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Abstract: In this study, we consider an alternative to the log-skew-normal distribution. It is called
the modified log-skew-normal distribution and introduces greater flexibility in the skewness and
kurtosis parameters. We first study several of the main probabilistic properties of the new distribution,
such as the computation of its moments and the non-existence of the moment-generating function.
Parameter estimation by the maximum likelihood approach is also studied. This approach presents an
overestimation problem in the shape parameter, which in some cases, can even be infinite. However,
as we demonstrate, this problem is solved by adapting bias reduction using Firth’s approach. We also
show that the modified log-skew-normal model likewise inherits the non-singularity of the Fisher
information matrix of the untransformed model, when the shape parameter is null. Finally, we apply
the modified log-skew-normal model to a real example related to pollution data.

Keywords: log-normal distribution; non-singular information matrix; modified likelihood; modified
score; bias prevention

MSC: 62E15; 62E20

1. Introduction

The log-normal distribution is commonly used to model the behavior of data with
positive asymmetry, in which most of the observations are concentrated near the minimum
value. Some applications of the log-normal model are in species abundance patterns,
environmental concentrations, stock prices, the distribution of the molecular weights of
polymers, the production of copper nano-particles, etc.

The log-normal (LN) distribution arises from the transformation Y = eX, where
X ∼ N(µ, σ2) is the normal distribution with mean µ and variance σ2 and has the density
given by

fY(y) =
1

σy
φ

(
log y− µ

σ

)
, y > 0, (1)

where φ(·) is the standard normal density. The notation Y ∼ LN(µ, σ2) is typically used
for the log-normal distribution with parameters µ ∈ R and σ2 > 0. More simply, we
can say that a random variable Y ∼ LN(µ, σ2) if and only if log Y ∼ N(µ, σ2). As noted
by Jones and Arnold [1], this distribution is both log-symmetric about its mean/median
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E(Y) = eµ and R-symmetric about its mode δ = eµ+σ2
, a condition called double symmetry.

As defined by Mudholkar and Wang [2], in density terms, a non-negative random variable
Y is said to be R-symmetric about δ if fY(δy) = fY(δ/y) for some δ > 0 and all y > 0,

which is equivalent to δY d
= δ/Y, where “ d

=” means equal in distribution. When fY is
unimodal, then δ is the (unique) mode of Y, which is less than the mean of Y. Thus, R-
symmetric distributions are always positively skewed. Despite these good properties, there
are data that are not adequately modeled by the log-normal distribution, since they have
symmetry and kurtosis indices that are outside their natural range. A model that presents
this characteristic is the log-skew-normal (LSN) distribution, introduced and studied by
Azzalini et al. [3]. It is a version with positive support of the skew-normal (SN) distribution,
defined as follows: for a skew-normal random variable Z ∼ SN(λ), where λ ∈ R is the
skewness parameter, we say that the random variable Y = eZ follows a log-skew-normal
distribution with skewness parameter λ, denoted by Y ∼ LSN(λ), if its probability density
function (pdf) is given by

fY(y; λ) =
2
y

φ(log(y))Φ(λ log(y)), y > 0,

where Φ(·) denotes the cumulative distribution function (cdf) of the standard N(0, 1).
Applications of this model to real datasets are reported in Azzalini et al. [3], Marchenko

and Genton [4], and Bolfarine et al. [5], where a bimodal version of the model was used
to fit a real (bimodal) dataset. Chai and Bailey [6] extended the SN model to a situa-
tion of continuous datasets with a discrete component at zero. On the other hand, the
modified skew-normal (MSN) distribution is a particular case of the generalized skew-
normal (GSN) distribution introduced by Arellano-Valle et al. [7], for λ2 = 1. Later,
Arellano-Valle et al. [8] investigated the Fisher information matrix (FIM) for the location-
scale version of the GSN model. Thus, the MSN model is a fair competitor to the SN model
since for both control asymmetry with a single scalar parameter, say λ ∈ R, such that, if
λ = 0, then the ordinary normal model results. Moreover, one advantage of the MSN
model over the SN model in location-scale situations is that its FIM is nonsingular at λ = 0,
which is not the case with the SN model (see Arellano-Valle et al. [8] and Arrué et al. [9]).
The present paper focuses on investigating the possibility of developing a more flexible
distribution for positive data, such that the regularity conditions for inference in large
samples remain valid when a maximum likelihood approach is used. We considered
it natural to use the log version of the MSN for this situation, calling it the modified
log-skew-normal(MLSN) model.

