Modified Sand Cat Swarm Optimization Algorithm for Solving Constrained Engineering Optimization Problems
Abstract
:1. Introduction
- The original SCSO algorithm is improved by the wandering strategy and the optimization performance of the original SCSO algorithm is enhanced.
- When searching for prey, the triangle walk (TW) strategy is added to expand the search scope of the SCSO algorithm and improve the global exploration ability of the algorithm.
- When attacking prey, the Levy flight walk (LFW) strategy is added to enable the sand cat to walk around the prey, so that the sand cat can find a better position and improve the optimization performance of the algorithm.
- Adding lens opposition-based learning (LOBL) to the MSCSO algorithm enhances the global exploration ability of the algorithm
- The MSCSO algorithm is tested and compared with the other eight algorithms, which proves that the MSCSO algorithm has a better optimization effect.
2. Related Work
3. The Sand Cat Swarm Optimization Algorithm (SCSO)
3.1. Initialize Population
3.2. Search for Prey (Exploration Stage)
3.3. Attack Prey (Exploitation Stage)
3.4. Implementation of the SCSO Algorithm
Algorithm 1. Sand Cat Swarm Optimization Algorithm Pseudo-Code |
Initialize the population |
Calculate the fitness function based on the objective function |
Initialize the r, rG, and R |
While (t ≤ maximum iteration) |
For each search agent |
Obtain a random angle based on the Roulette Wheel Selection (0° ≤ α ≤ 360°) |
If (abs(R) > 1) |
Update the search agent position based on Formula (4) |
Else |
Update the search agent position based on Formula (6) |
End |
T = t + 1 |
End |
4. The Modified Sand Cat Swarm Optimization Algorithm (MSCSO)
4.1. Wandering Strategy
4.1.1. Triangle Walk Strategy
4.1.2. Levy Flight Walk Strategy
4.2. Lens Opposition-Based Learning
4.3. Implementation of the MSCSO Algorithm
Algorithm2. TheModified Sand Cat Swarm Optimization Algorithm Pseudo-Code |
Initialize the population according to Formula (16) |
Calculate the fitness function based on the objective function |
Initialize the r, rG, and R |
While (t ≤ maximum iteration) |
For each search agent |
Obtain a random angle based on the Roulette Wheel Selection (0° ≤ α ≤ 360°). |
If (abs(R) > 1) |
Update the search agent position based on Formula (4) |
Use Formula (12) for the triangle walk strategy to obtain a new position |
Else |
Update the search agent position based on Formula (6) |
Use Formula (13) to carry out the Levy flight walk strategy to obtain a new position |
End |
Conduct the lens opposition-based learning strategy according to Formula (15) |
T = t + 1 |
End |
4.4. Complexity Analysis
- (1)
- The initialization parameter time is O(1).
- (2)
- Initialization of population position time O(N × dim).
- (3)
- Time required for sand cats to prey O(T × N × dim).
- (4)
- Time required for position update of lens opposition-based learning O(T × N × dim).
- (5)
- The cost time of the calculation function includes the calculation time cost of the algorithm itself O(T × N × C), the calculation time cost of walk strategy O(T × N × C), and the calculation time cost of lens opposition-based learning O(T × N × C). Total O(3 × T × N × C).
5. Experimental Results and Discussion
5.1. Experiments on the 23 Standard Benchmark Functions
5.1.1. Result Statistics and Convergence Curve Analysis of the 23 Standard Reference Functions
5.1.2. Analysis of the Wilcoxon Rank Sum Test Results
5.2. Experiments on the CEC2014 Benchmark Function
5.2.1. The CEC2014 Benchmark Function Results Statistics and Image Analysis
5.2.2. Analysis of Box Plot Results
5.2.3. Analysis of the Wilcoxon Rank Sum Test Results
6. Constrained Engineering Design Problems
6.1. Pressure Vessel Design Problem
6.2. Speed Reducer Design Problem
6.3. Welded Beam Design Problem
6.4. Tension/Compression Spring Design Problem
6.5. Cantilever Beam Design Problem
6.6. Multiple Disc Clutch Brake Problem
6.7. Car Crashworthiness Design Problem
7. Conclusions
- -
- According to the experimental image analysis, the proposed TW, FLW, and LBOL enhance the global exploration ability of the MSCSO algorithm.
- -
- According to the experimental statistics, the proposed TW, FLW, and LBOL enhance the optimization performance of the MSCSO algorithm and can find better solutions in most functions.
