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Abstract: The issue of how to improve the usability of data publishing under differential privacy has
become one of the top questions in the field of machine learning privacy protection, and the key to
solving this problem is to allocate a reasonable privacy protection budget. To solve this problem,
we design a privacy budget allocation algorithm based on out-of-bag estimation in random forest.
The algorithm firstly calculates the decision tree weights and feature weights by the out-of-bag data
under differential privacy protection. Secondly, statistical methods are introduced to classify features
into best feature set, pruned feature set, and removable feature set. Then, pruning is performed using
the pruned feature set to avoid decision trees over-fitting when constructing an ε-differential privacy
random forest. Finally, the privacy budget is allocated proportionally based on the decision tree
weights and feature weights in the random forest. We conducted experimental comparisons with
real data sets from Adult and Mushroom to demonstrate that this algorithm not only protects data
security and privacy, but also improves model classification accuracy and data availability.

Keywords: differential privacy; machine learning; privacy protection; random forest; out-of-bag estimation
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1. Introduction

With the rapid progress of various emerging technologies including the Internet, cloud
computing, and computer storage, the era of big data has arrived [1]. Currently, numerous
personal privacy data are currently collected by medical, educational, and corporate or-
ganizations, such as patient medical records collected by hospital organizations, student
learning records collected by educational institutions, and customer location information
collected by taxi-hailing platforms [2]. After being collected, these personal privacy data
are often used for data analysis, data mining, etc., which will certainly affect the normal
life of individuals. For example, the Facebook privacy leakage in 2018 caused significant
damage to users. The frequent occurrence of numerous privacy leakage events has made
data privacy protection a hot topic for research in the field of information security [3].

At present, data privacy protection methods [4] are mainly based on anonymity tech-
nology, encryption technology or noise technology. Privacy protection based on anonymity
technology, such as k-anonymous algorithms, relies on background knowledge, and pri-
vacy protection based on encryption technology, e.g., homomorphic encryption, has a large
computational overhead, making it unsuitable for using in massive data environments.
In 2006, Dwork et al. [5] presented the noise-based privacy protection technique, i.e., differ-
ential privacy, which has been widely applicable to machine learning privacy preservation
because of its low computational and transmission costs.

Classification is a very important method in the field of data mining [6]. It uses
a large amount of data to build algorithmic models, and uses these models to perform
classification operations. There are many algorithms that can be used for classification.
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Compared with classification algorithms, such as neural networks, Bayesian and genetic
algorithms, decision trees have less algorithmic complexity, are resistant to noise and
have strong data scalability [7]. However, traditional single classifier models such as
decision trees are single and prone to problems such as overfitting. In order to improve
the accuracy of classification prediction, some scholars have proposed integrated methods.
Random forest is an algorithm based on decision tree integration, which not only has
many advantages of decision tree classification, but also has good tolerance for unbalanced
samples, noise and outliers. It has been widely used in many fields such as banking [8],
medical [9], e-commerce [10], and finance [11].

In the actual classification process, decision trees, random forest models and their cor-
responding counting information may leak users’ private information, and there is a danger
of privacy leakage. Applying differential privacy techniques to random forest models to
protect private data is of great importance for data security publication. Current research
on this area focuses on the selection and innovation of tree building methods [12,13], the se-
lection of availability functions [14], and methods for pre-processing attribute sets [15–17].
Data protection algorithms based on differential privacy decision trees are mainly classified
into interactive framework and non-interactive framework.

In the interactive framework, users can only conduct a limited number of queries
through the privacy protection interface, and each query consumes the privacy protection
budget. Blum et al. [18] first fused differential privacy with decision trees to obtain the
SuLQ-based ID3 algorithm, but the prediction accuracy of the decision tree model was
substantially reduced because it added differential privacy noise every time the information
gain was calculated. McSherry et al. [19] used the PINQ framework to improve the SuLQ
algorithm to obtain the PINQ-based ID3 algorithm. The algorithm partitioned the dataset
into multiple disjoint subsets. The disadvantage is that each query consumes the privacy
protection budget, many queries resulting in little privacy protection budget allocated for
each query, thus adding more noise when dealing with large data sets. Friedman et al. [20]
in a further study designed the DiffP-ID3 algorithm, which combines ID3 algorithm with
an exponential mechanism to achieve differential privacy protection and effective noise
reduction. In the same paper, they proposed the DiffP-C4.5 algorithm by using exponen-
tial mechanism to split continuous attributes. However, this method required to invoke
the exponential mechanism twice, consuming a disproportionate amount of the privacy
protection budget.