This paper is organized as follows. Section 2 presents some probabilistic properties
of the MSN model. It includes the derivation of the first few moments of the distribution
and the moment-generating function. Plots and ranges for the asymmetry and kurtosis
coefficients are reported. The score functions are derived, and the observed information
matrix is presented. Section 3 is devoted to the definition of the new distribution, termed the
MLSN distribution. The survival and the associated risk functions are derived. A general
expression for the moments is obtained, and the non-existence of the moment-generating
function is proven. Parameter estimation is conducted by the maximum likelihood (ML)
approach. Observed and expected (Fisher) information matrices are derived. It is shown
that the FIM for a location-scale extension of the model is non-singular so that large
sample properties of the ML estimators (MLE) are satisfied. In Section 4, we present a brief
introduction to Firth’s approach (see Firth [10]) for bias reduction and some tables related to
a small-scale simulation study, illustrating the amount of bias reduction in the asymmetry
parameter. Finally, in Section 5, a real data illustration is presented indicating that the new
model outperforms its most direct competitors. The closing section summarizes the main
contributions of the paper.
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2. Preliminaries

We say that a random variable Z follows a standard MSN distribution with parameter
λ, denoted Z ∼ MSN(λ), if its pdf is given by

fZ(z; λ) = 2φ(z)Φ(λu(z)), z ∈ R, (2)

where u(z) = z/
√

1 + z2 and λ ∈ R. If λ = 0, then the MSN pdf in (2) reduces to the pdf
of the standard normal distribution. Non-null values of the parameter λ directly affect
the model’s asymmetry so that, in the limit, as λ → ∞, the MSN model becomes the
half-normal (HN) distribution. All that is required to obtain the location-scale version of
the model is to make the transformation X = µ + σZ, where µ ∈ R and σ > 0 are the
location and scale parameters, respectively. We use the notation X ∼ MSN(µ, σ, λ). As
shown in Arellano-Valle et al. [8] the FIM for the location-scale version is nonsingular at
λ = 0. Thus, the ordinary properties of the MLE (consistency and asymptotic normality)
remain valid for the MSN model.

Figure 1 shows plots of the pdf for the standard MSN model for several values of λ.
The subtle difference between the MSN and SN densities for the same parameter value can
be observed, say for the case λ = 1 (dotted line and segmented line).
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Figure 1. Plots of the MSN(λ) model for different values of λ: MSN(0) (solid line), MSN(1) (dotted
line), SN(1) (dashed line), and MSN(3) (thick solid line) models.

The following properties follow from Arellano-Valle et al. [7].

2.1. Properties

Let Z ∼ MSN(λ); then:

1. Z ∼ MSN(λ)⇒ −Z ∼ MSN(−λ);
2. If Z ∼ MSN(λ), then |Z| ∼ HN(0, 1);
3. If Z|S = s ∼ SN(s) and S ∼ N(λ, 1), then Z ∼ MSN(λ);

4. MSN(0) d
=N(0, 1), and MSN(λ)

d
=MGSN(λ, 1) d

=GSN(λ, 1).

According to Property 3, the MSN distribution can be represented as a mixture of the
asymmetry parameter between the skew-normal and standard normal distributions. For
the location-scale extension, that is X = µ + σZ, so that X ∼ MSN(µ, σ, λ), with pdf

fX(x; µ, σ, λ) =
2
σ

φ

(
x− µ

σ

)
Φ
(

λu
(

x− µ

σ

))
. (3)
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2.2. Moments of the MSN Model

According to Property 3, the moments of the MSN distribution can be obtained by
using the fact that it is a mixture between the SN and the N(0, 1) so that we can write
E(Zk) = E(E(Zk|S)), where E(Zk|S), k = 0, 1, ..., are the moments for the SN model with
asymmetry parameter s. Thus, for even values of k, the moments of the SN(s) distribution
are constant, coinciding with the moments for the MSN distribution. For the odd moments,
making use of the stochastic representation for the skew-normal distribution in Henze [11],
we can write

E(Z2k+1) = E(E(Z2k+1|S))

= E

(
b(2k + 1)!

2k

k

∑
ν=0

ν!22ν

(2ν + 1)!(k− ν)!
S2ν+1

(1 + S2)(2k+1)/2

)

=
b(2k + 1)!

2k

k

∑
ν=0

ν!22ν

(2ν + 1)!(k− ν)!
E
(

S2ν+1

(1 + S2)(2k+1)/2

)
,

where k = 0, 1, 2, ..., b =
√

2
π . Considering

ψk,ν = ψk,ν(λ) = E
(

S2ν+1

(1 + S2)(2k+1)/2

)
=
∫ ∞

−∞

s2ν+1

(1 + s2)(2k+1)/2
φ(s− λ)ds

and ψk = ψk,k, we have that

E(Z2k+1) =
b(2k + 1)!

2k

k

∑
ν=0

ν!22ν

(2ν + 1)!(k− ν)!
ψk,ν. (4)

Therefore, the first four moments of the standard MSN distribution are given by

E(Z) = bψ0, E(Z2) = 1, E(Z3) = b(3ψ0 − ψ1) and E(Z4) = 3.

