
N

∑
i=1

(
||Y i − µ̂−Ψp ĉi||22

)
+ trace(∆(σ2, Γ)Ψ>p Ψp), (23)

where ∆(σ2, Γ) = (Ψ>p Ψp/σ2 + Γ−1)−1. As a result, the fixed-point iteration for σ2 is

σ2[t+1] =
1

NT

{ N

∑
i=1

(
||Y i − µ̂−Ψp ĉi||22

)
+ trace(∆(σ2[t], Γ[t])Ψ>p Ψp)

}
, (24)

where σ2[t] and Γ[t] are the current estimates. On the other hand, the derivative of L(σ2, Γ)
with respective to Γ−1 is

∂L(σ2, Γ)

∂Γ−1 = −NΓ +
N

∑
i=1

(
ĉi ĉ>i

)
+ ∆(σ2, Γ). (25)
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Hence, the fixed-point iteration for Γ is

Γ[t+1] =
1
N

{ N

∑
i=1

(
ĉi ĉ>i

)
+ ∆(σ2[t], Γ[t])

}
. (26)

We implement these two fixed-point iterations iteratively and regard the stable solutions as
σ̂2 and Γ̂. Likewise, we also implement the estimator of β, the predictors of {ci}, and the
estimator of Γ and σ2 iteratively, and regard the stable solutions as the outputting estimates
of β, {ci}, Γ, and σ2.

The reason why LAML is more efficient than REML is illustrated as follows. The
objective function of REML with respect to balanced longitudinal data is

R(ϑ) =
N

∑
i=1

(
(Y i −Ψq β̂)>Σ−1

y (Y i −Ψq β̂) + log det(Σy)

)
+ log det(Ψ>q Σ−1

y Ψq), (27)

where ϑ = (σ2, vec(Γ)) and Σy ≈ σ2IT + ΨpΓΨ>p . Because σ2 and Γ are involved in Σy, it is
impossible to obtain fixed-point iterations for σ2 and Γ separately as LAML. In other words,
it seems that the only way to jointly estimate σ2 and vec(Γ) is by using the Fisher-scoring
algorithm. The first-order derivative ofR(ϑ) with respect to ϑk is

∂R(ϑ)
∂ϑk

= 0 = −
N

∑
i=1

(Y i −Ψq β̂)>Σ−1
y

∂Σy

∂ϑk
Σ−1

y (Y i −Ψq β̂) + trace
(

P
∂Σy

∂ϑk

)
, (28)

while the expectation of second-order derivative ofR(ϑ) with respect to ϑk and ϑh, i.e., the
(k, h)th element of the Hessian matrix ofR(ϑ), is given by

E
(

∂2R(ϑ)
∂ϑk∂ϑh

)
= trace

(
P

∂Σy

∂ϑk
P

∂Σy

∂ϑh

)
, (29)

where

P = Σ−1
y − Σ−1

y Ψq(Ψ
>
q Σ−1

y Ψq)
−1Ψ>q Σ−1

y . (30)

Thus, ϑ is updated by

ϑ[t+1] = ϑ[t] −H(ϑ[t])−1g(ϑ[t]), (31)

where the kth element of g(ϑ[t]) is calculated according to (28) and the (k, h)th element of
H(ϑ[t]) is yielded by (29).

It is worth pointing out that there is no matrix formula to directly yield g(ϑ[t]) and
H(ϑ[t]), i.e., it is the sole way to calculate their elements one-by-one according to (28)
and (29). This drawback makes the minimization of REML extremely costly because
the computation complexity of matrix inverse Σ−1

y and matrix product P∂Σy/∂ϑk are of
O(T3). In particular, as the number of employed basis function p increases, the number of
elements in H(ϑ[t]) is (p2 + 1)2, which will be more than 10, 000 if p is just 10. As a result,
the total computation complexity of the Hessian matrix calculation is O(T3 p4), which is
unacceptable for large balanced longitudinal data. In contrast, our separate fixed-point
iterations (24) and (26) have only O(Tp2) computation complexity, and are able to guarantee
σ̂2 positive and Γ̂ positive definite as long as the initial estimates σ2[0] is positive and Γ[0] is
positive definite. Therefore, our novel estimator is more attractive than the REML-based
one for FLMM in high dimensionality. Note that what we contribute is the fixed-point
iterations based on LAML. In the paper of LAML [39], the Newton–Raphson algorithm
was employed to minimize the corresponding LAML objective function, in which will still
face the same numerical problems as REML if T or p is large.
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3.2. Regularity Assumptions

Now we turn to investigate the large sample properties of FLMM using our novel
estimator. We first give three essential concepts that play central roles in our asymptotic
investigation.

Definition 1 (Sub-Gaussianity). A random error εi with mean E(εi) = 0 and variance var(εi) = σ2

is termed a sub-Gaussian variable if for all r ∈ R,

E(exp(rεi)) ≤ exp
(

1
2

τ2r2
)

,

where τ > 0 is called the sub-Gaussian parameter.

Definition 2 (Well-conditioned covariance matrix). An (p× p) symmetric matrix Σ is termed
the well-conditioned covariance matrix if there is a constant c0 independent of p such that

0 < c−1
0 ≤ λmin(Σ) ≤ λmax(Σ) ≤ c0 < ∞.

Definition 3 (Sobolev–Hilbert space). A functional space Fs is called s-order Sobolev–Hilbert
space if there is a constant c0 such that ∀ f ∈ Fs,

E
( ∫

t∈T
[ f s(t)]2dt

)
≤ c0 < ∞.

Sub-Gaussianity is an important concept in high-dimensional statistical analysis,
which generalizes the Gaussian distribution to include common continuous variables and
all bounded discrete variables [40]. Besides, the concept of well-conditioned covariance
is proposed by Bickel and Levina [41], which guarantees that all of its eigenvalues are
bounded away from zero and infinity whatever its dimension is. In addition, Sobolev–
Hilbert space is the most commonly-used functional space in nonparametric statistical
analysis [42]. The minimax lower bound of function estimate in this space is

inf
f̂

sup
f∈Fs

E(|| f̂ − f ||22) ≥ d0N−
2s

2s+1 , (32)

where d0 > 0 is a certain constant and N describes the sample size.
Now we give the following assumptions that facilitate the proofs of theorems.

Assumption 1 (Sub-Gaussian random error). For all (i, j) ∈ {1, . . . , N} × {1, . . . , T}, the
random error εij is independently and identically distributively generated from a sub-Gaussian
distribution with mean 0, variance σ2, and sub-Gaussian parameter τε.