- -
- In engineering problems, the MSCSO algorithm has obtained better solutions than many other algorithms. It is proved that MSCSO has a good effect in solving engineering problems.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fearn, T. Particle swarm optimization. NIR News 2014, 25, 27. [Google Scholar]
- Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Jia, H.; Peng, X.; Lang, C. Remora optimization algorithm. Expert Syst. Appl. 2021, 185, 115665. [Google Scholar] [CrossRef]
- Assiri, A.S.; Hussien, A.G.; Amin, M. Ant lion optimization: Variants, hybrids, and applications. IEEE Access 2020, 8, 77746–77764. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Hussien, A.G.; Amin, M.; Abd El Aziz, M. A comprehensive review of moth-flame optimisation: Variants, hybrids, and applications. J. Exp. Theor. Artif. Intell. 2020, 32, 705–725. [Google Scholar] [CrossRef]
- Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [Google Scholar] [CrossRef]
- Banzhaf, W.; Koza, J.R. Genetic programming. IEEE Intell. Syst. 2000, 15, 74–84. [Google Scholar] [CrossRef] [Green Version]
- Simon, D. Biogeography-based optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [Google Scholar] [CrossRef] [Green Version]
- Jaderyan, M.; Khotanlou, H. Virulence Optimization Algorithm. Appl. Soft. Comput. 2016, 43, 596–618. [Google Scholar] [CrossRef]
- Sinha, N.; Chakrabarti, R.; Chattopadhyay, P. Evolutionary programming techniques for economic load dispatch. IEEE Trans. Evol. Comput. 2003, 7, 83–94. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential Evolution-A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef]
- Mirjalili, S. SCA: A Sine Cosine Algorithm for Solving Optimization Problems. Knowl.-Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural Comput. Appl. 2015, 27, 495–513. [Google Scholar] [CrossRef]
- Rashedi, E.; Nezamabadi-Pour, H.S. GSA: A Gravitational Search Algorithm. Inform. Sci. 2009, 179, 2232–2248. [Google Scholar] [CrossRef]
- Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inform. Sci. 2013, 222, 175–184. [Google Scholar] [CrossRef]
- Kaveh, A.; Dadras, A. A novel meta-heuristic optimization algorithm: Thermal exchange optimization. Adv. Eng. Softw. 2017, 110, 69–84. [Google Scholar] [CrossRef]
- Kaveh, A.; Khayatazad, M. A new meta-heuristic method: Ray optimization. Comput. Struct. 2012, 112, 283–294. [Google Scholar] [CrossRef]
- Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching-Learning-Based Optimization: An optimization method for continuous non-linear large scale problems. Inform. Sci. 2012, 183, 1–15. [Google Scholar] [CrossRef]
- Zhang, Y.; Jin, Z. Group teaching optimization algorithm: A novel metaheuristic method for solving global optimization problems. Expert Syst. Appl. 2020, 148, 113246. [Google Scholar] [CrossRef]
- Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A New Heuristic Optimization Algorithm: Harmony Search. Simulation 2001, 2, 60–68. [Google Scholar] [CrossRef]
- Satapathy, S.; Naik, A. Social group optimization (SGO): A new population evolutionary optimization technique. Complex Intell. Syst. 2016, 2, 173–203. [Google Scholar] [CrossRef] [Green Version]