The odd moments can also be obtained from Arellano-Valle et al. [7]:

E(Z2k+1) = 2ck − 2kk!b,

for k = 0, 1, 2, ... where ck := ck(λ) =
∫ ∞

0 xkφ(
√

x)Φ(λu(
√

x))dx.

2.3. Moment-Generating Function

As mentioned previously, if Z|S = s ∼ SN(s) and S ∼ N(λ, 1), then Z ∼ MSN(λ), so
that we can write

MZ(t) = E(E(eZt|S)) = E(MZ|S(t)) = 2et2/2E
(

Φ
(

S√
1 + S2

t
))

. (5)

Therefore, all the moments for the random variable Z are defined as follows:

E(Zn) =
∂n MZ(t)

∂nt

∣∣∣∣∣t=0 = E

(
∂n MZ|S(t)

∂nt

∣∣∣∣∣
t=0

)
.

2.4. Observed Information Matrix for MSN Model

Consider a random sample x1, x2, .., xn from the MSN(θ) distribution, with θ = (µ, σ, λ),
so that the corresponding log-likelihood function is given by

l(θ) =
n
2

log
(

2
π

)
− n log(σ)− 1

2

n

∑
i=1

z2
i +

n

∑
i=1

log(Φ(λu(zi)),
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where zi = (xi − µ)/σ, u(x) = x/
√

1 + x2, µ ∈ R, σ > 0, λ ∈ R, and x ∈ R. The entries of
the observed information matrix for the MSN model have the same structure as the corre-
sponding moments for the MLSN model considered in Section 4.3, with the appropriate
transformation.

3. The Modified Log-Skew-Normal Distribution

If Z ∼ MSN(λ), then we have that Y = eZ is distributed according to the standard
MLSNdistribution with parameter λ, denoted by Y ∼ MLSN(λ), if its pdf is given by

fY(y; λ) =
2
y

φ(log(y))Φ(λu(log(y))),

where u(x) = x/
√

1 + x2, y ∈ R+, and λ ∈ R.
Figure 2 depicts plots of the pdf for the MLSN(λ) model for several values of λ. If

λ = 0, then it coincides with the log-normal distribution (solid line), illustrating the fact
that the MLSN model is an extension of the LN model. Concerning the location-scale
situation, that is Y ∼ MLSN(µ, σ, λ), where µ ∈ R, σ > 0, and λ ∈ R, its density is given by

fY(y; µ, σ, λ) =
2

yσ
φ(z)Φ(λu(z)), (6)

where z = (log(y)− µ)/σ, u(x) = x/
√

1 + x2, and y ∈ R+. In a survival analysis scenario,
it is important to study the following functions: the survival function S(t) = 1− F(t) and
the risk function r(t) = f (t)/S(t), which for the model under study can be shown to be
given by

S(t) = 1−
∫ t

0

2
w

φ(log(w))Φ(λu(log(w)))dw

and

r(t) =
2
t φ(log(t))Φ(λu(log(t)))

1−
∫ t

0
2
w φ(log(w))Φ(λu(log(w)))dw

.

Clearly, using L’Hopital´s rule, it follows that r(t) → 0 as t → ∞, as can also be
appreciated graphically.
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Figure 2. Plots of the MLSN(λ) model for different values of λ.
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Figure 3 illustrates the behavior of the risk function r(t) for some values of λ. The max-
imum values of the risk function for each λ decrease for λ ∈ (−∞, 1.4484) and increase
otherwise. Moreover, λ = −∞, r(t) tends to a strictly increasing function defined in the
interval (0, 1], otherwise being zero. On the other hand, λ = ∞, r(t) is a strictly increasing
function defined in the interval [1, ∞), coinciding with the risk function of the log-normal
model in this interval and taking the value zero in the interval (0, 1).

0 2 4 6 8 10

0
.0

0
.5

1
.0

1
.5

t

r(
t)

λ = − 1

λ = 0

λ = 1

λ = 3

Figure 3. Plots of the risk function of the MLSN model for different values of λ.

3.1. Moments for the MLSN Model

The r-th moment is given by

µr = 2er2/2E
(

Φ
(

S√
1 + S2

r
))

,

for r = 0, 1, 2..... and S ∼ N(λ, 1). This expression is obtained directly from the moment-
generating function of the MSN model, given in (5), since it is valid for all t > 0, particularly
for t = r. Alternatively, the moments can be obtained from

µr = E(Yr) =
∫ ∞

0
yr 2

y
φ(log(y))Φ(λu(log(y)))dy.

3.1.1. Non-Existence of the Moment-Generating Function for the MLSN Distribution

Proposition 1. For all λ ∈ R, variable Y ∼ MLSN(λ) has no moment-generating function.