Assumption 2 (Quasi uniform locations). The sampling locations t1, . . . , tT form a quasi uni-
form sequence defined in T .

Assumption 3 (Basis functions). For a series of basis functions {Ψk(t)},∫
t∈T

Ψk(t)dt = 0,
∫

t∈T
[Ψk(t)]2dt = 1,

∫
t∈T

[Ψk(t)]4dt ≤ c0 < ∞,

for all k ∈ {1, . . . , p}, where c0 > 0 is a constant. Besides, let Ψp(t) = (Ψ1(t), . . . , Ψp(t))> and

ΣΨp =
∫

t∈T
Ψp(t)Ψp(t)>dt.

Then ΣΨp is a well-conditioned covariance matrix.
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Assumption 4 (Approximation error of mean function). For a mean function µ(t) ∈ Fs and a
series of basis functions {Ψk(t)} satisfying Assumption 3, there exists a unique series of coefficients
{βk} satisfying limq→∞ ∑

q
k=1 β2

k ≤ c0 < ∞ such that

∫
t∈T

(
µ(t)−

q

∑
k=1

Ψk(t)βk

)2

dt ≤ c0q−2s,

where c0 > 0 is certain constant.

Assumption 5 (Approximation error of individual function). For any individual trajectory
Xi(t) ∈ Fs and a series of basis functions {Ψk(t)} satisfying Assumption 3, there exists a unique
series of random coefficients {cik} satisfying limp→∞ ∑

p
k=1 E(c2

ik) ≤ c0 < ∞ such that

E
( ∫

t∈T

[
Xi(t)− µ(t)−

p

∑
k=1

Ψk(t)cik

]2

dt
)
≤ c0 p−2s, i ∈ {1, . . . , N},

where c0 > 0 is certain constant.

Assumption 6 (Distribution of random coefficients). Random coefficient cik is sub-Gaussian
with E(cik) = 0, var(cik) = Γkk, sub-Gaussian parameter τk, and cik is independent of cjk for all
i 6= j. Furthermore, TΓ = (TΓjk)p×p is a well-conditioned covariance matrix.

Assumption 1 considers the random error to be independent and identically dis-
tributed (IID) sub-Gaussian variable for all i and j. Assumption 2 sets the sampling
locations and t1, . . . , tT can be regarded as a uniform sequence. As a result, the related
integral of a certain function of t can be approximated by averaging the values of this
function at these discrete locations. Assumption 3 summarizes some basic properties of the
basis functions {Ψk(t)}. Assumptions 4 and 5 describe how the accuracy of a function can
be approximated by using p bases. Tsybakov [43] showed that, if the bases are the Tikhonov
bases, Assumptions 4 and 5 hold as long as µ(t) and Xi(t) belong to the Sobolev–Hilbert
spaceFs. However, for a series of general basis functions, it remains unclear if Assumptions
4 and 5 still hold. In other words, we assume that we have picked the basis functions that
have similar properties as the Tikhonov bases such that these two hold. Assumption 6 lists
some conditions of the random coefficients. In particular, since

λmax(ΨΓΨ>) = OP(T)× λmax(ΣΣΣΨ)× λmax(Γ), (33)

λmax(Γ) must be O(T−1) otherwise the covariance matrix of Yi becomes divergent and
violates some basic assumption of FDA; see, e.g., assumption (A4) in Yao et al. [11]. Hence,
we assume that the covariance matrix of

√
Tci, i.e., TΓ, is well-conditioned.

3.3. Large Sample Property

We provide four theorems describing the asymptotic properties of estimators obtained
by our new FLMM.

Theorem 1. Suppose Assumptions 1–6 hold. If β̂ is yielded by (14), λmax(γQ) = O(1), and Σ̂y
is chosen such that λmax(Σ̂−1

y Σy) ≤ c0 < ∞ for certain constant c0 > 0, then

||β̂− β||22 = OP

(
q

NT
+

1
q2s

)
.

If q = O(T), then the optimal convergence rate of β̂ is

||β̂− β||22 = OP

(
1
N

+
1

T2s

)
.
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Theorem 1 indicates the convergence rate of the mean parameter estimate β̂, which is
a trade-off between variance term OP(q/NT) and bias term O(p−2s). As a corollary,

∫
t∈T

(µ(t)− µ̂(t))2dt ≤
∫

t∈T
(µ(t)−Ψq(t)>β)2dt +

1
T

T

∑
j=1

(Ψq(tj)
>{β− β̂})2

= OP

(
q

NT
+

1
q2s

)
.

(34)

which means that the optimal convergence rate µ̂(t) is OP(N−1 + T−2s) by letting q = O(T).
In particular, this convergence rate reaches the minimax lower bound of all nonparametric
estimates of µ(t) [29,43], indicating that our estimate is optimal in terms of minimax
efficiency. Besides, our theory does not require λ to vanish asymptotically. Indeed, any γ
such that λmax(γQ) = O(1) is able to guarantee β̂ to reach the minimax lower bound.

Theorem 2. Suppose Assumptions 1–6 hold. If ĉi is yielded by (19), then for i = 1, . . . , N,

||ĉi − ci||22 = OP

(
p
T
+

1
p2s

)
.

If p = O(T
1

2s+1 ), then the optimal convergence rate of ĉi is

||ĉi − ci||22 = OP

(
T−

2s
2s+1

)
.

Theorem 2 shows the convergence rate of the parameter estimate in individual tra-
jectory ĉi, which is a trade-off between variance term OP(p/T) and bias term O(p−2s).
Similarly, the optimal convergence rate of X̂i(t) is∫

t∈T
(Xi(t)− X̂i(t))2dt ≤

∫
t∈T

(Xi(t)− µ(t)−Ψp(t)>ci)
2dt +

∫
t∈T

(µ(t)− µ̂(t))2dt

+
1
T

T

∑
j=1

(Ψp(tj)
>{ci − ĉi})2 = OP

(
p
T
+

1
p2s

)
,

(35)

which reaches the minimax lower bound of all nonparametric estimates of Xi(t) [29,43] by
letting p = O(T1/(2s+1)). In addition, it is easy to see that the optimal q and the optimal p
have obviously different orders of magnitude: the former should diverge at the same rate
as T while the latter is much slower than T. Hence, to reach the optimal convergence rates,
we should use an adaptive number of bases when estimating µ(t) and predicting Xi(t). As
far as we are concerned, we are the first ones to indicate this principle. Traditional FLMM
methods, such as James et al. [17] and Shi et al. [20], did not require different numbers of
bases when estimating the mean function and individual function, which may result in less
efficient estimates of mean function and individual function in practice.