- Naser, G.; Ebrahim, B. Exchange market algorith. Appl. Soft. Comput. 2014, 19, 177–187. [Google Scholar]
- Seyyedabbasi, A.; Kiani, F. Sand Cat swarm optimization: A nature-inspired algorithm to solve global optimization problems. Eng. Comput. 2022, 1–25. [Google Scholar] [CrossRef]
- Li, Y.; Wang, G. Sand Cat Swarm Optimization Based on Stochastic Variation With Elite Collaboration. IEEE Access 2022, 10, 89989–90003. [Google Scholar] [CrossRef]
- Jovanovic, D.; Marjanovic, M.; Antonijevic, M.; Zivkovic, M.; Budimirovic, N.; Bacanin, N. Feature Selection by Improved Sand Cat Swarm Optimizer for Intrusion Detection. In Proceedings of the 2022 International Conference on Artificial Intelligence in Everything (AIE), Lefkosa, Cyprus, 2–4 August 2022; pp. 685–690. [Google Scholar]
- Roman, R.C.; Precup, R.E.; Petriu, E.M. Hybrid data-driven fuzzy active disturbance rejection control for tower crane systems. Eur. J. Control 2021, 58, 373–387. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef] [Green Version]
- Chi, R.; Li, H.; Shen, D.; Hou, Z.; Huang, B. Enhanced P-type Control: Indirect Adaptive Learning from Set-point Updates. IEEE Trans. Autom. Control 2022. [Google Scholar] [CrossRef]
- Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S.; Faris, H. MTDE: An effective multi-trial vector-based differential evolution algorithm and its applications for engineering design problems. Appl. Soft Comput. 2020, 97, 106761. [Google Scholar] [CrossRef]
- Hussien, A.G. An enhanced opposition-based salp swarm algorithm for global optimization and engineering problems. J. Ambient. Intell. Humaniz. Comput. 2022, 13, 129–150. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, Z.; Zhang, Q. Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans. Evol. Comput. 2011, 15, 55–66. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Chen, W.; Heidari, A.A.; Wang, M.; Zhao, X.; Liang, G.; Chen, H.; Zhang, X. Ensemble mutation-driven salp swarm algorithm with restart mechanism: Framework and fundamental analysis. Expert Syst. Appl. 2021, 165, 113897. [Google Scholar] [CrossRef]
- Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S. An improved grey wolf optimizer for solving engineering problems. Expert Syst. Appl. 2021, 166, 113917. [Google Scholar] [CrossRef]
- Zheng, R.; Jia, H.; Abualigah, L.; Wang, S.; Wu, D. An improved remora optimization algorithm with autonomous foraging mechanism for global optimization problems. Math. Biosci. Eng. 2022, 19, 3994–4037. [Google Scholar] [CrossRef]
- Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S.; Ewees, A.A.; Abualigah, L.; Abd Elaziz, M. MTV-MFO: Multi-Trial Vector-Based Moth-Flame Optimization Algorithm. Symmetry 2021, 13, 2388. [Google Scholar] [CrossRef]
- Liu, Q.; Li, N.; Jia, H.; Qi, Q.; Abualigah, L. Modified remora optimization algorithm for global optimization and multilevel thresholding image segmentation. Mathematics 2022, 10, 1014. [Google Scholar] [CrossRef]
- Abualigah, L.; Diabat, A.; Mirjalili, S.; Elaziz, M.A.; Gandomi, A.H. The arithmetic optimization algorithm. Comput. Methods Appl. Mech. Eng. 2021, 376, 113609. [Google Scholar] [CrossRef]