In a non-interactive framework, privacy protection algorithms are processed and
published to the database, users can process this database for any operation. In this
framework, we want to improve the availability of the data publishing by allocating a
reasonable privacy protection budget to reduce the overall amount of noise added to the
model. Mohammed et al. [21] and Zhu et al. [22] presented the data publishing algorithms
DiffGen and DT-Diff under non-interactive, respectively. Both algorithms first generalized
the data sets, then performed a subdivision iteration loop, and finally used an exponential
mechanism for selection. Generalization replaces calling the exponential mechanism when
processing continuous features and saves the privacy protection budget, but such schemes
are inefficient when the classification dimension is large. In further research, it was found
that decision trees are not stable enough due to their simple structure, and the prediction
results are often unsatisfactory when facing high-dimensional data sets, and random
forest models were considered to replace single decision trees. Patil et al. [23] combined
differential privacy with random forests to build ID3 decision trees for classification and
proposed the DiffPRF algorithm, which has the disadvantage that continuous attributes
need to be discretized first. Mu et al. [14] improved the DiffPRF algorithm by introducing
an exponential mechanism to deal with continuous attributes and proposed the DiffPRFs
algorithm. Li et al. [24] proposed the RFDPP-Gini algorithm. Exponential and Laplace
mechanisms are used in the selection of split features to deal with continuous and discrete
features, respectively, and the Gini index is selected to determine the best splitting feature
and the best splitting point using the equivariant privacy budget allocation method.
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From the above related studies, it is clear that the current innovations and improve-
ments in this field focus on how to improve the availability of data and the accuracy of
model classification. The literature [25] uses out-of-bag estimation to evaluate the classifica-
tion ability of random forests. Out-of-bag data [26] is an unused asset in random forests,
which reflects the classification ability, feature importance, and other data set patterns of
random forests. The literature [27] adds differential privacy to the out-of-bag estimation to
protect the privacy of the out-of-bag data. In this paper, considering that the importance
between trees and features in random forest is not the same, in order to allocate the privacy
protection budget in a more targeted way, we need to calculate the solution in advance to
obtain the weight sets of tree and feature importance. Choosing out-of-bag data to solve
the weight set not only can be used for pruning and preventing overfitting, but also when
differential privacy protection is added to it, it does not waste the privacy protection budget
and overall reduces the total amount of noise added to the dataset, thus improving the
availability of data and the accuracy of model classification. This study provides a more
accurate solution for privacy protection in the fields of medical diagnosis, financial decision
making, personalized recommendation, and bioinformatics. The main contributions of this
paper are summarized as below:

1. We propose a differential privacy budget allocation algorithm based on out-of-bag
estimation in random forest.

2. We improve the algorithm for differential privacy out-of-bag estimation to obtain
more accurate decision tree weights in out-of-bag forests. We introduce decision tree
weights when using the VIM variable importance measure to obtain a more accurate
set of feature weights and use statistical methods for classification.

3. We creatively give computational methods to allocate the overall privacy protection
budget to each tree in the random forest and to each layer of each tree to achieve a
more targeted privacy budget allocation.

4. We conduct a series of experiments on Adult and Mushroom datasets to demonstrate
the advantages of the algorithm in this paper.

The remainder of this paper is organized as follows. In Section 2, we introduce
differential privacy background knowledge. The proposed method is described in detail in
Section 3. The experimental results and analysis are given in Section 4. Finally, we conclude
this paper in Section 5.

2. Differential Privacy Background Knowledge

Differential privacy solves the problem of database privacy leakage. With its strict
mathematical definition and flexible combination of properties, it is used in all kinds of
privacy protection.

