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Abstract: The hybrid Weibull distribution model can describe the failure rules of electromechan‑
ical products more accurately than the single Weibull distribution model, and it can improve the
accuracy of reliability analysis. However, the hybrid Weibull distribution model is also more com‑
plex, and the multi‑parameter estimation is more difficult. In this paper, a reliability mathematical
model based on the two‑fold three‑parameter hybridWeibull distributionmodel was established, an
EM optimization algorithm was derived for its solution, and a practical initial parameter selection
scheme was designed. The validity of the model and the algorithm were verified, and goodness‑of‑
fit tests were conducted through an arithmetic example. The results showed that the initial value
selection scheme proposed in this paper and the corresponding solution algorithm could solve all
the parameters and weight coefficients to be estimated for each sub distribution, and the obtained
failure probability fitting curve had a high fit with the actual sample data, which effectively solved
the multi‑parameter estimation problem of the multiple mixed Weibull distribution model.

Keywords: Weibull mixture distribution; expectation and maximization (EM) algorithm; reliability
estimation; parameter estimation

MSC: 49J99

1. Introduction
Reliability analysis is an important part of the whole life cycle of electromechani‑

cal products and is the basis for improving their reliability. However, electromechanical
equipment often has complex structures and different causes of failure. Moreover, mul‑
tiple failure modes are formed by the coupling of multiple failure mechanisms, and each
failure mode corresponds to a different failure distribution. Therefore, the building of
a suitable reliability model for electromechanical products has become a challenging re‑
search point. Among the many failure models, the Weibull distribution is the most widely
used in reliability theory, and can comprehensively describe each stage of the bathtub fail‑
ure rate curve. However, a single Weibull distribution is not yet sufficient to comprehen‑
sively describe the global lifetime distribution, so a hybrid Weibull distribution model is
commonly used to describe a complex system with multiple failure modes.

Ref. [1] established a parameter estimation model for the hybrid Weibull distribution
of aircraft reliability using the hybrid Weibull distribution. The results showed that the
mixed Weibull distribution is more suitable for describing the failure distribution pattern
of complex systems such as aircraft. In Ref. [2], a mixture of two and three Weibull distri‑
butionswere used to analyze the data of failure times, and they concluded that themixture
ofWeibull distributions provided a very flexible model for the proposed failure times data.
Ref. [3] formulated a fatigue‑life/Weibull method to predict the span of failure times and
the steps to determine the expected Ni (cycles to failure‑Ni) values by using the Weibull
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distribution. Aiming at the randomness of the fatigue life of mechanical parts, Ref. [4] car‑
ried out a reliability analysis and fatigue life prediction of mechanical parts through the
Weibull distribution of three parameters. Ref. [5] presented a method to estimate the inter‑
vals of failure probability for the Weibull distribution by using the concavity or convexity
and property of the distribution function, using the approximate value of the shape pa‑
rameter determined by either engineering experience or by hypothesis testing through a p
value. In Ref. [6], a new fatigue life model was established based on the three‑parameter
Weibull distribution, and P‑S‑N curves of two types of ultra‑high‑strength sucker rods
were obtained.