Theorem 3. Suppose Assumptions 1–6 hold. If σ̂2 is yielded by (24),

(σ̂2 − σ2)2 = OP

(
p
T
+

1
p2s

)
.

If p = O(T
1

2s+1 ), the optimal convergence rate is

(σ̂2 − σ2)2 = OP

(
T−

2s
2s+1

)
.
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Theorem 4. Suppose Assumptions 1–6 hold. If Γ̂ is yielded by (26),

||Γ−
1
2 Γ̂Γ−

1
2 − Ip||22 = OP

(
p
N

+
p
T
+

1
p2s

)
.

If p = O(T
1

2s+1 ), the optimal convergence rate is

||Γ−
1
2 Γ̂Γ−

1
2 − Ip||22 = OP

{
max

(
N−1T

1
2s+1 , T−

2s
2s+1

)}
.

Theorems 3 and 4 guarantee that the variance components σ2 and Γ can be estimated
consistently by using the LAML criterion. The convergence rates of σ2 and Γ will be
influenced by the estimation errors of β̂ and ĉi. As a corollary,

||Σ∗y − Σ̂y||22 = OP

(
N−1T

1
2s+1 + T−

2s
2s+1

)
, (36)

where Σ∗y = σ2IT + ΨpΓΨ>p and Σ̂y = σ̂2IT + ΨpΓ̂Ψ>p . However, the true covariance matrix
is Σy = σ2IT + cov(X i). The difference between Σy and Σ∗y is unknown without additional
assumption. Hence, in Theorem 1, we give the condition λmax(Σ̂−1

y Σy) < ∞ to ensure the
correctness of the corresponding proof.

3.4. Tuning Parameter Selection

In the new estimator of FLMM, three tuning parameters including p, q, and γ need
to be determined artificially. Here, we should emphasize that our FLMM estimator is
insensitive to the choices of p, q as long as they are moderately large (e.g., p = 10 and
q = 20, or any other reasonable numbers), though the theoretical investigation requires
them to be bounded by O(T1/(2s+1)) and O(T). In terms of regulating the wigglinesses of
the mean function estimate and individual trajectory prediction, the smoothing parameter
γ and covariance matrix Γ are more essential than the numbers of basis functions p and
q. A large number of empirical analyses have confirmed this principle. For example,
Wood [44] showed it can accurately fit a common function by setting p = 10 and set this
number as the default one in R package mgcv. We follow Wood’s measure and recommend
choosing p and q as any reasonable numbers in this paper.

As for γ, we propose to automatically estimate the optimal one by using the LAML:

γ̂ = arg min
γ

{
γβ̂
>

Qβ̂− log det(γIrank(Q)) + log det
(

nΨ>q Ψq + γQ
)}

. (37)

Similar to the estimation of Γ and σ2, the score function of γ is

0 = β̂
>

Qβ̂− rank(Q)γ−1 + trace((nΨ>q Ψq + γQ)−1Q). (38)

As a result, the fixed-point iteration of γ is

γ[t+1] =
rank(Q)

β̂
>

Qβ̂ + trace((nΨ>q Ψq + γ[t]Q)−1Q)
. (39)

We update γ[t] along with the estimation of β. The stable estimate is regarded as γ̂.
Since γ̂ can be estimated automatically, there is indeed no tuning parameter to be

determined. In contrast, the estimating procedure of FPCA needs to select three bandwidths
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and the number of employed PCs, which is supposedly very time-consuming. In particular,
FPCA is sensitive to the number of employed PCS, while FLMM is insensitive to numbers
of the employed bases p and q. As a result, our new estimator of FLMM outperforms FPCA
absolutely in terms of tuning-parameter robustness.

4. Simulation Study

In this section, we conduct a simulation study to assess the performance of our new
FLMM estimator in comparison with FPCA. Here, we choose the well-known Principal
Analysis by Conditional expectation (PACE) estimator (Matlab codes of PACE: https://www.
stat.ucdavis.edu/PACE/, from 16 March 2020 to 14 August 2020) to estimate the FPCA.

4.1. Simulation Settings

The settings of simulations are as follows. Throughout the study, we set the
t = (1/T, 2/T, · · · , 1)> to keep the t ∈ (0, 1). The mean function is

µ(t) = t11(10(1− t))6 + 10(10t)3(1− t11)− 1.396, (40)

which is constructed by Wood [44]. Next, we generate the covariance function C(s, t) by

C(s, t) =
5

∑
k=1

λkφk(s)φk(t). (41)

Here, the eigenvalues (λ1, λ2, λ3, λ4, λ5) = (5, 2.5, 30, 0.5, 0.25)/4, and the eigenfunction
vector φ(t) = (φ1(t), . . . , φ5(t))> is constructed by rotating the Tikhonov bases through a
(5×5) matrix G:

φ(t) = T(t)G, (42)

where T(t) = (1,
√

2 cos(πt), . . . ,
√

2 cos(4πt))>, A5(0.5) is a (5× 5) 1-order autoregres-
sive (AR(1)) structure correlation matrix with correlation coefficient ρ = 0.5, and G is
the Cholesky factor of A5(0.5)−1, i.e., G>G = A5(0.5)−1. Furthermore, the individual
trajectory is generated by

Xi(tj) = µ(tj) +
5

∑
k=1

φk(tj)ξik, (i, j) ∈ {1, . . . , N} × {1, . . . , T}, (43)

where ξik ∼ N (0, λk). The observation

yi(tj) = Xi(tj) + εij, (44)

where εij ∼ N(0, 2). Figure 2 visualizes the aforementioned settings. Specifically, the
left-top panel shows the first three Tikhonov bases and the left-bottom panel demonstrates
the first three eigenfunctions rotated by the Tikhonov bases. The middle-top and middle-
bottom panels show the first and second individual trajectories and the related observations
with random errors. It is observed that the individual trajectory is similar to the mean
function but has its adaptive trend. The right-top and right-bottom panels visualize the
covariance surfaces.

https://www.stat.ucdavis.edu/PACE/
https://www.stat.ucdavis.edu/PACE/


Mathematics 2022, 10, 4322 14 of 28

0 0.2 0.4 0.6 0.8 1

t

-1.5

-1

-0.5

0

0.5

1

1.5
cosine basis functions

1st basis 2nd basis 3rd basis

0 0.2 0.4 0.6 0.8 1

t

-3

-2

-1

0

1

2

3
eigenfunctions

-50
150

0

150100

50

covariance surface

time interval

100

time interval

100

50 50
0 0

-50
0

0

15050

50

covariance surface (rotated by 90 degree)

time interval

100

time interval

100

100 50
150 0

0 0.2 0.4 0.6 0.8 1

t

-5

0

5

10

15
1st individual trajectory

observation individual trajectory mean function

0 0.2 0.4 0.6 0.8 1

t

-5

0

5

10

15
2rd individual trajectory

Figure 2. The eigenfunctions, mean function, individual trajectory, and covariance function used in
the simulation.