Definition 1 (Differential privacy [28]). For any two neighboring data sets D1 and D2, all
differences are at most one record. Given a privacy protection algorithm F, Range(F) denotes the
set of all possible output ranges of F. If the algorithm F satisfies:

Pr[F(D1) ∈ S] ≤ eεPr[F(D2) ∈ S] (1)

then it is said that algorithm F provides ε-differential privacy protection, where Pr[Es] denotes the
probability of event ES occurring and ε is the privacy protection budget. The value of parameter ε
should be consistent with the algorithm requirements, so as to obtain a perfect balance between data
security and availability.

Definition 2 (Global sensitivity [28]). Sensitivity is a parameter that measures the magnitude of
the joining noise. For any of the functions Q : D → Rd, the global sensitivity of Q is:

M GS = max
D1,D2

‖ Q(D1)−Q(D2) ‖ (2)
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where R denotes the real number space of the mapping and d denotes the query dimension of the
function f .

Definition 3 (Realization mechanism). The most common implementations of adding differential
privacy to the data are the Laplace mechanism and the exponential mechanism.

1. Laplace mechanism [29–31]. This mechanism is implemented by adding noise satisfying the
Laplace distribution to the output result. Given any function f : D → Rd, if the F(D) meets
Formula (3), it means that it satisfies ε-differential privacy.

F(D) = f (D) + (Laplace(
M GS

ε
))d (3)

where Laplace(MGS
ε ), beying the Laplace distribution with scale parameter MGS

ε .
2. Exponential mechanism [30,31]. Let the input of the randomized algorithm M be a dataset

D and the output be an entity object r ∈ Range,q(D, r) is the availability function, M GS is
the sensitivity of the function q(D, r). If algorithm M selects and outputs r from Range with
probability proportional to eεq(D,s)/2MGS, then algorithm M provides ε-differential privacy.

Definition 4 (Combination properties). In practical scenarios, users may make multiple queries,
but the privacy protection budget needs to be kept within a given range. This problem can be cleverly
solved by using the differential privacy combination properties.

1. Sequential composition [32]. Assuming that in a set of mechanisms A1, A2, . . . , An provide
(ε1, ε2, . . . , εn)-differential privacy protection respectively, for a same data set D, algorithms
A(A1(D), A2(D), . . . , An(D)) has (∑n

i=1 εi)-differential privacy.
2. Parallel composition [32]. Assuming that in a set of mechanisms A1, A2, . . . , An provide

(ε1, ε2, . . . , εn)-differential privacy protection respectively, for the disjoint dataset D, algo-
rithms constitute the combination A(A1(D), A2(D), . . . , An(D)) with (max εi)-differential
privacy.

3. Proposed Method
3.1. Solving Decision Tree Weights

In a random forest, each decision tree is generated by randomly selecting samples.
When the total number of samples selected is very large, about 1/3 were not selected.
These data are out-of-bag data [26]. When these data are applied in decision making on
this decision tree, the ratio of forward misclassification to reverse misclassification in the
sum of the data of the respective instances is the out-of-bag estimate. Since out-of-bag
estimates are closely related to feature importance, forest properties, etc., it is important to
incorporate differential privacy to protect out-of-bag data.

Definition 5 (Differential privacy out-of-bag estimation). For one of the trees, the out-of-bag
estimate B is:

B =
1
2
(

Y
YT

+
N
NT

)

where Y and N represent the number of forward misclassifications and reverse misclassifications.
YT and NT indicate the total number of forward and reverse instances.

Differential privacy out-of-bag estimation is defined as:

B′ =
1
2
(

Y + N(ε1)

YT
+

N + N(ε2)

NT
)

=
1
2
(
(Y · NT + N ·YT) + N(ε)

YT · NT
)

(4)

It can be seen from Formula (4) that the noise that we add to the out-of-bag estimated
data, which perturbs the true number of data, so that the differential privacy out-of-bag
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estimation does not lose the dataset regularity and protects the privacy of the data at the
same time.