- Alsattar, H.A.; Zaidan, A.A.; Zaidan, B.B. Novel meta-heuristic bald eagle search optimisation algorithm. Artif. Intell. Rev. 2020, 53, 2237–2264. [Google Scholar] [CrossRef]
- Dhiman, G.; Kaur, A. STOA: A bio-inspired based optimization algorithm for industrial engineering problems. Eng. Appl. Artif. Intell. 2019, 82, 148–174. [Google Scholar] [CrossRef]
- Rao, H.; Jia, H.; Wu, D.; Wen, C.; Liu, Q.; Abualigah, L. A Modified Group Teaching Optimization Algorithm for Solving Constrained Engineering Optimization Problems. Mathematics 2022, 10, 3765. [Google Scholar] [CrossRef]
- He, Q.; Wang, L. An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng. Appl. Artif. Intell. 2007, 20, 89–99. [Google Scholar] [CrossRef]
- He, Q.; Wang, L. A hybrid particle swarm optimization with a feasibilitybased rule for constrained optimization. Appl. Math. Comput. 2007, 186, 1407–1422. [Google Scholar]
- Gandomi, A.H.; Yang, X.S.; Alavi, A.H. Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Eng. Comput. 2013, 29, 17–35. [Google Scholar] [CrossRef]
- Laith, A.; Dalia, Y.; Mohamed, A.E.; Ahmed, A.E.; Mohammed, A.A.A.; Amir, H.G. Aquila Optimizer: A novel meta-heuristic optimization algorithm. Comput. Ind. Eng. 2021, 157, 107250. [Google Scholar]
- Wang, S.; Hussien, A.G.; Jia, H.; Abualigah, L.; Zheng, R. Enhanced Remora Optimization Algorithm for Solving Constrained Engineering Optimization Problems. Mathematics 2022, 10, 1696. [Google Scholar] [CrossRef]
- Abualigah, L.; Elaziz, M.A.; Sumari, P.; Zong, W.G.; Gandomi, A.H. Reptile search algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Syst. Appl. 2021, 191, 116158. [Google Scholar] [CrossRef]
- Babalik, A.; Cinar, A.C.; Kiran, M.S. A modification of tree-seed algorithm using Deb’s rules for constrained optimization. Appl. Soft. Comput. 2018, 63, 289–305. [Google Scholar] [CrossRef]
- Wen, C.; Jia, H.; Wu, D.; Rao, H.; Li, S.; Liu, Q.; Abualigah, L. Modified Remora Optimization Algorithm with Multistrategies for Global Optimization Problem. Mathematics 2022, 10, 3604. [Google Scholar] [CrossRef]
- Beyer, H.G.; Schwefel, H.P. Evolution strategies–A comprehensive introduction. Nat. Comput. 2002, 1, 3–52. [Google Scholar] [CrossRef]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications. Future Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
- Hayyolalam, V.; Kazem, A.A.P. Black widow optimization algorithm: A novel meta-heuristic approach for solving engineering optimization problems. Eng. Appl. Artif. Intell. 2020, 87, 103249. [Google Scholar] [CrossRef]
- Song, M.; Jia, H.; Abualigah, L.; Liu, Q.; Lin, Z.; Wu, D.; Altalhi, M. Modified Harris Hawks Optimization Algorithm with Exploration Factor and Random Walk Strategy. Comput. Intell. Neurosci. 2022, 2022, 23. [Google Scholar] [CrossRef]
- Eskandar, H.; Sadollah, A.; Bahreininejad, A.; Hamdi, M. Water cycle algorithm–a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct. 2012, 110, 151–166. [Google Scholar] [CrossRef]
- Sayed, G.I.; Darwish, A.; Hassanien, A.E. A new chaotic multi-verse optimization algorithm for solving engineering optimization problems. J. Exp. Theor. Artif. Intell. 2018, 30, 293–317. [Google Scholar] [CrossRef]
- Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. Marine predators algorithm: A nature-inspired metaheuristic. Expert Syst. Appl. 2020, 152, 113377. [Google Scholar] [CrossRef]
- Long, W.; Jiao, J.; Liang, X.; Cai, S.; Xu, M. A random opposition-based learning grey wolf optimizer. IEEE Access 2019, 7, 113810–113825. [Google Scholar] [CrossRef]
- Houssein, E.H.; Neggaz, N.; Hosney, M.E.; Mohamed, W.M.; Hassaballah, M. Enhanced Harris hawks optimization with genetic operators for selection chemical descriptors and compounds activities. Neural Comput. Appl. 2021, 33, 13601–13618. [Google Scholar] [CrossRef]
- Wang, S.; Sun, K.; Zhang, W.; Jia, H. Multilevel thresholding using a modified ant lion optimizer with opposition-based learning for color image segmentation. Math. Biosci. Eng. 2021, 18, 3092–3143. [Google Scholar] [CrossRef]
Algorithm | Parameters | Value |
---|---|---|
GA | Type Selection Crossover Mutation | Real coded Roulette Wheel (proportionate) Whole aritharithmetic (Probability = 0.7) Gaussian (Probability = 0.01) |
STOA | Sa b | [0, 2] 1 |
SCA | α | 2 |
ROA | C | 0.1 |
WOA | Helical parameter b Helical parameter l | 1 [−1, 1] 0.75 [−1, 1] |
BES | α r | [1.5, 2.0] [0, 1] |
AOA | MOP_Max MOP_Min A Mu | 1 0.2 5 0.499 |
SCSO | SM Roulette Wheel selection | 2 [0, 360] |
MSCSO | C SM β Roulette Wheel selection | 0.35 2 [0, 2π] [0, 360] |
Type | F | dim | Range | Fmin |
---|---|---|---|---|
Unimodal benchmark functions | 30/500 | [−100, 100] | 0 | |
30/500 | [−10, 10] | 0 | ||
30/500 | [−100, 100] | 0 | ||
30/500 | [−100, 100] | 0 | ||
30/500 | [−30, 30] | 0 | ||
30/500 | [−100, 100] | 0 | ||
30/500 | [−1.28, 1.28] | 0 | ||
Multimodal benchmark functions | 30/500 | [−500, 500] | −418.9829 × dim | |
30/500 | [−5.12, 5.12] | 0 | ||
30/500 | [−32, 32] | 0 | ||
30/500 | [−600, 600] | 0 | ||
30/500 | [−50, 50] | 0 | ||
30/500 | [−50, 50] | 0 | ||
Fixed-dimension multimodal benchmark functions | 2 | [−65, 65] | 1 | |
4 | [−5, 5] | 0.00030 | ||
2 | [−5, 5] | −1.0316 | ||
2 | [−5, 5] | 0.398 | ||
5 | [−2, 2] | 3 | ||
3 | [−1, 2] | −3.86 | ||
6 | [0, 1] | −3.32 | ||
4 | [0, 10] | −10.1532 | ||
4 | [0, 10] | −10.4028 | ||
4 | [0, 10] | −10.5363 |
F | dim | Metric | MSCSO | SCSO | AOA | BES | WOA | ROA | SCA | STOA | GA |
---|---|---|---|---|---|---|---|---|---|---|---|
F1 | 30 | min | 0 | 8.42 × 10−125 | 3.07 × 10−169 | 0 | 8.8 × 10−91 | 0 | 1.46 × 10−2 | 4.12 × 10−9 | 6.97 × 10−3 |
mean | 0 | 3.70 × 10−111 | 9.15 × 10−20 | 0 | 2.43 × 10−73 | 1.43 × 10−322 | 9.48 | 6.54 × 10−7 | 2.29 × 10−2 | ||
std | 0 | 2.01 × 10−110 | 5.01 × 10−19 | 0 | 1.01 × 10−72 | 0 | 14.4 | 1.03 × 10−6 | 7.21 × 10−3 | ||
500 | min | 0 | 1.64 × 10−110 | 5.6 × 10−1 | 0 | 6.15 × 10−83 | 0 | 9.67 × 104 | 1.31 | 68.7 | |
mean | 0 | 4.64 × 10−96 | 6.49 × 10−1 | 0 | 9.16 × 10−69 | 1.16 × 10−315 | 2 × 105 | 9.46 | 72 | ||
std | 0 | 2.54 × 10−95 | 4.23 × 10−2 | 0 | 3.76 × 10−68 | 0 | 6.07 × 104 | 10.3 | 2.62 | ||
F2 | 30 | min | 0 | 3.02 × 10−65 | 0 | 4.66 × 10−229 | 9.23 × 10−57 | 1.46 × 10−180 | 2.06 × 10−4 | 5.75 × 10−7 | 3.60 × 10−1 |
mean | 0 | 1.28 × 10−58 | 0 | 4.45 × 10−159 | 1.25 × 10−49 | 1.81 × 10−156 | 3.41 × 10−2 | 7.79 × 10−6 | 4.97 × 10−1 | ||