However, the parameter estimation of the mixed Weibull distribution is very compli‑
cated. It has more parameters than the single Weibull distribution model, and sometimes
it is necessary to introduce parameters of variables other than the parameters to be esti‑
mated, which increases the complexity of the solution. The general estimation methods
only revolve around the two‑parameter mixed Weibull distribution model to evaluate the
parameters. Ref. [7] used nonlinear least squares to build a nonlinear regression model for
parameter estimation of the two‑parametermixedWeibull distribution and used the quasi‑
Newton method to solve the optimization problem. Ref. [8] proposed an improved algo‑
rithm for parameter estimation applied to the mixed Weibull distribution, but the mixed
Weibull distributions they built were all two‑parameter models with the location param‑
eter γ set to zero. Ref. [9] proposed a least squares method for parameter estimation of
the mixed Weibull distribution and solved it using an improved genetic optimization al‑
gorithm. Ref. [10] proposed a new method for parameter estimation of the finite Weibull
mixed distribution for reliability modeling. Refs. [11,12] conducted a comparative study
on the estimationmethods ofWeibull distribution parameters and the estimationmethods
of mixedWeibull distribution parameters. Ref. [13] applied nonlinear least squares theory
to develop an optimal estimation model for the parameters of the two‑fold two‑parameter
mixed Weibull distribution. Ref. [14] present a complete parametric characterization of
a mixture distribution involving two two‑parameter Weibull distributions. In Ref. [15],
a Cross Entropy (CE) method was developed in the context of maximum likelihood esti‑
mation (MLE) of a three‑parameter Weibull distribution. Performing a simulation study,
a comparative analysis between the newly developed method and two existing methods
was conducted. Ref. [16] considered the estimation of parameters of Weibull distribution
based on hybrid censored data and estimated the parameters by the maximum likelihood
method under step‑stress partially accelerated test model. Ref. [17] presents a proposed
approach for modeling the life data for system components that have failure modes by dif‑
ferent Weibull models. The approach was applied for censored, grouped, and ungrouped
samples. Ref. [18] proposed a Bayesian reliability evaluation method for very few failure
datapoints under the Weibull distribution.

The above estimation methods for the parameters of the mixed Weibull distribution
were applied to the two‑parameter mixed Weibull distribution model. In contrast, the
initial model of the Weibull distribution model is a three‑parameter model, and the two‑
parameter model simplifies the three‑parameter model. Still, its precision and accuracy
are often insufficient. Furthermore, there are only two parameter initial value selection
methods in the initial value selection. Therefore, new methods for parameter evaluation
of the three‑parameter mixed Weibull distribution need to be explored.

The EMalgorithm is an iterative algorithm for great likelihood estimation or great pos‑
terior probability estimation of probabilistic models containing hidden variables, which
can solve the parameter estimation problem when data is missing. Ref. [19] applied the
EM algorithm to evaluate the model parameters when the missing data mechanism was
random. Ref. [20] applied the EM algorithm for maximum likelihood estimation of the pa‑
rameters of a mixture distribution model based on type I mixture censored samples when
the mixture proportion is unknown. Ref. [21] consider the analysis of bi‑causes of failure
competing risk models using the extension of the exponential distribution under progres‑
sive Type‑II censoring. The maximum likelihood estimates of the unknown parameters
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were also obtained by the EM algorithm. It can be seen that the EM algorithm had a robust
adaptive capability in processing the sample data.

In this paper, we propose a practical scheme for selecting the initial values of the three‑
parameter mixed Weibull distribution model by combining the MLE algorithm and the
graph estimation method and designing an EM‑based optimization algorithm to solve the
problem. The initial values of the parameters were first obtained by the MLE algorithm
and the graph estimation method. Then, the EM algorithm was introduced for iterative
training to get the real and effective parameter values. Compared with other algorithms,
the method of this paper can obtain more accurate three‑parameter estimates of the mixed
Weibull distribution model.

2. Multiple Multi‑Parameter Estimation Method
The traditional methods used for parameter estimation are mainly graph estimation

andmaximum likelihood estimation (MLE). The graph estimation method is often used to
determine the initial value of the optimization algorithm, which is intuitive and simple to
operate, but not very accurate. Themaximum likelihoodmethod requires establishing a se‑
ries of transcendental equations and can be applied to solve the parameter values of a single
Weibull distribution, but it is powerless for parameter estimation of mixed Weibull distri‑
butions. The Expectation‑Maximization algorithm, or EM algorithm, is a very widely used
algorithm that is very effective for estimating the parameters of probabilistic models con‑
taining hidden variables, and usually finds the posterior probabilities of a model [22–24].