Proof. Part of the proof parallels that of Lin and Stoyanov [12] for a similar proof. Thus,
for each t > 0,

E(etY) =
∫ ∞

0
hλ(y)dy,

where

hλ(y) =
ety

y
φ(log(y))Φ(λu(log(y))) > 0, ∀y > 0,

so that, for

λ ≥ 0, lim
y→∞

Φ(λu(log(y))) ≥ 1
2
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and
λ < 0, lim

y→∞
Φ(λu(log(y))) ≥ Φ(λ),

in both cases, hλ(y)→ ∞ as y→ ∞. Therefore, given t > 0, E(etY) = ∞, for any λ.

3.1.2. Skewness and Kurtosis Coefficients

To obtain expressions for the kurtosis and skewness coefficients, we have to compute
the central moments using the following relationships:

µ′2 = µ2 − µ2
1, µ′3 = µ3 − 3µ1µ2 + 2µ3

1 and µ′4 = µ4 − 4µ1µ3 + 6µ2
1µ2 − 3µ4

1.

This allows us to compute the variance, standard deviation (SD), coefficient of variation
(CV), asymmetry (γ1), and kurtosis (γ2) coefficients, respectively, given by:

µ′2 = Var(Y), CV(Y) =
SD(Y)

µ2
, γ1 =

µ′3
(µ′2)

3/2 and γ2 =
µ′4

(µ′2)
2 .

Table 1 reveals that the variation ranges for the variance and CV are relatively short,
while the variation range for the asymmetry and kurtosis coefficients are relatively long if
compared with the ordinary LSN model.

Table 1. Range of values for statistics corresponding to variance, CV, skewness, and kurtosis.

Statistics Variance CV γ1 γ2

Minimum 0.062 0.477 0.110 1.952
Maximum 6.986 1.395 10.985 524.351

Figure 4 shows the behavior of the variance, CV, skewness, and kurtosis as a function
of the lambda parameter. It can be observed that the minimum values correspond to the
asymptotes of the left tail. On the other hand, for small values of λ, say λ > 4, the plots of
the right tail stabilize around the horizontal asymptotes with values of 6.74, 0.936, 5.83, and
97.93, respectively, for the corresponding indices.
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3.2. MLE for the MLSN Model

Given a random sample y1, y2, .., yn from a random variable Y ∼ MLSN(θ), with
θ = (µ, σ, λ), so that the corresponding log-likelihood is given by

l(θ) =
n
2

log
(

2
π

)
− n log(σ)−

n

∑
i=1

log(yi)−
1
2

n

∑
i=1

z2
i +

n

∑
i=1

log(Φ(λu(zi)), (7)

where zi = (log(yi)− µ)/σ, u(x) = x/
√

1 + x2, µ ∈ R, σ > 0, λ ∈ R, and y ∈ R+. Using
the following notation:

ρnmi =
zn

i
(1 + z2

i )
m/2

ζ(λu(zi)), ηnmi =
zn

i
(1 + z2

i )
m ζ2(λu(zi)), ηnm =

1
n

n

∑
i=1

ρnmi and ζ(x) =
φ(x)
Φ(x)

,

we have that the associated scoring vector is given by

Sµ =
n
σ
(z− λρ03), Sσ =

n
σ

(
−1 + z2 − λρ13

)
and Sλ = nρ11.

Equating the scoring functions to zero, it follows that the likelihood equations are
given as

z = λρ03, z2 − 1 = λρ13 and ρ11 = 0.

Solving this system of equations, which require numerical procedures, leads to the
MLE for µ, σ, and λ.

4. Bias Prevention of the MLE
4.1. Abstract for Firth’s Approach

One problem with the ML approach is that the likelihood function can be unbounded
for the parameter λ. In the standard case (just λ unknown), the MLE of λ is infinite given
that all observations are positive. In the location-scale situation, the same happens because
all observations are greater than µ, the location parameter. Therefore, the MLE overesti-
mates parameter λ, which is always of concern in a statistical analysis. The percentage of
overestimation of the shape parameter λ depends on the sample size n and on the true
parameter value. It is of interest to reduce the amount of bias in a statistical problem.
One approach considered previously in the literature was proposed by Firth [10] and had
previously been used by Sartori [13] for the skew-normal and skew-t (ST) distributions.
The reduced bias estimator is of order O(n−2) (see also Cox and Snell [14]). To arrive at
the reducedbias estimator, the following notation is used: Let l(θ) be the log-likelihood
function for a parametric regular family of distributions, and denote by U(θ) = l′(θ) the
score function, j(θ) = −l′′(θ) the second derivative of the log-likelihood function, and l′ its
first derivative. We also consider the expectation of those functions that are of order O(n).
Therefore, we have

i(θ) = Eθ{j(θ)}, νθ,θ,θ(θ) = Eθ{l′(θ)3}, νθ,θθ(θ) = Eθ{l′(θ)l′′(θ)}.