4.2. Simulation Results

For better comparison, we notated FLMM with Bsplines and Tikhonov bases as FLMM-
Bsplines and FLMM-Tikhonov, respectively. The numbers of employed bases for Bsplines and
Tikhonov bases are 30 and 15 when estimating the mean function trajectory and individual
trajectory, respectively. Meanwhile, the FPCA implemented by PACE is noted as FPCA-PACE,
where all settings follow the default ones in the package. We compare the proposed FLMM with
FPCA and generate the data using the above settings. In order the get the whole evaluation
of the three approaches, we take two cases in the simulations: (1) fix the N as 150, and set
T = 50, 100, 150, 200, 250, 300; (2) fix T = 150, set N = 50, 100, 150, 200, 250, 300. On the
other hand, the criteria to evaluate the results are as follows. For mean function estimation,
we adopt the root mean squared error (RMSE) as the criterion:√√√√ 1

T

T

∑
i=1

(
µ̂(ti)− µ(ti)

)2

(45)

for individual trajectory prediction, we consider the maximum RMSE as the criterion:

max
i∈{1,...,N}

√√√√ 1
T

T

∑
i=1

(
X̂i(ti)− Xi(ti)

)2

(46)

the absolute value |σ̂2 − σ| is used to evaluate the variance estimation; the Frobenius-norm
of the matrix is adopted as a measure to compare the covariance surface estimation:√√√√ 1

T

T

∑
i=1

T

∑
j=1

(
Ĉ(ti, tj)− C(ti, tj)

)2

(47)

and the computing time in seconds is recorded to compare the computational efficiency.
The system and software to implement the simulations are Linux 4.18 (standard High
Performance Computing (HPC) machine, icosa192gb feature nodes, memory 50 GB and
12 cpu-cores) and MATLAB (R2021). The replication runs are 500.

Figure 3 shows the results of the simulation. Specifically, the five subplots on the
left side of Figure 3 show the results of FLMM-Bsplines, FLMM-Tikhonov, and FPCA-
PACE based on mean function estimation, individual estimation prediction, variance
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estimation, covariance surface estimation, and computation time as the sample size N
increases. Likewise, the five subplots on the right side of Figure 3 show the counterparts
of the left subplots as the number of observations T increases. Based on these results, we
make the following comments.

                                   
 

    

    

    

    

   

    
                                      

                                   
 

    

    

    

    

   

                                               

                                   
 

 

 

 

 

 

 

 

 
                                               

                                  
 

 

 

 

 

 

 

 

 

                                  

                                   
 

    

    

    

    

   
                                  

                                   
 

    

    

    

    

   

                                  

                                   
 

    

    

    

    

   
                                            

                                   
 

 

  

  

  

  

  

                              

                                   
 

 

 

  

  

  

                             

                              

                                   
 

  

  

  

  

                             

                                      

Figure 3. Estimation errors of mean function, individual trajectory, variance, covariance surface, and
running time in the three methods.
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Mean function estimation. When sample size N is very small, FLMM-Bsplines is worse
than FLMM-Tikhonov and FPCA-PACE. However, as N increases, the performances of
FLMM-Bsplines and FLMM-Tikhonov boost significantly faster than FPCA-PACE. On
the other hand, if N is fixed to 150, FPCA-PACE is extremely unreliable when T is very
small and is always less accurate than them no matter whether T is large or small. These
results show that our novel FLMM estimator is better than FPCA in terms of mean function
estimation. In addition, no matter whether N or T rises, the estimation error of the mean
function will decrease, which is consistent with Theorem 1.

Individual trajectory prediction. In terms of individual trajectory prediction, FPCA-PACE
is much worse than FLMM-Bsplines and FLMM-Tikhonov. We checked the codes of the
PACE package and found that it estimates the eigenvalues eigenfunctions by applying PCA
on a (51× 51) covariance surface predictor, which may result in less accurate eigenvalues
eigenfunctions estimates. (Nevertheless, we did not change the default settings of the PACE
package in the simulations.) On the other hand, we find that our estimates become more
accurate as T increases, while slowly becoming worse when T remains and N rises (the
maximum RMSE (46) is affected by N). This is consistent with Theorem 2: the prediction of
individual trajectory is only related to the number of observations T.

Variance estimation. Regarding variance estimation, FLMM-Bsplines and FLMM-
Tikhonov enjoy the same accuracy in all cases. Since the variance estimate yielded by
FLMM becomes more accurate no matter whether T or N increases, Theorem 3 is suppos-
edly established correctly. However, it seems that FPCA-PACE cannot benefit from either
the increase of T or the rise of N.

Covariance surface estimation. Regarding covariance surface estimation, all three es-
timators have the same degree of accuracy. In particular, as N is fixed and T increases,
all the covariance surface estimators become worse in terms of the Frobenius-norm. This
phenomenon indicates that the averaged Frobenius-norm of ||cov(X i)− ΨpΓΨ>p ||F/

√
T

should diverge to infinity as T increases.
Covariance surface approximation. To verify this hypothesis, we conduct an additional

simulation. Specifically, because ci is unknown in simulation (we generate the random
coordinates of eigenfunctions ξi directly and there should exist a correspondence between
ci and ξi), we approximate bi by

c̃i = (Ψ>p Ψp)
−1Ψ>p (X i − µ), (48)

and the covariance matrix Γ is approximated by

Γ̃ =
1

N − 1
(c̃i − c̄)(c̃i − c̄)>, (49)

where c̄ is the sample mean. We implement the above simulations 300 times, record the
empirical covariance matrix Γ̃ and the approximation error ||cov(X i) − ΨpΓ̃Ψ>p ||F/

√
T.