In this paper, we first estimated the two parameters of the mixedWeibull distribution
model using the graph estimation method, and then solved the three parameter values
of the single Weibull distribution using the maximum likelihood method, combined the
estimates derived from the two methods to form the initial values of the EM iterative al‑
gorithm and iterated to solve them, and finally solved all parameter values of the mixed
three‑parameter model with the following flowchart shown in Figure 1:
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3. Three‑Parameter Mixed WEIBULL Distribution Model Establishment
Assuming that a group of life test failure datapoints obeys the mixed Weibull distri‑

bution, this life test data can be considered as a total of m subgroup, and each subset has
an independent failure mode and failure distribution, then the probability density of the
total can be defined as:

f (t) =
m

∑
i=1

ωi
βi
ηi
(

t − γi
ηi

)
βi−1

exp

[
−
(

t − γi
ηi

)βi
]

(1)

where ωi > 0; βi > 0, ηi > 0, γi ∈ R are the mixing weight, shape, scale, and location

parameters of sub distribution i, respectively, and
m
∑

i=1
ωi = 1.

The failure probability distribution function of the system is given as follows:

F(t) =
m

∑
i=1

ωi

(
1 − exp

[
−
(

t − γi
ηi

)βi
])

(2)

The reliability (survivor) function of the mixture distribution is given as follows:

R(t) =
m

∑
i=1

ωi exp

[
−
(

t − γi
ηi

)βi
]

(3)

The failure rate of the mixture distribution is given as follows:

H(t) =
m

∑
i=1

ωi

(
βi
ηi

)(
t − γi

ηi

)βi−1
(4)

Each equation contains 4 m − 1 unknown parameters, and the evaluation of these
parameters is a crucial step in modeling the mixed Weibull distribution.

4. Parameter Estimation Based on the EM Algorithm
4.1. Parameter Estimation Model of the EM Algorithm

The EM algorithm, first proposed by Dempester in 1977, aims to find a set of param‑
eters that maximize the probability of occurrence of the target data, and is an effective
method for solving optimization problems in the presence of hidden variables [25]. It can
also complete the fitting of sample data even in the case of missing data. The specific steps
of the EM algorithm are as follows:

Input: Observed variable data Y, hidden variable data Z, joint distribution P(Y, Z|θ),
P(Z|Y, θ)

Output: Model parameters θ;

• Select the initial values of the parameters θ(0) and start the iteration;

• Step E: denote θ(i) as the estimated value of the parameter θ of the ith iteration, and
at the (i + 1)th iteration of step E, calculate

Q(θ, θ(i)) = Ez

[
log P(Y, Z|θ)|Y, θ(i)

]
= ∑

z
log P(Y, Z|θ)P(Z|Y, θ(i))

where P(Z|Y, θ(i)) is the conditional probability distribution of the hidden variable data Z
given the observed data Y and the current parameter estimates θ(i);

• Step M: Find the θ that maximizes Q(θ, θ(i)) and determine the estimate of the param‑
eter θ(i+1) for the (i + 1)th iteration

θ(i+1) = argmaxθQ(θ, θ(i+1))
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• Repeat step (2) and step (3) until convergence.

4.2. Solution by the EM Algorithm
According to the idea of EM algorithm, the hybrid Weibull distribution parameter es‑

timation model can be established by the following steps in the case of known failure data:

p(z|θ) =
m

∑
j=1

ωj p(z|ηj, β j, γj)

where p(z|ηj, β j, γj) is the probability density function of a single three‑parameter Weibull
distribution and z is the observed failure data.

First introduce the hidden variables x = [x1, x2, . . . , xn], xi = [xi1, xi2, . . . , xim], the
xij = 1 stands for zi from p(z|ηj, β j, γj), xij = 0 represents zi does not originate from
p(z|ηj, β j, γj).

4.2.1. Step E

Q(θ, θ(i)) = ∑
x

ln p(x, z|θ)p(x|z, θ(i)) (5)

where p(x|z, θ(i)) is the conditional probability distribution of the hidden variable data X
given the observed data Z and the current parameter estimate θ(i);

Also, by the total probability formula

∑
xij∈{0,1}

xij p(xij|zi, θ(i)) = p(xij = 1|zi, θ(i)) (6)

Therefore, we can get,

x̂ij = E
[
xij
]
=

ωj p(zi|ηj, β j, γj)
m
∑

j=1

[
ωj p(zi|ηj, β j, γj)