Definition 6 (Decision tree weights). This paper calculates the decision tree weights with refer-
ence to Paul et al. [25]. The weights of the decision tree are defined as:

Qt=
1
B′t

(5)

where B′t is the differentially private out-of-bag estimate of the tree. From Formula (5), we can see
that the smaller B′t is the larger the weight of the tree is, and the better the decision tree classification
ability is.

3.2. Feature Weight Calculation and Feature Selection
3.2.1. Feature Weight Calculation

The Gini index is an important method for classifying the purity of attributes. The
smaller the Gini index, the better the classification method. The formula for calculating the
Gini index Gm is:

Gm=
C

∑
c=1

pmc(1− pmc) (6)

where C is the number of features, pmc is the probability of class c at node m.
The importance of node m in feature ji is:

Ijm = Gm − wLGL − wRGR (7)

where GL and GR are the Gini indices of the left and right nodes after splitting at node m,
wL and wR are the number of weighted samples.

If the feature ji is selected n times in the tree Ti, the importance of the feature in this
decision tree is:

Iij =
n

∑
n=1

Ijm (8)

The importance Ij of the feature ji in the random forest is:

Ij=
t

∑
i=1

Iij ·Qt/
k

∑
j=1

t

∑
i=1

Iij (9)

where k is the number of input features, and t is the number of decision trees.
If C features are selected to construct t decision trees, the weight Wt of the decision

trees in the random forest are:

Wt =
N

∑
n=1

Ij/
t

∑
t=1

N

∑
n=1

Ij (10)

3.2.2. Feature Selection

Statistical methods have good results in data pre-processing. In the article, we choose
this method to divide the features into Best feature set (BFS), Pruned feature set (PFS) and
Removable feature set (RFS).

Definition 7 (Feature selection). For the set of feature weights, the following conditions are
satisfied:

Ij < (µ− 3σ) (11)

(µ− 3σ) < Ij < (µ− 1.5σ) (12)
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where µ is the mean of the weight set of R, and σ is the standard deviation. If the weight VIMj
satisfies the Formula (11), the features j are placed into the removable feature set (RFS). If the
weight VIMj satisfies the Formula (12), the features j are placed into the pruned feature set (PFS).
The remaining features j are put into the best feature set (BFS). The features in the existing feature
weight set are deleted from the removable feature set (RFS) to obtain selected weight set R′ with n′

features.

3.3. Method for Allocating Privacy Protection Budgets Based on Weights

The reasonable allocation of privacy protection budget has a very important impact on
data availability. Previous related works such as MAXGDDP algorithm [16] and AUR-Tree
algorithm [17] use class geometry, class equivariance, and equivariance to allocate privacy
protection budget during the construction of decision trees. In random forests, such as
DiffPRFs algorithm [14] and RFDPP-Gini algorithm [24], it allocates the privacy protection
budget equally to each decision tree and then equally to each layer. However, each tree in
the random forest has different strengths and weaknesses in classification ability, and each
feature in the dataset has different importance in the random forest. The privacy protection
budget allocation method designed in this paper is based on adaptive allocation of tree
weights and feature weights.

(1) Allocation based on tree weights. The privacy protection budget allocated to each
tree εt is:

εt =
ε

T
·Wt (13)

where ε is the sum of the privacy protection budget, T is the number of decision trees in the
random forest, and Wt is the weight of the decision tree.

(2) Allocation based on tree weights. The privacy protection budget εt allocated to
each tree is distributed proportionally according to the relative size of the feature weights.
After feature selecting to obtain the feature weight set R′ with n′, follow the random forest
principle to randomly select a features (a < n′) to get feature set of the tree t and the
corresponding feature weight set R′t{Ij1 ,Ij2 , . . . , Ijn′ }. Calculate the weight ratio Sj1 of the
features j1 in this tree:

Sj1 =
Ij1

Ij1 + Ij2 + · · ·+ Ijn′
(14)

The privacy protection budget obtained from the allocation of the decision tree in
selecting this feature for splitting is:

ε j1=εt · Sj1 (15)

Figure 1 provides an overview of the privacy protection budget allocation.