std | 0 | 6.77 × 10−58 | 0 | 2.44 × 10−158 | 6.69 × 10−49 | 9.86 × 10−156 | 9.25 × 10−2 | 8.89 × 10−6 | 6.27 × 10−2 | ||
500 | min | 0 | 4.89 × 10−56 | 5.74 × 10−10 | 3.89 × 10−220 | 1 × 10−54 | 5.87 × 10−180 | 31.9 | 1.07 × 10−2 | 1.33 × 102 | |
mean | 0 | 7.07 × 10−50 | 1.44 × 10−3 | 2.40 × 10−160 | 1.24 × 10−48 | 1.82 × 10−161 | 1.21 × 102 | 1.26 × 10−1 | 1.4 × 102 | ||
std | 0 | 3.81 × 10−49 | 2.22 × 10−3 | 1.32 × 10−159 | 6.21 × 10−48 | 9.02 × 10−161 | 69.6 | 1.04 × 10−1 | 2.59 | ||
F3 | 30 | min | 0 | 6.38 × 10−112 | 8.44 × 10−116 | 0 | 8.72 × 103 | 1.44 × 10−320 | 1.76 × 103 | 2.22 × 10−3 | 6.06 × 103 |
mean | 0 | 2.52 × 10−98 | 4.35 × 10−3 | 3.67 × 10−23 | 4.15 × 104 | 6.51 × 10−280 | 9.64 × 103 | 5.12 × 10−1 | 2.28 × 104 | ||
std | 0 | 1.31 × 10−97 | 9.38 × 10−3 | 2.01 × 10−22 | 1.32 × 104 | 0 | 6.10 × 103 | 2.26 | 8.15 × 103 | ||
500 | min | 0 | 1.53 × 10−98 | 15.5 | 0 | 1.23 × 107 | 4.22 × 10−297 | 4.34 × 106 | 2.31 × 105 | 4.66 × 105 | |
mean | 0 | 6.14 × 10−82 | 34.4 | 15.1 | 2.93 × 107 | 1.51 × 10−260 | 6.85 × 106 | 5.39 × 105 | 7.25 × 105 | ||
std | 0 | 3.36 × 10−81 | 17.8 | 82.6 | 1.26 × 107 | 0 | 1.53 × 106 | 1.93 × 105 | 1.28 × 105 | ||
F4 | 30 | min | 0 | 1.99 × 10−54 | 1.31 × 10−48 | 8.59 × 10−232 | 4.54 | 2.98 × 10−176 | 20.9 | 1.39 × 10−2 | 2.23 × 10−1 |
mean | 0 | 5.92 × 10−49 | 2.53 × 10−2 | 1.96 × 10−158 | 51.6 | 8.49 × 10−157 | 32.1 | 5.94 × 10−2 | 2.91 × 10−1 | ||
std | 0 | 3.14 × 10−48 | 2.01 × 10−2 | 1.07 × 10−157 | 28.7 | 4.31 × 10−156 | 12.2 | 6.97 × 10−2 | 4.6 × 10−2 | ||
500 | min | 0 | 5.55 × 10−51 | 1.64 × 10−1 | 6.92 × 10−227 | 5.57 | 8.10 × 10−177 | 98.5 | 97.4 | 9.44 × 10−1 | |
mean | 0 | 3.65 × 10−44 | 1.78 × 10−1 | 4.41 × 10−153 | 73.7 | 4.30 × 10−156 | 99 | 98.6 | 9.69 × 10−1 | ||
std | 0 | 1.84 × 10−43 | 1.52 × 10−2 | 2.41 × 10−152 | 28.9 | 2.33 × 10−155 | 2.8 × 10−1 | 6 × 10−1 | 1.17 × 10−2 | ||
F5 | 30 | min | 24.5 | 26.2 | 27.7 | 5.99 × 10−1 | 27.2 | 26.1 | 88.5 | 27.3 | 17 |
mean | 27.1 | 27.9 | 28.4 | 25.2 | 27.9 | 27 | 2.62 × 104 | 28.1 | 67.5 | ||
std | 1.37 | 9.07 × 10−1 | 3.21 × 10−1 | 8.94 | 5.15 × 10−1 | 5.78 × 10−1 | 4.94 × 104 | 4.74 × 10−1 | 30.6 | ||
500 | min | 4.96 × 102 | 4.98 × 102 | 4.99 × 102 | 1.01 | 4.96 × 102 | 4.94 × 102 | 1.02 × 109 | 2.63 × 103 | 4.87 × 103 | |
mean | 4.97 × 102 | 4.98 × 102 | 4.99 × 102 | 4.66 × 102 | 4.96 × 102 | 4.95 × 102 | 2.01 × 109 | 1.56 × 104 | 5.14 × 103 | ||
std | 4.8 × 10−1 | 1.95 × 10−1 | 6.6 × 10−2 | 1.14 × 102 | 4.84 × 10−1 | 2.98 × 10−1 | 4.52 × 108 | 1.63 × 104 | 1.46 × 102 | ||
F6 | 30 | min | 9.9 × 10−6 | 1.13 | 2.71 | 1.61 × 10−3 | 1.19 × 10−1 | 2.86 × 10−2 | 5.14 | 2.02 | 7.75 |
mean | 7.21 × 10−1 | 2.09 | 3.19 | 2.33 | 4.95 × 10−1 | 1.34 × 10−1 | 23.5 | 2.69 | 8.07 | ||
std | 3.38 × 10−1 | 6.99 × 10−1 | 3.4 × 10−1 | 3.44 | 3.07 × 10−1 | 1.17 × 10−1 | 64.5 | 5.22 × 10−1 | 1.18 × 10−1 | ||
500 | min | 60.6 | 99 | 1.14 × 102 | 5.72 × 10−5 | 16.7 | 6.07 | 9.69 × 104 | 1.14 × 102 | 3.31 × 102 | |
mean | 85.7 | 1.06 × 102 | 1.16 × 102 | 22 | 32.1 | 16.2 | 2.25 × 105 | 1.23 × 102 | 3.42 × 102 | ||
std | 7.37 | 3.21 | 1.11 | 46.9 | 10.3 | 6.15 | 5.95 × 104 | 8.4 | 4.69 | ||
F7 | 30 | min | 1.11 × 10−6 | 3.21 × 10−6 | 6.35 × 10−6 | 9.28 × 10−4 | 4.29 × 10−5 | 5.79 × 10−6 | 1.16 × 10−2 | 2.03 × 10−3 | 7.19 × 10−2 |