Briefly speaking, Firth’s approach consists of modifying the score function keeping
the score unchanged, that is

UM(θ) = U(θ) + M(θ), (8)

where M(θ) is O(1) as n→ ∞. The solution to the modified likelihood equation UM(θ) = 0
produces the modified MLE, say θ̂M with bias of order O(n−2). The modification factor
M(θ) is given by

M(θ) = −i(θ)b(θ) =
1
2

i(θ)−1(νθ,θ,θ + νθ,θθ). (9)
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From the modified score function, the modified quasi-log-likelihood function is de-
fined as

lM(θ) =
∫ θ

c
UM(t)dt = l(θ)− l(c) +

∫ θ

c
M(t)dt,

where c is an arbitrary constant. This penalized log-likelihood function has a penalty of
order O(1). It is also possible to define a modified log-likelihood ratio statistic:

WM(θ) = 2{lM(θ̂M)− lM(θ)},

which is asymptotically distributed as a χ2
1 distribution, which can be used for testing

hypotheses about θ, as well as for confidence interval construction.

4.2. Simulation Study

Below, we present a simulation study based on 5000 iterations for µ = 0, σ = 1,
λ = 5, 10, and several sample sizes. Table 2 shows the bias for the modified and ordinary
MLE, the empirical coverage of the confidence intervals based on WP

M(λ), and the percent-
age of cases in which the un-modified MLE for λ is finite. It can be observed that the MLEs
µ̂ and σ̂ present satisfactory behavior concerning bias, and they seem to be unaffected by
the sometimes erratic behavior of estimator λ̂, so that Firth’s method is only applied for the
parameter λ.

Table 2. Results are based on 5000 samples simulated from the MSN(0, 1, λ) model.

λ n µ̂(sd) σ̂(sd) λ̂
a
(sd) λ̂M(sd) WP

M(λ)IC %(λ̂ < ∞)

5 50 −0.00351 0.99853 7.00103 4.35954 96.16 86.48
(0.10073) (0.12670) (4.63146) (1.18831)

100 −0.00208 0.99873 6.44116 4.80315 94.18 97.84
(0.07114) (0.08973) (2.91069) (0.93203)

200 0.00038 0.99838 5.53622 4.89744 94.04 99.98
(0.05080) (0.06355) (1.43447) (0.42190)

10 50 0.01599 0.98026 11.36052 6.56160 87.98 66.00
(0.07556) (0.11462) (9.14682) (2.39887)

100 0.00359 0.99319 13.52624 8.71761 92.08 87.74
(0.04890) (0.08054) (8.63025) (2.92047)

200 0.00095 0.99748 12.95004 9.54944 93.38 98.42
(0.03409) (0.05698) (6.00251) (1.74399)

µ̂, σ̂, λ̂, and λ̂M are the estimates of the true values of the parameters, and sd denotes the respective standard
deviations; the empirical coverage of the 0.95 confidence interval is based on WP

M(λ) and the empirical (theoretical)
percentage for the situation that λ̂ exists. a Computed as λ̂ < ∞.

The notation WP
M(λ) = 2{lP

M(λ̂M)− lP
M(λ)} defines the likelihood ratio statistic based

on the profile log-likelihood function lP(λ) = l(µ̂(λ), σ̂(λ), λ), where µ̂ and σ̂ are the MLEs
for µ and σ, respectively, for a fixed value of λ.

4.3. Observed Information Matrix for the MLSN Model

The entries for the observed information matrix of the MLSN distribution, correspond-

ing to the log-likelihood given in (7), are Jθiθj = −
∂2l(θ)
∂θi∂θj

, for i, j = 1, 2, 3 (see Appendix A):

Jµµ = − n
σ2

(
1 + 3λρ15 + λ3ρ17 + λ2η03

)
, Jµσ =

n
σ2

(
−2z + λρ05 − 2λρ25 − λ̂3ρ27 − λ2η13

)
,

Jµλ = −n
σ

(
ρ03 − λ2ρ25 − λη12

)
, Jσσ =

n
σ2

(
1− 3z2 + λρ13 + λρ15 − 2λρ35 − λ3ρ37 − λ2η23

)
,

Jσλ =
n
σ

(
−ρ13 + λ2ρ35 + λη22

)
, Jλλ = −n(λρ33 + η21).
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4.4. Fisher Information

For a random sample y1, y2, .., yn from the MLSN(θ) distribution, with θ = (µ, σ, λ),
the FIM associated with (7) is given by the following entries (see Appendix A):

Iµµ =
1
σ2

(
1 + λ2η03

)
, Iσµ = − 1

σ2

(
−2E(z) + λρ05 − 2λρ25 − λ3ρ27 − λ2η13

)
,

Iµλ =
1
σ

(
ρ03 − λ2ρ25 − λη12

)
, Iσσ =

1
σ2

(
2 + λ2η23

)
, Iλσ = −λ

σ
η22, Iλλ = η21,

where

ρnm = E
(

zn

(1 + z2)m/2 ζ

)
, ρnm = 0 i f n = odd number

ηnm = E
(

zn

(1 + z2)m ζ2
)

, with ζ := ζ(λu(z)) =
φ(λu(z))
Φ(λu(z))

.