The left and middle panels in Figure 4 show the simulated covariance matrices of ci with
respect to Bsplines and Tikhonov bases. Because the basis functions of Bsplines have no
natural order while the Tikhonov basis functions have one, the covariance matrix of the
Tikhonov basis functions has sharply decreasing diagonal elements with an increasing
order. The approximation error does increase with T and so our hypothesis is confirmed.
In addition, there is no difference between Bsplines and Tikhonov bases in approximating
the covariance surface although the latter have a natural order. In summary, the decreasing
performance of covariance surface estimation is due to the approximation error.

Computational efficiency. In terms of computational efficiency, the computing time
of our two methods is almost independent of T and N and is much less than that of
FPCA-PACE. In particular, the computing time of FPCA-PACE increases sharply as T
increases, confirming our comments on the drawbacks of FPCA given in Section 2. Thus,
for the estimation of large balanced longitudinal data, our proposed method has a very
clear advantage.
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Figure 4. Investigation of the covariance surface approximation.

5. Real Data Analysis

We demonstrate the effectiveness of the proposed method via the analysis of the
COVID-19 data in this section. This data is updated daily on the number of COVID-19
infectious cases and deaths in the 50 states and DC in the US by the Center for Systems
Science and Engineering (CSSE) at Johns Hopkins University. It contains N = 51 subjects
and T = 152 observations. The realization is the number of COVID-19 cases after the
logarithm, which was recorded every day from 16 March 2020 to 14 August 2020. Partial
observations are negative because of certain unknown reasons. For such an observation,
we replace it with the average of the three observations around it. We employ 15 and
10 numbers of Bsplines bases to approximate the mean function and individual trajectories,
respectively. It should be pointed out that we have not changed the default settings of the
PACE package, and in our FLMM method, the number of employed bases p is the only
tuning parameter to select. Therefore, the comparison between FPCA and FLMM is fair.

The results of this data analysis are shown in Figures 5–7. Figure 5 displays the two
estimated mean functions obtained by FPCA and our novel FLMM, respectively. The
smaller panel within tries to draw attention to the stability of the two mean curves. The
results further reveal the reason as to why FPCA performs worse than FLMM in terms of
mean function estimation: it may overfit the mean function. Besides, due to the N = 51
sample size, we chose six states with the top populations among all states to represent
individual trajectories, and the consequence is shown in Figure 6. Likewise, FPCA tends
to overfit the individual trajectories while FLMM with our new estimator can fit them
accurately. In addition, Figure 7 demonstrated the estimated covariance surface yielded
by the two approaches. Generally, the two covariance surfaces are similar; but the one
generated by our FLMM is smoother than FPCA. In addition, in terms of computing time,
our FLMM estimator only takes 0.088 seconds, while PACE takes 44.08 seconds. Such
a substantial gap confirms that our FLMM estimator is much more efficient than FPCA
in terms of computation. In conclusion, FPCA implemented by PACE is very likely to
overfit the mean function estimation, individual trajectory prediction, and covariance
function estimation.
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6. Discussion

In this paper, we propose a novel estimator of large functional data using the FLMM
technique. In comparison with the FPCA, this novel estimator is much more efficient
because all parameters can be automatically estimated. In comparison with the traditional
estimator of FLMM, i.e., the REML criterion, our novel estimator adopts the LAML crite-
rion, which enjoys a significantly lower computational complexity when the number of
observations T or the number of employed bases p is large. In the simulation, our novel
estimator of FLMM outperforms or performs equally as FPCA in all five criteria. In real
data analysis, it is able to provide more reliable estimates than PFCA in terms of avoiding
overfitting. Note that we only compare the novel estimator with the FPCA implemented
by the PACE package, because the computing time of the traditional estimator of FLMM
with REML is extremely large, and it is very easy to encounter numerical problems such as
a degenerate Hessian matrix.

Another contribution of this paper is the asymptotic theory of FLMM. As far as we are
concerned, our work is the first one to point out the convergence rates of mean function
estimate, individual trajectory prediction, variance estimate, and covariance surface estimate.
Theorems 1 and 2 show that the mean function estimate and individual trajectory prediction
can reach the minimax lower bounds if the numbers of employed bases are chosen optimally.
In particular, we point out that the number of basis functions should be adaptively chosen
when estimating the mean function and individual trajectory, providing a novel guide about
how to perform FLMM in practice. However, Theorems 3 and 4 illustrate that the convergence
rates of variance estimate and covariance surface estimate cannot reach the minimax
lower bounds because of the estimation errors of mean function estimate and individual
trajectory prediction. These two findings indicate that the variance components cannot be
precisely estimated if the mean function estimate and individual trajectory prediction are
not consistent.

It should be pointed out that the proposed estimator can be simply extended to analyze
unbalanced longitudinal data or the so-called sparse functional data [11]. Indeed, the FLMM
estimator of unbalanced longitudinal data resembles the combination of penalized quasi-
likelihood (PQL) and REML/LAML; a similar estimating procedure can be found in Breslow
and Clayton [33]. Since in unbalanced longitudinal data, the number of observations for
each individual is usually small, the FLMM estimator will not suffer from the theoretical
and computational difficulties caused by the “dimensional curse”. As mentioned before,
Vonesh et al. [34] pointed out that the convergence rate of the mean parameter in GLMM
is O(T−1/2

min ). However, as far as we are concerned, the convergence rates of covariance
matrix estimate and individual prediction are still unknown. As for FLMM, since the
approximation bias of basis expansions is further involved, it is even unclear if the four
estimates are consistent. Hence, it is worth future studying under what conditions the
FLMM estimation is consistent for unbalanced longitudinal data or sparse functional data.

Discrete functional data analysis is an area that has received much less attention
than continuous functional data analysis. However, discrete data are more common in
longitudinal data analysis than continuous data, and hence the technical tools for analyzing
discrete functional data are more urgently needed. Specifically, the model of discrete
functional data is

E(Yi(tj)) = g−1(Xi(tj) + W>
ij γ), (50)

where Yi(tj) is a random variable following the exponential family distribution [45], g(·)
is the so-called link function, and W ij is certain vector of covariates. We conjecture that
the convergence rates of mean function estimate, individual trajectory prediction, variance
estimate, and covariance surface estimate in this new model are the same as the ones
indicated by Theorems 1–4 if the sampling locations {tj} are balanced for all individuals.
On the other hand, such a problem has been studied by Hall et al. [46] using the FPCA
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technique. It is also worth comparing the performances of FLMM and FPCA when dealing
with such discrete functional data.
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Appendix A. Proofs of Theorems

Appendix A.1. Lemmas

We present some basic lemmas that facilitate the proofs of Theorems 1–4.