]
Substituting Equation (5) into Equation (6) yields

Q(θ, θ(i)) = Eθ(i) [ln p(x, z|θ)] (7)

Then,

ln p(x, z|θ) =
n

∑
i=1

m

∑
j=1

[
xij ln p(zi|ηj, β j, γj) + xij ln ωj

]
(8)

Substituting Equation (8) into Equation (7) yields

Q(θ, θ(i)) =
n

∑
i=1

m

∑
j=1

[
x̂ij ln p(zi|ηj, β j, γj) + x̂ij ln ωj

]
(9)

4.2.2. Step M
• Since theweight coefficientsmust addup to 1, it is necessary to introduce the Lagrange

multiplier λ to bound ω, make
∂

[
Q(θ,θ(i))+λ(

m
∑

j=1
ωj−1)

]
∂ωj

= 0, we can obtain ωj =

n
∑

i=1
x̂ij

n

• Great likelihood of the probability density function yields

∂ ln p(zi|ηj, β j, γj)

∂ηj
= −

β j

ηj
+ β j(zi − γj)

β j ηj
−β j−1 (10)
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∂ ln p(zi|ηj, β j, γj)

∂β j
=

1
β j

− ln ηj + ln(zi − γj)−
(

zi − γj

ηj

)β j

ln

(
zi − γj

ηj

)
(11)

∂ ln p(zi|ηj, β j, γj)

∂γj
=

1 − β j

zi − γj
+ β jη

β j
j
(
zi − γj

)β j−1 (12)

Substituting Equations (10)–(12) into ∂Q(θ,θ(i))
∂ηj

, ∂Q(θ,θ(i))
∂β j

, ∂Q(θ,θ(i))
∂γj

yields

ηj =


n
∑

i=1

[
x̂ij(zi − γj)

β j
]

n
∑

i=1
x̂ij


1
βj

(13)

It can be seen that ηj is a parameter related to β j, γj, then the ηj in the remaining
two sets of equations can be replaced by β j, γj, then we can obtain a set of equations{

f1(β j, γj) = 0
f2(β j, γj) = 0

, using MATLAB to solve the system of equations, solve the β j, γj, and

then bring in the equation for ηj, the estimated values of the three parameters can be solved
successively. The flow chart of this EM algorithm is shown in Figure 2.
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5. Instance Verification
5.1. m‑Fold Weibull Distribution Simulation

The m‑fold Weibull mixture model involves m sub‑populations,

F(x) =
m

∑
i=1

ωiFi(x) with ωi > 0

where ωi is a weight coefficient and Fi(x), i = 1, 2, . . . , n are distribution functions either
with two‑ or three‑parameter Weibull distributions.
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TheWeibull distribution can be characterized as the distribution of a random variable
W, such that the random variable

X =

(
W
λ

)k

is the standard exponential distribution with intensity 1.
This implies that the Weibull distribution can also be characterized in terms of a uni‑

form distribution. If U is uniformly distributed on (0,1), then the random variable
W = λ(− ln(U))

1
k is Weibull distributed with parameters k and λ. Note that − ln(U)

here is equivalent to X just above. This leads to an easily implemented numerical scheme
for simulating a Weibull distribution.

Based on the above method, we can simulate the Weibull distribution two‑fold
three‑parameter random numbers, and then we can obtain the simulated Weibull distri‑
bution of the random numbers, and we fit this data with the two‑parameter EM algorithm
and three‑parameter EM algorithm to obtain the fitted graph, see Figure 3. Please see
Appendix A for the specific procedures written.
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The parameter estimates we obtained with different methods are shown in Table 1.

Table 1. Simulation parameter estimation results.