For the case λ = 0, we have that

FIM =

 1
σ2 0 d1

σ

0 2
σ2 0

d1
σ 0 d2

,

where d1 = 2(2/π)1/2
∫ ∞

0
φ(x)

(1+x2)3/2 dx and d2 = 2
π (1 − (2π)1/2e1/2Φ(−1)) have to be

computed numerically. It is clearly seen that the above FIM is non-singular at λ = 0.

5. An Application

The dataset analyzed in this section was previously studied in Nadarajah [15] and
Leiva et al. [16]. It consists of daily measurements of ozone concentration (in ppb = ppm× 1000)
in New York city between May and September 1973. The data were supposed to be indepen-
dent, without the presence of tendencies or cyclical components (see Gokhale and Khare [17]).
Table 3 presents the summary statistics, in particular the asymmetry and kurtosis coeffi-
cients, which are represented by the sample quantities (b1) and (b2), respectively.

Table 3. Descriptive statistics of ozone concentration level measurement data.

Data n Mean sd b1 b2

Ozone 116 42.129 32.987 1.209 4.112

Table 4 shows the MLE for the three parameters for the MLSN, LN, and LSN distribu-
tions, respectively, where values in parentheses correspond to standard errors. Note also
from the table that the AIC for the LSN model is slightly smaller than that for the MLSN
model; it is our opinion that the latter model should be preferred because the LSN model
has a singular covariance matrix, and so, the likelihood ratio statistics for testing H0 : λ = 0
is not distributed according to a central chi-squared distribution in large samples. On the
other hand, under the MLSN model, for which the FIM is non-singular, we have that the
hypothesis H0 : λ = 0 is rejected at the 5% level, using the likelihood ratio statistics; this is
given by

Λ =
LLN(µ̂,σ̂)

LMLSN(µ̂,σ̂,λ̂)
.

Replacing the MLE from Table 4, we have that−2logΛ = −2(−543.883 + 542.105) = 9.516,
greater than the critical value χ2

1 = 3.84. Furthermore, from the table, a large sample 95% confi-
dence interval for λ based on the MLSN model does not contain λ = 0.
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Table 4. MLEs for the MLSN, LN, and LSN models.

MLEs MLSN LN LSN

µ̂ 4.532 (0.105) 3.418 (0.080) 4.372 (0.234)
σ̂ 1.411 (0.121) 0.861 (0.056) 1.285 (0.193)
λ̂ −4.095 (1.057) - −2.411 (1.396)

log-likelihood −542.105 −543.883 −541.655
AIC 1090.211 1091.766 1089.31

Figure 5 presents the data histogram with the corresponding fitted fdp for the MLSN(µ̂, σ̂, λ̂)
(solid line) and LN(µ̂, σ̂, λ̂) distributions (dotted line) and the fit cdf for the MLSN and
LN models, jointly with the empirical cdf. It can be shown from the figure that the MLSN
model seems to provide a (graphically) satisfactory fit.
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Figure 5. Left panel: Kernel density plot of the ozone concentration level data fit by the LN and
MLSN distributions. Right panel: Empirical cdf of the LN (dotted line) and MLSN (solid line) models,
whose parameters are estimated by the ML method for ozone concentration level data.

Graphical corroboration of the better fit of the MLSN model than the LN model is also
illustrated with the QQ-plots in Figure 6.
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Figure 6. Left panel: QQ-plot for the MLSN model. Right panel: QQ-plot for the LN model.
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Table 5 presents the MLEs µ̂, σ̂, and λ̂ and the modified λ̂M with the corresponding
standard errors (in parentheses), obtained by using the estimated FIM for the MLSN model,
bearing in mind that the asymptotic distribution of θ̂ is N3(θ, I(θ)−1/n), where θ = (µ, σ, λ)
or θ = (µ, σ, λM). The table indicates that the modified MLE λ̂M is greater than the ordinary
MLE λ̂ and is expected to have smaller bias.

Table 5. MLEs of the µ, σ, λ, and λM parameters.

µ̂ σ̂ λ̂ λ̂M l(µ̂, σ̂, λ̂) l(µ̂, σ̂, λ̂M)

4.532(0.105) 1.411(0.121) −4.095(1.057) − −542.105
4.532(0.123) 1.411(0.130) − −3.342(0.791) − −542.663

Table 6 presents confidence intervals for λ̂ and λ̂M for several confidence coefficients.
Comparing the lengths of the intervals for the two estimators, there is strong evidence that
the modified estimator λ̂M presents shorter intervals.