Lemma A1. Suppose X1, . . . , Xn are n independent sub-Gaussian variables with mean-zero and
variance σ2

1 , . . . , σ2
n . Then

lim
n→∞

1√
n

n

∑
i=1

Xi
D−→ N (0, σ2

x),

where

σ2
x = lim

n→∞

1
n

n

∑
i=1

σ2
i .

Proof of Lemma A1. By using the second item of Proposition 2.5.2 of Vershynin [40],

[E(|Xi|p)]
1
p = O(

√
p) (A1)

for all p ≥ 1. Hence, for all fixed δ > 0,

lim
n→∞

1
n1+δ

n

∑
i=1

E(|Xi|2+2δ) ≤ (K0
√

2 + 2δ)2+2δ

nδ
→ 0, (A2)

where K0 > 0 is a fixed number, which verifies Lyapunov’s condition.

Lemma A2. Let X1, . . . , Xn be n (p× 1) independent identically distributed random vector with
entries xi1, . . . , xip are sub-Gaussian with zero-mean. Besides, define the covariance matrix of X i as

Σ = E(X iX>i )

and the related sample covariance matrix

Σ̂ =
1
n

n

∑
i=1

X iX>i .

https://www.kaggle.com/datasets/thecansin/johns-hopkins-covid19-case-tracker?resource=download
https://www.kaggle.com/datasets/thecansin/johns-hopkins-covid19-case-tracker?resource=download
https://www.stat.ucdavis.edu/PACE/
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Then for every positive integer n,

E(||Σ̂− Σ||2) ≤ C
(

p
n
+

√
p
n

)
||Σ||2,

where C is a certain positive constant.

This lemma is provided by Vershynin [40] (Theorem 4.7.1).

Lemma A3.

• Weyl’s lemma: Let S, E be two Hermitian (p× p) matrices. Then, for each 1 ≤ i ≤ p,

λi(S) + λmax(E) ≤ λi(S + E) ≤ λi(S) + λmin(E),

• Ostrowski’s lemma: Let A be a Hermitian (n× p) matrix, and S be an (p× p) matrix. Then,
for each 1 ≤ i ≤ p, there exists an nonnegative real θi with λmin(AA>) ≤ θi ≤ λmax(AA>)
such that

λi(ASA>) = θiλi(S),

where λi(S) means the ith eigenvalues of S.

This lemma can be found in Horn and Johnson [47] (Theorem 4.3.1 and Theorem 4.5.9).

Lemma A4. Let Γ be an (p× p) symmetric matrix satisfying pΓ, a well-conditioned covariance
matrix. Then

TC−1
0 ≤ λmin(Ψ

>
q V−1Ψq) ≤ λmax(Ψ

>
q V−1Ψq) ≤ C0T,

where V = σ2IT + ΨpΓΨ>p , C0 > 0 is a constant, σ2 > 0 is an alternative constant, Ψq is an
(T× q) matrix satisfying Ψ>q Ψq/T → ΣΨq , Ψp is an (T× p) matrix satisfying Ψ>p Ψp/T → ΣΨp ,
and ΣΨq , ΣΨp are two well-conditioned covariance matrices.

Proof of Lemma A4. By the Ostrowski’s lemma,

0 ≤ λmin(ΨpΓΨ>p ), λmax(ΨpΓΨ>p ) ≤ λmax(TΣΨp)λmax(Γ) ≤
c0T
T

= c0, (A3)

for certain constant c0, because the minimum eigenvalue of ΨpΨ>p is 0. By using Weyl’s lemma,

σ2 ≤ λmin(V) ≤ λmin(V) ≤ σ2 + c0. (A4)

Hence,
Tσ−2λmax(ΣΨq)

σ2 + c0
≤ λmin(TΣΨq)λmin(V−1) ≤ λmin(Ψ

>
q V−1Ψq)

λmax(Ψ
>
q V−1Ψq) ≤ λmax(TΣΨq)λmax(V−1) = Tσ−2λmax(ΣΨq).

(A5)

That is,

TC−1
0 ≤ λmin(Ψ

>
q V−1Ψq) ≤ λmax(Ψ

>
q V−1Ψq) ≤ C0T, (A6)

for certain positive constant C0.
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Appendix A.2. Proofs

Proof of Theorem 1. The score function of β̂ is

0 =
∂ 1

N
{

∑N
i=1(Y i −Ψqβ)>Σ̂−1

y (Y i −Ψqβ) + γβ>Qβ
}

∂β

∣∣∣∣
β=β̂

= −Ψ>q Σ̂−1
y

(
1
N

N

∑
i=1

Y i −Ψq β̂

)

= −Ψ>q Σ̂−1
y

(
1
N

N

∑
i=1

Y i − µ

)
−Ψ>q Σ̂−1

y (µ−Ψqβ)

−Ψ>q Σ̂−1
y Ψq(β− β̂) +

γ

N
Qβ +

γ

N
Q(β̂− β) (A7)

= I1 + I2 + I3 + I4 + I5. (A8)

As for I1,

I1 =−Ψ>q Σ̂−1
y

(
1
N

N

∑
i=1

Y i − µ

)
= −Ψ>q Σ̂−1

y Σ
1
2
y Σ
− 1

2
y

(
1
N

N

∑
i=1

(X i + εi)

)

= −Ψ>q Σ̂−1
y Σ

1
2
y

(
1
N

N

∑
i=1

ei

)
,

(A9)

where e = (ei1, . . . , eiT)
> with E(eij) = 0, var(eij)=1, and E(eijeik) = 0 for j 6= k. Here,

E(I1) = 0, var(I1) =
1
N
× trace(Ψ>q Σ̂−1

y Σ
1
2
y ITΣ

1
2
y Σ̂−1

y Ψq) (A10)

which guarantees

E(||I1||22) ≤
1
N
× trace(Ψ>q Σ̂−1

y Ψq)× λmax(Σ̂
−1
y Σy)

= O
(

Tq
N

)
. (A11)

As for I2, by Assumption 4,

||I2||22 ≤ λmax(Ψ
>
q Σ̂−1

y Ψq)× λ−1
min(Σ̂y)× ||µ−Ψqβ||22

= O(T)×O(1)×O(Tq−2s) = O(T2q−2s).
(A12)

As for I3 + I5,

I3 + I5 ≥ λmin

(
Ψ>q Σ̂yΨq +

γ

N
Q
)
× ||β̂− β||2 ≥ O(T)× ||β̂− β||2.