mean | 6.98 × 10−5 | 1.95 × 10−4 | 8.25 × 10−5 | 7.35 × 10−3 | 3.88 × 10−3 | 1.44 × 10−4 | 1.11 × 10−1 | 6.07 × 10−3 | 1.73 × 10−1 | ||
std | 7.4 × 10−5 | 2.66 × 10−4 | 7.76 × 10−5 | 4.37 × 10−3 | 3.49 × 10−3 | 1.42 × 10−4 | 1.17 × 10−1 | 2.82 × 10−3 | 5.63 × 10−2 | ||
500 | min | 9.26 × 10−7 | 3.18 × 10−6 | 5.76 × 10−6 | 1.59 × 10−3 | 2.45 × 10−4 | 1.1 × 10−5 | 8.79 × 103 | 2.15 × 10−1 | 3.89 × 103 | |
mean | 6.66 × 10−5 | 3.09 × 10−4 | 1.04 × 10−4 | 5.15 × 10−3 | 4.1 × 10−3 | 1.73 × 10−4 | 1.52 × 104 | 4.62 × 10−1 | 4.46 × 103 | ||
std | 5.99 × 10−5 | 4.23 × 10−4 | 1.09 × 10−4 | 3.19 × 10−3 | 4.75 × 10−3 | 1.7 × 10−4 | 3.81 × 103 | 2.53 × 10−1 | 2.77 × 102 | ||
F8 | 30 | min | −9.12 × 103 | −7.99 × 103 | −6.03 × 103 | −1.25 × 104 | −1.26 × 104 | −1.26 × 104 | −4.49 × 103 | −6.35 × 103 | −5.71 × 103 |
mean | −7.99 × 103 | −6.56 × 103 | −5.25 × 103 | −9.66 × 103 | −1 × 104 | −1.23 × 104 | −3.79 × 103 | −5.37 × 103 | −4.66 × 103 | ||
std | 5.05 × 102 | 9.09 × 102 | 4.7 × 102 | 2.05 × 103 | 1.76 × 103 | 4.17 × 102 | 2.65 × 102 | 5.59 × 102 | 6.4 × 102 | ||
500 | min | −8.43 × 104 | −6.91 × 104 | −2.6 × 104 | −2.05 × 105 | −2.09 × 105 | −2.09 × 105 | −1.84 × 104 | −3.09 × 104 | −3.67 × 104 | |
mean | −7.36 × 104 | −5.93 × 104 | −2.3 × 104 | −1.6 × 105 | −1.74 × 105 | −2.07 × 105 | −1.58 × 104 | −2.53 × 104 | −3.31 × 104 | ||
std | 4.2 × 103 | 6.73 × 103 | 1.5 × 103 | 2.65 × 104 | 2.64 × 104 | 6.23 × 103 | 1.71 × 103 | 3.86 × 103 | 1.36 × 103 | ||
F9 | 30 | min | 0 | 0 | 0 | 0 | 0 | 0 | 1.05 × 10−2 | 3 × 10−8 | 9.71 × 10−1 |
mean | 0 | 0 | 0 | 0 | 1.89 × 10−15 | 0 | 40.6 | 10.2 | 2.6 | ||
std | 0 | 0 | 0 | 0 | 1.04 × 10−14 | 0 | 34.1 | 14.5 | 7.95 × 10−1 | ||
500 | min | 0 | 0 | 0 | 0 | 0 | 0 | 4.53 × 102 | 1.35 × 10−2 | 2.25 × 103 | |
mean | 0 | 0 | 5.45 × 10−6 | 0 | 6.06 × 10−14 | 0 | 1.29 × 103 | 25.9 | 2.39 × 103 | ||
std | 0 | 0 | 7.17 × 10−6 | 0 | 2.31 × 10−13 | 0 | 5.38 × 102 | 30.1 | 58.1 | ||
F10 | 30 | min | 8.88 × 10−16 | 8.88 × 10−16 | 8.88 × 10−16 | 8.88 × 10−16 | 8.88 × 10−16 | 8.88 × 10−16 | 2.65 × 10−2 | 20 | 8.76 × 10−2 |
mean | 8.88 × 10−16 | 8.88 × 10−16 | 8.88 × 10−16 | 8.88 × 10−16 | 5.15 × 10−15 | 8.88 × 10−16 | 14.1 | 20 | 1.36 × 10−1 | ||
std | 0 | 0 | 0 | 0 | 2.36 × 10−15 | 0 | 8.69 | 1.6 × 10−3 | 3.13 × 10−2 | ||
500 | min | 8.88 × 10−16 | 8.88 × 10−16 | 7.33 × 10−3 | 8.88 × 10−16 | 8.88 × 10−16 | 8.88 × 10−16 | 10.2 | 20 | 2.86 | |
mean | 8.88 × 10−16 | 8.88 × 10−16 | 8.08 × 10−3 | 8.88 × 10−16 | 4.91 × 10−15 | 8.88 × 10−16 | 18.9 | 20 | 2.9 | ||
std | 0 | 0 | 3.38 × 10−4 | 0 | 2.59 × 10−15 | 0 | 3.67 | 4.72 × 10−5 | 2.74 × 10−2 | ||
F11 | 30 | min | 0 | 0 | 3.81 × 10−2 | 0 | 0 | 0 | 3.69 × 10−1 | 3.47 × 10−8 | 4.14 × 10−4 |
mean | 0 | 0 | 2.6 × 10−1 | 0 | 1.49 × 10−2 | 0 | 9.24 × 10−1 | 3.32 × 10−2 | 2.11 × 10−2 | ||
std | 0 | 0 | 1.67 × 10−1 | 0 | 4.6 × 10−2 | 0 | 3.27 × 10−1 | 4.76 × 10−2 | 1.07 × 10−1 | ||
500 | min | 0 | 0 | 6.39 × 103 | 0 | 0 | 0 | 8.3 × 102 | 1.61 × 10−1 | 2.18 × 10−1 | |
mean | 0 | 0 | 1 × 104 | 0 | 0 | 0 | 1.65 × 103 | 7.19 × 10−1 | 2.6 × 10−1 | ||
std | 0 | 0 | 2.67 × 103 | 0 | 0 | 0 | 7.49 × 102 | 3.62 × 10−1 | 9.74 × 10−2 | ||