Table 6. Confidence intervals for the estimated values of λ̂ and λ̂M.

MLE 95% 98% 99%

λ̂ (−5.834,−2.356) (−6.266,−1.924) (−6.554,−1.636)
λ̂M (−4.644,−2.040) (−4.968,−1.716) (−5.183,−1.500)

6. Concluding Remarks

This paper focused on a transformation of the MSN model (Arellano-Valle et al. [8]),
which led to a more flexible distribution (wider ranges for asymmetry and kurtosis).
This model, which we call the MLSN distribution, is suitable for positive data, its main
competitors being the LN and LSN distributions. One interesting aspect of the new model
is that its FIM is non-singular so that the large sample theory for the MLE remains valid.
This is not the case with the LSN model, for which the FIM is singular in the location-scale
version. Thus, in particular for testing H0 : LN against H0 : MLSN, under the MLSN
model, the likelihood ratio statistics in large samples are distributed as in the chi-squared
distribution. Large sample confidence intervals could also be constructed and used for
testing the hypothesis H0 : λ = 0, where λ is the skewness parameter. Rejection of H0
indicates that the MLSN model should be preferred. It is also noticed with the simulation
study that the MLE of λ can overestimate λ (which could be infinite for some samples).
Thus, the bias-reducing approach of Firth [10] was used to derive a less-biased estimator.
Estimations for the location and scale parameters remain stable, however, and do not need
to be corrected. An application to a real dataset revealed that the new model can be a
valuable alternative for modeling positive data.
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Appendix A

Considering the notation:

θ = (µ, σ), z =
x− µ

σ
, u(x) =

x√
1 + x2

, ζ = ζ(λu(z)) =
φ(λu(z))
Φ(λu(z))

,

and the following derivatives:

∂z
∂µ

= − 1
σ

,
∂z
∂σ

= − z
σ

,
∂u(z)

∂θ
=

1
(1 + z2)3/2

∂z
∂θ

,

∂ζ

∂θ
=

(
− λ2z
(1 + z2)2 ζ − λ

(1 + z2)3/2 ζ2
)

∂z
∂θ

,

∂

∂θ

(
z

(1 + z2)3/2

)
=

1− 2z2

(1 + z2)5/2
∂z
∂θ

,

∂ζ

∂λ
= − λz2

(1 + z2)
ζ − z

(1 + z2)1/2 ζ2,

we have that the score functions score for µ, σ, and λ for the MSN(λ) model are given by

Sµ =
1
σ

(
z− λ

(1 + z2)3/2 ζ

)
, Sσ =

1
σ

(
−1 + z2 − λz

(1 + z2)3/2 ζ

)
, Sλ =

z
(1 + z2)1/2 ζ,

so that the entries of the FIM are given by:

Iµµ = −E(Sµµ) = −
1
σ2 E

(
−1− 3λz

(1 + z2)5/2 ζ − λ3z
(1 + z2)7/2 ζ − λ2

(1 + z2)3 ζ2
)

=
1
σ2

(
1 + λ2η03

)
,

Iµσ = −E(Sσµ) = −
1
σ2 E

(
−2z +

λ(1− 2z2)

(1 + z2)5/2 ζ − λ3z2

(1 + z2)7/2 ζ − λ2z
(1 + z2)3 ζ2

)
= − 1

σ2

(
−2E(z) + λρ05 − 2λρ25 − λ3ρ27 − λ2η13

)
,

Iµλ = −E(Sµλ) = −
1
σ

E
(
− 1
(1 + z2)3/2

{
ζ − λ2z2

(1 + z2)
ζ − λz

(1 + z2)1/2 ζ2
})

=
1
σ

(
ρ03 − λ2ρ25 − λη12

)
,

Iσσ = −E(Sσσ)

= − 1
σ2 E

(
1− 3z2 +

λz
(1 + z2)3/2 ζ +

λ(z− 2z3)

(1 + z2)5/2 ζ − λ3z3

(1 + z2)7/2 ζ − λ2z2

(1 + z2)3 ζ2
)

=
1
σ2

(
2 + λ2η23

)
,

Iσλ = −E(Sλσ) = −
1
σ

E
(
− z
(1 + z2)3/2 ζ +

λ2z3

(1 + z2)5/2 ζ +
λz2

(1 + z2)2 ζ2
)

= −λ

σ
η22,

Iλλ = −E(Sλλ) = −E
(
− λz3

(1 + z2)3/2 ζ − z2

1 + z2 ζ2
)

= η21.



Mathematics 2022, 10, 4336 14 of 14

References
1. Jones, M.C.; Arnold, B.C. Distributions that are both log-symmetric and R-symmetric. Electron. J. Stat. 2008, 2, 1300–1308.