Parameter Estimation Methods Parameter Estimation Value

ω1 η1 β1 γ1 ω2 η2 β2 γ2

Assuming parameter values 0.35 1253 2.25 125 0.65 438 3.56 83
Two‑parameter EM algorithm 0.34 1402.7 2.7033 0.66 528.85 4.709
Three‑parameter EM algorithm 0.33 1290 2.56 135.03 0.67 458.22 3.901 70.1598

Based on the evaluation parameters derived from Table 1 and using Equations (2)–(4),
we can obtain simulations of the probability density functions, reliability (survivor), and
hazard functions of the mixture distributions by the two different methods, as illustrated
in Figures 4–6. We can deduce that the proposed method is the best fit.
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The merit of parameter estimation can be measured by the normalized root mean
squared error (NRMSE) [26]. The normalized root mean squared error of the reliability
estimate and the true value can be obtained from Equation (14):

NRMSE =

√√√√√√√
m
∑

i=1

[
R(ti)− R̂(ti)

]2
m
∑

i=1
R(ti)

2
(14)

Table 2 gives the NRMSE obtained from the parameter estimation by the above
two methods.

Table 2. Simulation of NRMSE results.

Parameter Estimation Methods NRMSE

Two‑parameter EM algorithm 0.8229
Three‑parameter EM algorithm 0.8223

The NRMSE calculated by the proposed method was reduced by 0.0006 compared to
the two‑parameter EM algorithm in the simulation.

5.2. Application
5.2.1. Parameter Initial Value Selection and Fitting Results

To verify the validity of the method proposed in this paper, the sample data given in
the literature [10] were used as an arithmetic example. In the selection of the initial values
of η, β, and γ, γ has been directly set to 0 in some studies [7], which will greatly reduce
the accuracy of the overall model calculation. Although the graph estimation method can
roughly estimate the parameter values of the two‑fold mixed Weibull model, its accuracy
is not high, and only two parameters can be estimated, and the value of γ is set to zero.
The maximum likelihood method can estimate three parameter values, but it can only be
applied to a single Weibull distribution model. Therefore, in this paper, we combined the
advantages of the two algorithms. The initial values η, β were obtained by the graph esti‑
mation method for the two‑fold two‑parameter Weibull distribution model, and the initial
value γ was obtained by the maximum likelihood method for the single three‑parameter
Weibull distribution model measured on the same data. The sample data are shown in
Table 3, which shows the number of failure cycles of a set of 60 appliances in one life test.
We established the initial values based on this life sample as follows:(

⌢
ω1, η̂1, β̂1, γ̂1
⌢
ω2, η̂2, β̂2, γ̂3

)
=

(
0.2, 115.3, 1.704, 3.4384
0.8, 4511, 1.733, 3.4384

)

Table 3. Failure data sample [10].

Failure Data

14 34 59 61 69 80
123 142 165 210 381 464
479 556 574 839 917 969
991 1064 1088 1091 1174 1270
1275 1355 1397 1477 1578 1649
1702 1893 1932 2001 2161 2292
2326 2337 2628 2785 2811 2886
2993 3122 3248 3715 3790 3857
3912 4100 4106 4116 4315 4510
4584 5267 5299 5583 6065 9701
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After obtaining the initial values, the EM algorithm proposed in this paper iteratively
obtained the parameter estimates, weight estimates, and correspondingweight constraints
of the mixed Weibull distribution model. The number of iterations was set to 10, and the
obtained fitting curve is shown in Figure 7.
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Table 4 gives a comparison of the parameter estimates corresponding to Figure 6
with those of several conventional algorithms from the literature [10]. It is easy to see
that the three‑parameter EM solver algorithm is more accurate and fits better than the
two‑parameter EM solver algorithm.

Table 4. Comparison of parameter estimation results.

Parameter Estimation Methods Parameter Estimation Value

ω1 η1 β1 γ1 ω2 η2 β2 γ2

Graph estimation method 0.2 115.3 1.704 0.8 4511 1.733
Two‑parameter EM algorithm 0.1636 105.6869 1.5276 0.8364 2787.2 1.3576
Three‑parameter EM algorithm 0.1382 78.1578 1.1528 12.0441 0.8618 2764.4 1.3968 11.4615

Based on the parameter estimates obtained in Table 3, we can obtain the probability
density functions, reliability (survivor), and hazard functions of the mixture distributions
by the two different methods, as illustrated in Figures 8–10.
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5.2.2. Goodness‑of‑Fit Test
The chi‑square test, a very versatile hypothesis testing method, can count the degree

of deviation between the actual observed value of the sample and the theoretical inferred
value. Using the parameter estimates obtained by the method proposed in this paper, the
chi‑square test was performed at the significance level of α = 0.05.