As for I4,

||I4||22 ≤
1

N2 × λ2
max(γQ)× ||β||22 = O

(
1

N2

)
(A13)

As q ≤ T when estimating the mean function,

||β̂− β||22 ≤ OP

(
1

T2 (||I1||22 + ||I3||22)
)
= OP

(
q

NT
+

1
q2s

)
. (A14)
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Hence, by letting q = O(T),

||β̂− β||22 = OP

(
1
N

+ T−2s
)

, (A15)

which is consistent with the minimax lower bounder provided by Cai and Yuan [29].
Therefore, Theorem 1 is proved.

Proof of Theorem 2. The score function of ĉi is

0 =
∂{||Y i − µ̂−Ψpci||22 + c>i Λ̂−1ci}

∂ci

∣∣∣∣
ci=ĉi

= −Ψ>p (Y i − µ̂−Ψp ĉi) + Λ̂ĉi

= −Ψ>p (Y i − X i)−Ψ>p (X i −Ψpbi)

−Ψ>q Ψq(β̂− β)−Ψ>p Ψp(ĉi − ci) + Λ̂ci + Λ̂(ĉi − ci)

= J1 + J2 + J3 + J4 + J5 + J6,

(A16)

where Λ̂ = σ̂2Γ̂−1. As for J1, it is easy to see

E(J1) = 0, var(J1) = σ2trace(Ψ>p ITΨp) = O(pT), (A17)

which guarantees

E(||J1||22) = O(pT). (A18)

As for J2, by Assumption 4,

E(||J2||22) ≤ λmax(Ψ
>
p Ψp)E(||X i −Ψpbi||22) = OP(T2 p−2s). (A19)

As for J3,

||J3||22 ≤ λmax(Ψ
>
q Ψq)||β̂− β||22 = OP

(
T
N

+ T1−2s
)

. (A20)

As for J5,

||J5||22 ≤ λmax(Λ̂)c>i Λ̂ci. (A21)

Using the consequence that Λ̂→ σ2Γ−1,

c>i Λ̂ci ∼ σ2χ2
p. (A22)

Hence,

||J5||22 = OP(T)×OP(p) = OP(Tp). (A23)

As for J4 + J6,

||J4 + J6||22 ≥ (λmin(Ψ
>
p Ψp) + λ−1

max(Λ̂))2||ĉi − ci||22 ≥ OP(T2)||ĉi − ci||22
≥ OP(T2)||ĉi − ci||22.

(A24)

As a result,

||ĉi − ci||22 ≤ OP

(
p
T
+

1
p2s +

1
NT

+
1

T2s+1 +
p
T

)
(A25)
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By letting p = O(T1/(2s+1)),

||ĉi − ci||22 ≤ OP(T−
2s

2s+1 ). (A26)

Thus, Theorem 2 is proved.

Proof of Theorem 3. The score function of σ̂2 is

0 =
∂L(σ2, Γ)

NT∂σ−2

∣∣∣∣
σ2=σ̂2

= −(σ̂2 − σ2) +

(
1

NT

N

∑
i=1
||Y i − µ−Ψpci||22 − σ2

)

+
1

NT

N

∑
i=1

(
||Y i − µ−Ψpci||22 − ||Y i − µ̂−Ψpci||22

)

+
1

NT

N

∑
i=1

(
||Y i − µ̂−Ψp ĉi||22 − ||Y i − µ̂−Ψpci||22

)
+

trace(∆(σ2, Γ)Ψ>p Ψp)

NT

= K1 + K2 + K3 + K4 + K5.

(A27)

As for K2, it is easy to see

K2 =
1

NT

N

∑
i=1
||Y i − µ−Ψpci||22 − σ2 = (σ̂2

oracle − σ2), (A28)

where

σ̂2
oracle =

1
NT

N

∑
i=1
||Y i − µ−Ψpci||22. (A29)

It is well known that ||σ̂2
oracle − σ2||2 = OP((NT)−1) hence K2

2 = OP((NT)−1). As for K3,

K3 =
1

NT

N

∑
i=1

(µ− µ̂)>(2Y i − µ̂− µ− 2Ψpci). (A30)

Therefore,

K2
3 ≤

(
1

NT

N

∑
i=1
||µ− µ̂||22

)(
1

NT

N

∑
i=1
||2Y i − µ̂i − µi − 2Ψpci||22

)
= OP

(
1
N

+
1

T2s

)
.

(A31)

As for K4,

K4 =
1

NT

N

∑
i=1

(ci − ĉi)
>Ψ>p (2Y i − 2µ̂−Ψpci −Ψp ĉi). (A32)

Therefore,

K2
4 ≤

1
N2T2

( N

∑
i=1
||2Y i − 2µ̂−Ψpci −Ψp ĉi||22

)( N

∑
i=1

λmax(TΣΨp)||ci − ĉi||22
)

= OP

(
p
T
+

1
p2s

)
.

(A33)

As for K5,

K2
5 ≤

1
N2T2 × λmax(Ψ

>
p Ψp)× λ−1

min(Ψ
>
p Ψp) = OP

(
1

N2T2

)
. (A34)
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As a result,

(σ̂2 − σ2)2 = O(K4) = OP

(
p
T
+

1
p2s

)
. (A35)

Hence, letting p = O(T1/(2s+1)),

(σ̂2 − σ2)2 = OP

(
T−

2s
2s+1

)
. (A36)

Thus, Theorem 3 is proved.

Proof of Theorem 4. The score function of Γ̂ is

0 =
1
N ∂L(σ2, Γ)

∂Γ−1

∣∣∣∣
Γ−1=Γ̂−1

= −Γ̂ +
1
N

N

∑
i=1

ĉi ĉ>i +
1
N

∆(σ2, Γ)

= −(Γ̂− Γ) +

(
1
N

N

∑
i=1

cic>i − Γ

)
+

(
1
N

N

∑
i=1

ĉi ĉ>i −
1
N

N

∑
i=1

cic>i

)
+

1
N

∆(σ2, Γ) = L1 + L2 + L3 + L4.