[CrossRef]
2. Mudholkar, G.S.; Wang, H. IG-symmetry and R-symmetry: interrelations and applications to the inverse Gaussian theory. J. Stat.

Plan. Inference 2007, 137, 3655–3671. [CrossRef]
3. Azzalini, A.; Cappello, D.; Kotz, S. Log-skew-normal and log-skew-t distributions as models for family income data. J. Income

Distrib. 2003, 11, 12–20. [CrossRef]
4. Marchenko, Y.V.; Genton, M.G. Multivariate log-skew-elliptical distributions with applications to precipitation data. Environmetrics

2010, 21, 318–340. [CrossRef]
5. Bolfarine, H.; Gómez, H.W.; Rivas, L. The log-bimodal-skew-normal model. A geochemical application. J. Chemom. 2011, 25,

329–332. [CrossRef]
6. Chai, H.; Bailey, K. Use of log-normal distribution in analysis of continuous data with a discrete component at zero. Stat. Med.

2008, 27, 3643–3655. [CrossRef] [PubMed]
7. Arellano-Valle, R.B.; Gómez, H.W.; Quintana, F.A. A new class of skew-normal distributions. Commun. Stat.-Theory Methods 2004,

33, 1465–1480. [CrossRef]
8. Arellano-Valle, R.B.; Gómez, H.W.; Salinas, H.S. A note on the Fisher information matrix for the skew-generalized-normal model.

SORT 2013, 37, 19–28.
9. Arrué, J.; Arellano-Valle, R.B.; Gómez, H.W. Bias reduction of maximum likelihood estimates for a modified skew normal

distribution. J. Stat. Comput. Simul. 2016, 86, 2967–2984. [CrossRef]
10. Firth, D. Bias reduction of maximum likelihood estimates. Biometrika 1993, 80, 27–38; Amended in Biometrika 1995, 82, 667.

[CrossRef]
11. Henze, N. A probabilistic representation of the skew-normal distribution. Scand. J. Stat. 1986, 13, 271–275.
12. Lin, G.D.; Stoyanov, J. The logarithmic skew-normal distributions are moment-indeterminate. J. Appl. Prob. 2009, 46, 909–916.

[CrossRef]
13. Sartori, N. Bias prevention of maximum likelihood estimates for scalar skew normal and skew t distributions. J. Stat. Plan.

Inference 2006, 136, 4259–4275. [CrossRef]
14. Cox, D.R.; Snell, E.J. A general definition of residuals. J. R. Stat. Soc. Ser. B 1968, 30, 248–275. [CrossRef]
15. Nadarajah, S. A truncated inverted beta distribution with application to air pollution data. Stoch. Environ. Res. Risk Assess. 2008,

22, 285–289. [CrossRef]
16. Leiva, V.; Vilca-Labra, F.; Balakrishnan, N.; Sanhueza, A. A Skewed Sinh-Normal Distribution and its Properties and Application

to Air Pollution. Commun. Stat.-Theory Methods 2010, 39, 426–443. [CrossRef]
17. Gokhale, S.; Khare, M. Statistical behavior of carbon monoxide from vehicular exhausts in urban environments. Environ. Model.

Softw. 2007, 22, 526–535. [CrossRef]

http://doi.org/10.1214/08-EJS301
http://dx.doi.org/10.1016/j.jspi.2007.03.041
http://dx.doi.org/10.25071/1874-6322.1249
http://dx.doi.org/10.1002/env.1004
http://dx.doi.org/10.1002/cem.1378
http://dx.doi.org/10.1002/sim.3210
http://www.ncbi.nlm.nih.gov/pubmed/18186536
http://dx.doi.org/10.1081/STA-120037254
http://dx.doi.org/10.1080/00949655.2016.1143471
http://dx.doi.org/10.1093/biomet/80.1.27
http://dx.doi.org/10.1239/jap/1253279858
http://dx.doi.org/10.1016/j.jspi.2005.08.043
http://dx.doi.org/10.1111/j.2517-6161.1968.tb00724.x
http://dx.doi.org/10.1007/s00477-007-0120-7
http://dx.doi.org/10.1080/03610920903140171
http://dx.doi.org/10.1016/j.envsoft.2006.02.008

	Introduction
	Preliminaries
	Properties
	Moments of the MSN Model
	Moment-Generating Function
	Observed Information Matrix for MSN Model

	The Modified Log-Skew-Normal Distribution
	Moments for the MLSN Model
	Non-Existence of the Moment-Generating Function for the MLSN Distribution
	Skewness and Kurtosis Coefficients

	MLE for the MLSN Model

	Bias Prevention of the MLE
	Abstract for Firth's Approach
	Simulation Study
	Observed Information Matrix for the MLSN Model
	Fisher Information

	An Application
	Concluding Remarks
	Appendix A
	References