F(t) = 0.1382[1 − exp(−(
t − 12.0441

78.1578
)

1.1528
)] + 0.8618[1 − exp(−(

t − 11.4615
2764.4

)
1.3968

)]

here, F(t) is the two‑fold failure probability distribution function shown in Equation (2),
substituting the weight coefficients and parameter estimates into this equation and pro‑
cessing the batch of data according to the method shown in this equation. The original
hypothesis H0 was that the sample data distribution obeys the double Weibull distribu‑
tion of the parameter estimates in this paper.

χ2 =
k

∑
i=1

(
fi − f̂i

)2

f̂i

Here, k represents the number of sample groups, fi is the frequency of each group, and f̂i
denotes the expected sample size of the ith group under the original hypothesis H0; the
calculations lead to

χ2 = 4.2426 < χ2
0.05 = 5.99

The results showed that the original hypothesis H0 was accepted.
We can still use the NRMSE method mentioned above to test the merits of the two

fitted distribution curves and obtain the following results shown in Table 5.

Table 5. NRMSE results.

Parameter Estimation Methods NRMSE

Two‑parameter EM algorithm 0.5852
Three‑parameter EM algorithm 0.5778

The results showed that the NRMSE calculated by the proposed method was reduced
by 0.0074 compared to the two‑parameter EM algorithm.

5.3. Analysis of Results
In this paper, the parameter values of the two‑fold Weibull distribution model were

initially estimated by the graph estimation method, and the parameters of a single three‑
parameterWeibull distributionmodelwere estimated by themaximum likelihoodmethod.
On this basis, the parameters of the two‑fold three‑parameter Weibull distribution model
were estimated by the EM algorithm.

First, we conducted simulations for the mixed two‑parameter EM algorithm and the
mixed three‑parameter EM algorithm, and we found that the mixed three‑parameter EM
algorithm had a smaller error andmore accurate fitting than the mixed two‑parameter EM
algorithm by comparing their NRMSE. Then, we compared the graph estimation method
and the two‑fold two‑parameter EM algorithm, and we found that the algorithm signifi‑
cantly improved in the accuracy of parameter estimation after only ten iterations. More‑
over, the estimated value of the γ parameter could be accurately estimated, as shown in
Table 4, which showed the effectiveness and accuracy of the algorithm. After the goodness‑
of‑fit test, 95% of the test conditions weremet, and theNRMSEwas reduced by 0.0074 com‑
pared with the two‑fold two‑parameter EM algorithm. The proposed method can also be
applied to the parameter estimation of a multiple three‑parameter Weibull distribution.

The EM algorithm has the characteristic of introducing hidden variables. It is a very
effective parameter estimation method in the case of missing samples, and it can complete
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the data model by adaptive iteration. Therefore, it is more accurate and effective in the
case of small and large samples.

6. Conclusions
This paper proposed a parameter estimation method for the mixed three‑parameter

Weibull distribution based on the EM algorithm and designed an effective initial value se‑
lection method. The three parameters to be estimated and the weight coefficients in the
mixed Weibull distribution could be solved by the method proposed in this paper. The
obtained calculation results fit the sample data well, proving the proposed method’s effec‑
tiveness and superiority. The algorithm proposed in this paper had higher accuracy than
the traditional algorithm and could obtain the location parameter γmore accurately.

Compared with the maximum likelihood method and graph estimation method, the
form of hidden variables introduced by the optimization algorithm proposed in this paper
was better able to perform adaptive iteration according to the sample data and obtain the
parameter value that maximizes the probability of the group of sample data. The method
is simple to understand and converges faster, avoiding the complicated process of solving
beyond the equation.