Figure 1. Overview of privacy protection budget allocation.
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3.4. Pruning Based on the Divided Set of Attributes

Pruning can simplify the decision tree model in random forests, avoid overfitting,
enhance generalization, and improve the accuracy of classification. In this paper, a pre-
pruning strategy is used to prune using the pruning feature set (PFS) obtained in Section 3.2.2.
In the process of building a tree, the features in order of importance are used as the best
splitting features. For the feature set R′t selected by the tree t, determine whether R′t has
features in the pruned feature set (PFS), and if so, remove them and allocate privacy budget.
if not, allocate them according to the original feature set and construct a differential privacy
random forest.

3.5. Algorithm Flow

This algorithm process in this paper is to first construct a random forest and extract the
out-of-bag dataset, followed by calculating the decision tree weights and feature weights
using out-of-bag estimation under differential privacy protection, and the feature weights
use statistical methods to classify the features into the best feature set, pruned feature set
and removable feature set. When constructing a random forest that satisfies ε-differential
privacy protection, the randomly selected features are judged using the pruned feature set
and the features belonging to the pruned feature set are removed, this method not only saves
the privacy protection budget but also prevents the decision tree from overfitting. Then
calculate the weights of the trees based on these features, and allocate privacy protection
budget to each tree based on the tree weights. In the construction of each tree, the privacy
protection budget is allocated and splits are selected sequentially according to the relative
size of the feature weights in the feature set. In the construction of each tree, the privacy
protection budget is allocated according to the relative size of the feature weights in the
feature set and splits are selected sequentially. If continuous features are selected as
splitting attributes in the tree building process, the exponential mechanism is invoked
to split continuous attributes, and the Laplace mechanism is used to add noise to the
count values of the leaf nodes to finally obtain a random forest that satisfies ε-differential
privacy protection.

3.6. Description

We present a privacy budget allocation algorithm based on tree weights and feature
weights in random forest, and the core strategy of the method is to allocate more pri-
vacy protection budgets to trees with better classification ability and features with higher
importance in the forest.

This paper is divided into three algorithms, Algorithm 1 is the algorithm of extracting
out-of-bag data.
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Algorithm 1 Extract Out-of-Bag Data Algorithm
Input: Training set D, feature set J(j1, j2, . . . , jn), number of decision trees t, maximum

depth of the decision trees d, number of randomly selected features at splitting a.
Output: Random forest Trees, Out-of-bag datasets DOOB.
Stopping condition: All samples on a decision tree node are consistently classified, or the

maximum depth of the decision tree is reached d, or the number of features set
features less than a.

Step 1. Take out m samples from the training set D with put-back as Dt, and randomly
select n (n < N) features from J.

Step 2. Calculate the Gini coefficient of each feature, and select the best splitting feature jn
as the splitting feature.

Step 3. According to the different values of feature jn, the samples on the node are divided
into different child nodes, and a decision tree is generated.

Step 4. Repeat steps 1–3 t times to get t decision trees.
Step 5. Put the data in the training set D that was not used to build the decision tree into

DOOB.
Step 6. Get random forest Trees, out-of-bag datasets DOOB.

Algorithm 2 is a feature weight solving and selection algorithm using out-of-bag
estimation. The out-of-bag estimation under differential privacy is used to solve feature
weights and decision tree weights, select feature weights, and update the features set.

Algorithm 2 Solving Feature Weights and Selecting Algorithms Using Out-of-Bag Estimation
Input: Out-of-bag datasets DOOB, random forest Trees, privacy protection budget εOOB,

feature set J(j1, j2, . . . , jn).
Output: Selected feature weight set R′, selected feature set J′, pruned feature set (PFS), best

feature set (BFS).
Stopping condition: All features are calculated and screened.
Step 1. For decision tree t, select data containing tree features from out-of-bag data set

DOOB, test and count.
Step 2. Add Laplacian noise to all categorical counts for each tree in a random forests,

the size of the privacy protection budget for each tree is εOOB
t .