(A37)

As for L2, by using Vershynin [40] (Theorem 4.7.1),

||L2||22 =

∥∥∥∥ 1
N

N

∑
i=1

cic>i − Γ

∥∥∥∥2

2
= OP

(
p
N

)
× ||Γ||22 = OP

(
p

NT

)
. (A38)

As for L3,

L3 =
1
N

N

∑
i=1

ĉi(ĉi − ci)
> +

1
N

N

∑
i=1

(ĉi − ci)c>i = L31 + L32. (A39)

For L31,

||L31||22 ≤ λmax

(
1
N

N

∑
i=1

ĉi ĉ>i

)(
1
N

N

∑
i=1
||ĉi − ci||2

)
≤ OP

(
p

T2 +
1

p2sT

)
. (A40)

As for L32,

||L32||22 ≤ λmax

(
1
N

N

∑
i=1

cic>i

)(
1
N

N

∑
i=1
||ĉi − ci||2

)
≤ OP

(
p

T2 +
1

p2sT

)
. (A41)

As for L4,

||L4||22 ≤ N−2λ−1
min(Ψ

>
p Ψp) = OP(T−1N−2). (A42)

Note that L2 dominates L3 and L4. Therefore,

||Γ̂− Γ||22 = OP

(
p

NT
+

p
T2 +

1
p2sT

)
. (A43)

Hence, letting p = O(T1/(2s+1)),

||Γ−
1
2 Γ̂Γ−

1
2 − Ip||22 = OP

(
N−1T

1
2s+1 + T−

2s
2s+1

)
(A44)

Thus, Theorem 4 is proved.
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Appendix B. Estimators of FPCA and FLMM

Appendix B.1. Estimator of FPCA

In implementation, FPCA will (1) estimate the mean function µ(t); (2) estimate the two-
dimensional covariance function C(s, t); (3) yield the first K eigenfunctions and eigenvalues
{φk(t)} and {λk} through PCA; and (4) predict the corresponding coordinates {ξik} by
using Gaussian conditional expectation. Without loss of generality, we illustrate these
four steps with the procedure employed by Li and Hsing [10]. Specifically, Li and Hsing
employed the local linear modeling [30] to estimate µ(t):

(â0, â1) = arg min
a0,a1

{
1
N

N

∑
i=1

1
Ti

Ti

∑
j=1

[
Yij − a0 − a1(tij − t)

]2

Khu(tij − t)
}

, (A45)

where Khu(t) is a kernel function with bandwidth hu. The estimate û(t) is just â0. Subse-
quently, they estimate C(s, t) by

(b̂0, b̂1, b̂2) = arg min
b0,b1,b2

{
1
N

N

∑
i=1

1
Ti

Ti

∑
j=1

Ti

∑
k=1

[
YijYik − b0 − b1(tij − s)− b2(tik − t)

]2

× KhC (tij − s)KhC (tik − t)
}

,

(A46)

where KhC (t) is a kernel function with bandwidth hC. The estimate Ĉ(s, t) is given by
b̂0 − µ̂(t)µ̂(s). Next, the variance of random error is estimated using a two-step produce.
In the former step, Li and Hsing will estimate the variance function

(ĉ0, ĉ1) = arg min
c0,c1

{
1
N

N

∑
i=1

1
Ti

Ti

∑
j=1

[
Y2

ij − c0 − c1(tij − t)
]2

Khv(tij − t)
}

, (A47)

where Khv(t) is a kernel function with bandwidth hv. The estimate V̂(t) is given by ĉ0. In
the latter step, σ̂ is yielded by

σ̂2 =
∫ 1

0

(
V̂(t)− Ĉ(t, t)− µ̂(t)2

)
dt. (A48)

Furthermore, {φ̂k(t)} and {λ̂k} are yielded by

Ĉ(s, t) =
K

∑
k=1

λ̂kφ̂k(s)φ̂k(t)>, (A49)

where K is a pre-given cutoff that can be selected by information criterion such as Bayesian
information criterion (BIC) [48]. Finally, the random coordinate ξ̂ik is predicted by

ξ̂ik = Ê(ξik|Y i) = λ̂kφ̂
>
ik Σ̂−1

yi
(Y i − µ̂i), (A50)

where Y i = (yi1, . . . , yiTi )
>, φ̂ik = (φ̂k(ti1, . . . , φ̂k(tiTi ))

>, µ̂i = (µ̂(ti1, . . . , µ̂(tiTi ))
>,

Σ̂i = Ĉi + σ̂2ITi , and the (k, h)th element of Ĉi is Ĉ(tik, tih).

Appendix B.2. Estimator of FLMM

In the implementation, FLMM will (1) estimate the mean function µ(t); (2) estimate the
covariance matrix Γ by REML, and (3) horizontally yield the covariance function C(s, t) and
predict the random coordinates {bjk} by using the estimate of Γ. Without loss of generality,
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we illustrate these three steps with the procedure employed by Shi et al. [20]. Specifically,
Shi et al. first estimated µ(t) by

β̂ = arg min
β

{
1
N

N

∑
i=1

(Y i −Ψiβ)
>Σ−1

yi
(Y i −Ψiβ)

}
, (A51)

where β = (β1, . . . , βp)>, Ψi = (Ψ1(ti), . . . , Ψp(ti)) is an (Ti × p) matrix, Ψk(ti) =

(Ψk(ti1), . . . , Ψk(tiTi ))
>, cov(Y i) = Σyi is approximated by

Σyi ≈ σ2ITi + ΨiΓΨ>i , (A52)

and Σ̂yi is an estimate of Σyi . Then µ̂(t) = ∑
p
k=1 Ψk(t)β̂k. Next, Shi et al. employed the

technique of LMM [8] such as REML [7] to estimate σ2 and Γ:

(σ̂2, Γ̂) = arg min
σ2,Γ

{ N

∑
i=1

(
(Y i −Ψi β̂)

>Σ−1
yi

(Y i −Ψi β̂)

+ log det(Σyi ) + log det(Ψ>i Σ−1
yi

Ψi)

)}
.

(A53)

FLMM will iteratively implement the above two steps until the stable estimates of β̂1, . . . , β̂p,
σ̂2, and Γ̂ is obtained. Here, the estimate of covariance function C(s, t) is

Ĉ(s, t) =
p

∑
k=1

p

∑
h=1

Γ̂khΨk(s)Ψh(t). (A54)

As for the random coordinate vector bi = (bj1, . . . , bjp)
>, its prediction is given by

b̂i = β̂ + Γ̂Ψ>i Σ̂−1
yi

(Y i − µ̂i). (A55)

The individual trajectory is predicted by X̂i(t) = ∑
p
k=1 Ψk(t)b̂ik.
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