The simulation results showed that the proposed method can fit the sample data very
well, and the NRMSE results showed that the proposed method has a significant improve‑
ment in accuracy over the hybrid two‑parameter EM algorithm.
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Appendix A
code 1: application
clc; clear all; close all;
sc = get(groot,‘ScreenSize’);
%% load data.
Z = [14.0; 34; 59; 61; 69; 80; 123; 142; 165; 210; 381; 464; 479; 556; 574; 839; 917; 969; 991; . . .
1064; 1088; 1091; 1174; 1270; 1275; 1355; 1397; 1477; 1578; 1649; 1702; 1893; . . .
1932; 2001; 2161; 2292; 2326; 2337; 2628; 2785; 2811; 2886; 2993; 3122; 3248; 3715;
3790; 3857; 3912; 4100; 4106; 4116; 4315; 4510; 4584; 5267; 5299; 5583; 6065; 9701];
%% initialize params.
m = 2; % num of models.
theta = cell(m,1); % model parameters.
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theta{1} = struct(‘w’, 0.1636, ‘alpha’, 105.6869, ‘beta’, 1.5276, ‘gamma’, 0.0); % weight alpha
beta gamma
theta{2} = struct(‘w’, 0.8364, ‘alpha’, 2787.2, ‘beta’, 1.3576, ‘gamma’, 0.0); % weight alpha
beta gamma
iters = 10;
[cd2P,wbT,wb2P,wbF2p,wbR2p,wbH2p] = weibullStd(Z,theta,’2P’);
theta = cell(m,1); % model parameters.
theta{1} = struct(‘w’, 0.2, ‘alpha’, 115.3, ‘beta’, 1.704, ‘gamma’, 3.4383); % weight alpha
beta gamma
theta{2} = struct(‘w’, 0.8, ‘alpha’, 4511, ‘beta’, 1.733, ‘gamma’, 3.4384); % weight alpha
beta gamma
[~,~,wb3P,wbF3p,wbR3p,wbH3p,theta3p] = weibullEM(Z,m,theta,iters,‘3P’);
figure;
scatter(Z, cd2P, 10, ‘ko’, ‘filled’);
hold on;
plot(wbT, wbF2p, ‘b’,wbT, wbF3p, ‘r’);
hold off;
set(gca,‘Xscale’,‘log’);
xlabel(‘Time, t’);
ylabel(‘CDF’);
grid on;
legend(‘Sample data’,‘Two‑parameter EM’,‘Three‑parameter EM’,‘Location’,‘northwest’);
print(‘paparCDF’,gcf,‘‑r300’,‘‑dtiffn’);
figure;
plot(wbT, wb2P*1000, ‘b’,wbT, wb3P*1000, ‘r’);
xlim([−500 10000]);
xlabel(‘Time, t’);
ylabel(‘PDF (× 10^{−3})’);
legend(‘Two‑parameter EM’,‘Three‑parameter EM’);
set(gca,‘Xscale’,‘log’);
grid on;
print(‘paparPDF’,gcf,‘‑r300’,‘‑dtiffn’);
figure;
plot(wbT, wbR2p, ‘b’,wbT, wbR3p, ‘r’);
xlabel(‘Time, t’);
ylabel(‘Reliability’);
legend(‘Two‑parameter EM’,‘Three‑parameter EM’);
set(gca,‘Xscale’,‘log’);
grid on;
print(‘paparReliability’,gcf,‘‑r300’,‘‑dtiffn’);
figure;
plot(wbT, wbH2p*1000, ‘b’,wbT, wbH3p*1000, ‘r’);
xlabel(‘Time, t’);
ylabel(‘Hazard Function (× 10^{−3})’);
legend(‘Two‑parameter EM’,‘Three‑parameter EM’);
set(gca,‘Xscale’,‘log’);
grid on;
print(‘paparHazard’,gcf,‘‑r300’,‘‑dtiffn’);
code 2:simulation
clc;clear;close all
%三参数weibull
num = 1000;
eta1 = 1253;
beta1 = 2.25;
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gamma1 = 125;
omega1 = 0.35;
eta2 = 438;
beta2 = 3.56;
gamma2 = 83;
grp1 = wblrnd3p(eta1,beta1,gamma1,1,omega1*num);
grp2 = wblrnd3p(eta2,beta2,gamma2,1,(1‑omega1)*num);
[sgrp1,loc1] = sort(grp1);
[sgrp2,loc2] = sort(grp2);
frp1 = wblpdf3p(grp1,eta1,beta1,gamma1);
frp2 = wblpdf3p(grp2,eta2,beta2,gamma2);
% figure;
% plot(sgrp1,frp1(loc1),sgrp2,frp2(loc2),‘LineWidth’,1.5);
grp = [grp1,grp2];
[sgrp,sloc] = sort(grp);
%% initialize params.
m = 2; % num of models.
theta = cell(m,1); % model parameters.
theta{1} = struct(‘w’, 0.20, ‘alpha’, 1000, ‘beta’, 3.0, ‘gamma’, 0); %weight alpha beta gamma
theta{2} = struct(‘w’, 0.80, ‘alpha’, 450, ‘beta’, 2.9, ‘gamma’, 0); % weight alpha beta gamma
iters = 10;
[cd2P,wbT,wb2P,wbF2p,wbR2p,wbH2p,theta2p] = weibullEM(sgrp,m,theta,iters,‘2P’);