Step 3. Get the differential privacy out-of-package estimation B′ using the Formula (4).
Step 4. Calculate the decision tree weight Qt using the Formula (5).
Step 5. Repeat steps 1–4 to calculate the weight of each tree in the random forests in turn,

and get the weight set Q(Q1, Q2, . . . , Qt) of the tree.
Step 6. For each tree, use Formulas (6)–(8) to get the importance of the feature in this tree.
Step 7. Calculate the feature weight of this feature in the whole random forest using

Formula (9).
Step 8. Repeat steps 6–7 to obtain the feature weight set R of all features.
Step 9. If feature weight set R satisfies Formula (11), put corresponding feature jn into the

removable feature set RFS; if it satisfies Formula (12), put corresponding feature jn
into the pruned feature set (PFS); the remaining features are best feature set (BFS).

Step 10. Delete the features and feature weights in the removable feature set RFS in turn
from the initial feature set J(j1, j2, . . . , jn) and feature weight set R.

Step 11. Get the selected feature weight set R′, selected feature set J′, pruned feature set
(PFS), best feature set (BFS).
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Algorithm 3 is a differential privacy budget allocation algorithm based on tree weights
and feature weights. The tree weight calculation, pruning and differential privacy budget
allocation by randomly selected features in the construction makes the strategy of assigning
privacy protection budgets more targeted and reasonable.

Algorithm 3 Differential Privacy Budget Algorithm Based on Tree Weight and Feature Weight
Input: Training set D, selected feature set J′, selected feature weight set R′, number of

decision trees T, maximum depth of the decision trees d, number of features b
randomly selected when splitting, privacy protection budget ε, pruned feature set
(PFS), best feature set (BFS).

Output: Random forests satisfying ε-differential privacy protection.
Stopping condition: All samples on a decision tree node are consistently classified, or the

maximum depth of the decision tree is reached d, or the feature number n′ of the
filtered feature set is less than b, or the privacy protection budget is exhausted.

Step 1. For decision tree t, b features are randomly selected, the feature set is J′t , and the
corresponding feature weight set calculated by Formula (10) is R′t.

Step 2. If the feature set J′t has features belonging to the pruned feature set (PFS), the corre-
sponding feature weight set R′t removes these feature weights to obtain the feature
set R

′′
t . if the feature set J′t belongs to the best feature set (BFS), the corresponding

feature weight set R′t does not change.
Step 3. For the feature set J′t , the weight Wt of the decision tree is obtained according to

Formula (13).
Step 4. The privacy budget of the tree is obtained from the weights of the tree as εt =

ε
T ·Wt.

Step 5. In the feature weight set R′t, the feature weight ratio Sj1 of the feature jb is calculated
according to Formula (14).

Step 6. In the tree t, according to the size of the feature weight set R′t, the features are
sequentially selected from the corresponding feature set J′t as the best splitting
feature.

Step 7. The privacy protection budget allocated by the optimal splitting feature is ε j1 = εt · Sj1
Step 8. Repeat T times to calculate the privacy protection budget required for each feature

split on each tree.
Step 9. When constructing the tree to select features, if the best split feature is a continuous

feature, an exponential mechanism is invoked to select the best point for splitting:

exp
(

ε
2∆q q(Dn, j)

)
|Ri|

∑i exp
(

ε
2∆q q(Dn, j)

)
|Ri|

among them, q(Dn, j) is the Gini index, |Ri| is the size of the interval, and M q is the
sensitivity of the Gini index.

Step 10. If stopping condition is met, the creation of node is stopped, and the node is set as
a leaf node.

Step 11. Noise is added to the count value of the leaf nodes of each tree, and the classifica-
tion with the most samples is selected as the label of the leaf node.
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4. Experimental Results and Analysis
4.1. Privacy Analysis

(1) Privacy when computing out-of-bag data. When using the out-of-bag data for
each tree calculation, the allocated privacy budget is used to add noise to the counts of the
classification results, and thus differential privacy is satisfied.

(2) Privacy of random forests for training sets. There are T trees in this algorithm,
and the privacy budget allocated to each tree is εt =

ε
T ·Wt. The privacy budget divided

into each layer according to feature importance is ε j1=εt · Sj1 , for each level of the decision
tree, the different nodes are equally divided into ε′ = ε jl /(d+ 1), and the noise is eventually
added using Laplace mechanism. Since the samples in each tree in a random forest are
randomly selected with a put-back, the data will have crossover. From the sequential
composition of differential privacy, it is clear that the consumed privacy budget is the sum
of the individual tree consumption, so the training set satisfies ε-differential privacy in the
process of constructing the random forest.

Since the two parts of the out-of-bag data and the training set are disjoint and both satisfy
ε-differential privacy, the parallel composition of differential privacy shows that the entire
process of constructing a differentially private random forest satisfies ε-differential privacy.

4.2. Experimental Design

The hardware environment for the experiments in this paper is Intel(R) Core (TM)
i5-5200U CPU @2.20GHz processor and 8GB operating memory. The operating system
is Windows 10, the experimental program development tool is Pycharm2021.3 and the
programming language is Python.

Two real datasets originating from UCL were used for the experiment: the Adult and
Mushroom dataset (Table 1). The Adult dataset contains U.S. Census data with discrete
and continuous attributes that determine whether the category is a wage greater than 50k.
The Mushroom dataset contains information about mushroom-related species, and the only
discrete attributes in this dataset that determine the category is whether a mushroom is
edible or not.

Table 1. Dataset Information.

Dataset Characteristic Number
(Discrete/Continuous)

Size Class Attribute

Adult 14 (8/6) 32,561 1
Mushroom 22 (22/0) 8124 1

To test the effectiveness of Ours’ algorithm, multiple sets of comparison experiments
are set up in this paper: (1) comparison between different decision tree depths; (2) compari-
son between different number of decision trees; (3) comparison between different size of
privacy budgets; (4) comparison between Ours algorithm, RFDPP-gini [24] algorithm and
DiffPRFs [14] algorithms in this paper.

4.3. Experimental Results

For the Adult and Mushroom datasets, a random forest satisfying differential privacy
protection is built using this paper’s algorithm with different privacy protection budgets
and different decision tree depths, and the test datasets are classified to obtain the accuracy
of the classification results.

Figure 2 shows the classification accuracy at different tree depths for the Adult dataset
with differential privacy noise added and privacy budgets of 0.10, 0.25, 0.50, 0.75, and 1.00,
respectively. Figure 3 shows the classification accuracy at different tree depths for the
Mushroom dataset with differential privacy noise added and privacy protection budgets of
0.10, 0.25, 0.50, 0.75, and 1.00, respectively.
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Figure 2. Variation of classification accuracy with tree depth for Adult dataset.

Figure 3. Variation of classification accuracy with tree depth for Mushroom dataset.

Figure 4 shows the classification accuracy for the number of decision trees in the
random forest at 10, 30, 50, 70, and 90 for the Adult dataset with differential privacy noise
added and privacy budgets of 0.10, 0.25, 0.50, 0.75, and 1.00, respectively. Figure 5 shows
the classification accuracy of the Mushroom dataset when the number of decision trees in
the random forest is 10, 30, 50, 70, and 90 when differential privacy noise is added and the
privacy budget is 0.10, 0.25, 0.50, 0.75, and 1.00, respectively.

Figure 4. Variation of classification accuracy with the number of decision trees for the Adult dataset.
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Figure 5. Variation of classification accuracy with the number of decision trees for Mushroom dataset.

To test the performance of the algorithm, the classification accuracy of Ours algorithm
is compared with RFDPP-gini and DiffP-RFs algorithms on Adult and Mushroom datasets
under the same conditions. Set T = 50, privacy budget to 0.10, 0.25, 0.5, 0.75, 1.00, the depth
of the decision tree to 5, and the number of randomly selected features at node splits to 5.
The experimental results are shown in Figures 6 and 7.

Figure 6. Comparison of classification performance of the three algorithms on Adult dataset.

Figure 7. Comparison of classification performance of the three algorithms on Mushroom dataset.
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4.4. Comparisons

The privacy budget is a measure of how much noise is added and a measure of the
strength of data privacy. As the privacy budget increases, the weaker the privacy of the
data, the stronger the classification accuracy of the algorithm. In the decision tree model,
as the depth of tree increases, the decision tree becomes more branchy, dividing the dataset
to a finer degree, and the division becomes more accurate. The performance of the model is
affected by the privacy budget and the depth of the decision tree.