theta = cell(m,1); % model parameters.
theta{1} = struct(‘w’, 0.20, ‘alpha’, 1000, ‘beta’, 3.0, ‘gamma’, 100); % weight alpha
beta gamma
theta{2} = struct(‘w’, 0.80, ‘alpha’, 450, ‘beta’, 2.9, ‘gamma’, 70); %weight alpha beta gamma
[~,~,wb3P,wbF3p,wbR3p,wbH3p,theta3p] = weibullEM(sgrp,m,theta,iters,‘3P’);
theta = cell(m,1); % model parameters.
theta{1} = struct(‘w’, 0.35, ‘alpha’, 1253, ‘beta’, 2.25, ‘gamma’, 125); % weight alpha
beta gamma
theta{2} = struct(‘w’, 0.65, ‘alpha’, 438, ‘beta’, 3.56, ‘gamma’, 83); % weight alpha
beta gamma
[cdP,~,wbPr,wbFr,wbRr,wbHr] = weibullStd(sgrp,theta,‘3P’);
figure;
plot(wbT, wbFr, ‘k:’, wbT, wbF2p, ‘b’, wbT, wbF3p, ‘r’);
set(gca,‘Xscale’,‘log’);
xlabel(‘Time, t’);
ylabel(‘CDF’);
grid on;
set(gca,‘Xscale’,‘log’);
legend(‘Simulated data’, ‘Two‑parameter EM’,‘Three‑parameter EM’,’Location’,
’northwest’);
% print(‘SimulatedCDF’,gcf,‘‑r300’,‘‑dtiffn’);
figure;
plot(wbT, wbPr*1000, ‘k:’, wbT, wb2P*1000, ‘b’, wbT, wb3P*1000, ‘r’);
xlabel(‘Time, t’);
ylabel(‘PDF (× 10^{−3})’);
set(gca,‘Xscale’,’log’);
legend(‘Simulated data’, ‘Two‑parameter EM’,‘Three‑parameter EM’);
% print(‘SimulatedPDF’,gcf,‘‑r300’,‘‑dtiffn’);
figure;
plot(wbT, wbRr, ‘k:’,wbT, wbR2p, ‘b’, wbT, wbR3p, ‘r’);
xlabel(‘Time, t’);
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ylabel(‘Reliability’);
set(gca,‘Xscale’,’log’);
legend(‘Simulated data’, ‘Two‑parameter EM’,‘Three‑parameter EM’);
% print(‘SimulatedReliability’,gcf,‘‑r300’,‘‑dtiffn’);
figure;
plot(wbT, wbHr*1000, ‘k:’, wbT, wbH2p*1000, ‘b’, wbT, wbH3p*1000, ‘r’);
xlabel(‘Time, t’);
ylabel(‘Hazard Function (× 10^{−3})’);
set(gca,‘Xscale’,’log’);
legend(‘Simulated data’, ‘Two‑parameter EM’,‘Three‑parameter EM’);
% print(‘SimulatedHazard’,gcf,‘‑r300’,‘‑dtiffn’);
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