From Figures 2 and 3, it can be seen that when the depth of the tree is 3 and the
privacy budget is 0.1, 0.25, 0.5, 0.75, and 1.00, the classification accuracy of the algorithm in
this paper 83.21%, 83.40%, 83.60%, 83.70%, and 83.81% for the Adult dataset, respectively,
and the accuracy for the Mushroom dataset is 93.1%, 93.38%, 93.53%, 93.75%, and 93.89%,
and the accuracy all increase with increasing privacy budget. Similarly, the accuracy
of algorithm for two datasets is gradually improved as the depth of the tree increases.
From the above experimental results, it is concluded that the higher the depth of the tree,
the higher the accuracy when the privacy budget is the same, and the larger the privacy
budget, the higher the accuracy when the tree depth is the same.

From Figures 4 and 5, it can be seen that the classification accuracy of the algo-
rithm in this paper for the Adult dataset is 83.50%, 84.11%, 85.03%, 84.95% and 84.81%
when the number of decision trees is 50 and the privacy protection budget is 0.1, 0.25,
0.5, 0.75, and 1.00,respectively. The classification accuracies for Mushroom dataset were
93.43%, 94.19%, 94.50%, 94.47% and 94.43%, respectively. And the highest accuracy of classi-
fication is achieved when the number of trees is 50. This may be because when the number
of trees in the random forest is too small, the generalization ability of the random forest
model is poor and the model classification accuracy increases with the number of decision
trees. When the number of trees is more than 70, as the privacy budget needs to be allocated
to each tree, the more the number of trees the less privacy protection budget on each
tree, and at this time it is the privacy budget that constrains the classification accuracy of
model. Therefore, the selection of the number of trees to be built in the differential privacy
random forest needs to be considered to satisfy the generalization ability of the model
while building a small number of trees to improve the overall model classification accuracy.

From Figures 6 and 7 at privacy budgets of 0.1, 0.25, 0.5, 0.75, and 1.00, the classification
accuracies of the algorithm in this paper are 84.81%, 84.94%, 85.03%, 85.18% and 85.32%
for the Adult dataset and 94.20%, 94.30%, 94.50%, 94.73%, and 94.80% for the Mushroom
dataset, respectively. It can be seen from the figure that the classification accuracy of ours,
RFDPP-gini and DiffP-RFs algorithms for both Adult and Mushroom datasets increase with
increasing privacy protection budget, which is satisfying our expectation. Our algorithm
has better classification accuracy than RFDPP-gini and DiffP-RFs algorithms with the
same privacy protection budget, which is due to the fact that ours algorithm calculates
feature weights and tree weights by differential privacy out-of-bag estimation, which saves
privacy budget, while performing feature selecting, etc. to make more important features
prominent, and finally allocates privacy budget by feature weights and tree weights, which
reduces the effect of noise on important decision trees and important features. In summary,
the algorithm presented in this article makes the data more available while satisfying
privacy protection.

5. Conclusions

In this paper, we propose a differential privacy budget allocation algorithm based on
out-of-bag estimation of random forests, which calculates the weights and feature weights
of trees under different datasets to allocate privacy protection budgets by out-of-bag
estimation, selects a dynamic balance between the generalization ability of random forests
and privacy protection budgets, avoids building decision trees with similar classification
performance in random forests, and avoids too many decision trees making the privacy
budget on each tree too small. At the same time, this paper improves the method of
selecting features for each tree in the random forest, randomly selecting a certain number of
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features, ranking them according to their importance and selecting splits in turn, and adding
differential privacy according to the principle that the higher the importance of features,
the more privacy protection budget is allocated, which makes the privacy protection budget
have a higher utilization rate. However, in the course of the algorithm, the weights of each
tree are found by differential privacy out-of-bag estimation, after which the weights of
each tree are found in the construction of a differential privacy random forest. Follow-up
consideration is given to how weights under different forests can be linked to simplify the
algorithmic process, and further research is conducted to learn how to efficiently allocate
differential privacy protection budgets in other models.
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