F12 | 30 | min | 3.26 × 10−6 | 4.27 × 10−2 | 4.35 × 10−1 | 6.17 × 10−5 | 6.98 × 10−3 | 1.92 × 10−3 | 1.92 | 8.13 × 10−2 | 1.61 |
mean | 2.46 × 10−2 | 1.19 × 10−1 | 5.21 × 10−1 | 1.52 × 10−1 | 2.52 × 10−2 | 1.02 × 10−2 | 4.06 × 105 | 2.8 × 10−1 | 1.73 | ||
std | 1.98 × 10−2 | 6.52 × 10−2 | 5.16 × 10−2 | 3.83 × 10−1 | 2.24 × 10−2 | 9.82 × 10−3 | 1.64 × 106 | 1.5 × 10−1 | 3.77 × 10−2 | ||
500 | min | 3.4 × 10−1 | 6.38 × 10−1 | 1.06 | 3.69 × 10−6 | 4.62 × 10−2 | 8.46 × 10−3 | 4.91 × 109 | 2.01 | 2.74 | |
mean | 5.03 × 10−1 | 7.74 × 10−1 | 1.08 | 1.63 × 10−1 | 1.01 × 10−1 | 4.4 × 10−2 | 5.79 × 109 | 4.89 | 2.81 | ||
std | 6.85 × 10−2 | 6.54 × 10−2 | 8.88 × 10−3 | 4.16 × 10−1 | 4.49 × 10−2 | 2.8 × 10−2 | 1.26 × 109 | 3.07 | 3.7 × 10−2 | ||
F13 | 30 | min | 2.02 × 10−1 | 2.03 | 2.58 | 9 × 10−5 | 2.2 × 10−1 | 2.39 × 10−2 | 3.1 | 1.63 | 1.73 × 10−3 |
mean | 1.52 | 2.38 | 2.83 | 1.42 | 5.16 × 10−1 | 2.12 × 10−1 | 1.01 × 105 | 1.94 | 4.96 × 10−3 | ||
std | 7.43 × 10−1 | 4.55 × 10−1 | 1.19 × 10−1 | 1.49 | 2.23 × 10−1 | 1.36 × 10−1 | 3.66 × 105 | 2.23 × 10−1 | 3.54 × 10−3 | ||
500 | min | 48.9 | 49.71 | 50.1 | 1.06 × 10−3 | 9.85 | 1.84 | 6.27 × 109 | 1.05 × 102 | 10.2 | |
mean | 49.4 | 49.8 | 50.2 | 14.1 | 18.6 | 7.45 | 9.85 × 109 | 1.74 × 102 | 11 | ||
std | 1.7 × 10−1 | 7.01 × 10−2 | 3.82 × 10−2 | 21.8 | 5.86 | 3.89 | 1.83 × 109 | 76.3 | 3.72 × 10−1 | ||
F14 | 2 | min | 9.98 × 10−1 | 9.98 × 10−1 | 1.99 | 9.98 × 10−1 | 9.98 × 10−1 | 9.98 × 10−1 | 9.98 × 10−1 | 9.98 × 10−1 | 1 |
mean | 4.13 | 5.76 | 9.13 | 3.26 | 2.9 | 4.45 | 1.46 | 1.98 | 9.68 | ||
std | 3.99 | 4.36 | 4.04 | 1.45 | 3.08 | 4.7 | 8.53 × 10−1 | 1.91 | 3.61 | ||
F15 | 4 | min | 3.07 × 10−4 | 3.07 × 10−4 | 3.8 × 10−4 | 5.61 × 10−4 | 3.09 × 10−4 | 3.09 × 10−4 | 6.11 × 10−4 | 3.2 × 10−4 | 4.07 × 10−4 |
mean | 3.42 × 10−4 | 4.39 × 10−4 | 1.62 × 10−2 | 6.14 × 10−3 | 7.34 × 10−4 | 4.81 × 10−4 | 1.11 × 10−3 | 2.31 × 10−3 | 1.78 × 10−2 | ||
std | 1.68 × 10−4 | 3.2 × 10−4 | 2.63 × 10−2 | 7.26 × 10−3 | 5 × 10−4 | 2.47 × 10−4 | 3.61 × 10−4 | 4.92 × 10−3 | 2.5 × 10−2 | ||
F16 | 2 | min | −1.03 | −1.03 | −1.03 | −1.03 | −1.03 | −1.03 | −1.03 | −1.03 | −1.03 |
mean | −1.03 | −1.03 | −1.03 | −9.97 × 10−1 | −1.03 | −1.03 | −1.03 | −1.03 | −1 | ||
std | 7.84 × 10−12 | 9.12 × 10−10 | 1.57 × 10−7 | 1.65 × 10−1 | 1.72 × 10−9 | 7.67 × 10−8 | 4.86 × 10−5 | 2.26 × 10−6 | 1.43 × 10−2 | ||
F17 | 2 | min | 3.98 × 10−1 | 3.98 × 10−1 | 3.98 × 10−1 | 3.98 × 10−1 | 3.98 × 10−1 | 3.98 × 10−1 | 3.98 × 10−1 | 3.98 × 10−1 | 3.99 × 10−1 |
mean | 3.98 × 10−1 | 3.98 × 10−1 | 3.98 × 10−1 | 5.31 × 10−1 | 3.98 × 10−1 | 3.98 × 10−1 | 3.99 × 10−1 | 3.98 × 10−1 | 1.15 | ||
std | 2.83 × 10−10 | 2.78 × 10−8 | 8.39 × 10−8 | 2.11 × 10−1 | 1.08 × 10−5 | 7.56 × 10−6 | 1.62 × 10−3 | 9.87 × 10−5 | 6.38 × 10−1 | ||
F18 | 5 | min | 3 | 3 | 3 | 3.01 | 3 | 3 | 3 | 3 | 3.1 |
mean | 3 | 3 | 8.4 | 6.41 | 3 | 3 | 3 | 3 | 24.2 | ||
std | 2.59 × 10−7 | 1.1 × 10−5 | 11 | 10.4 | 1.07 × 10−4 | 1.25 × 10−4 | 2.05 × 10−4 | 2.27 × 10−4 | 21.3 | ||
F19 | 3 | min | −3.86 | −3.86 | −3.86 | −3.85 | −3.86 | −3.86 | −3.86 | −3.86 | −3.86 |
mean | −3.86 | −3.86 | −3.85 | −3.7 | −3.86 | −3.86 | −3.85 | −3.86 | −3.71 | ||
std | 1.82 × 10−8 | 4.3 × 10−3 | 4.49 × 10−3 | 2.17 × 10−1 | 4.36 × 10−3 | 2.5 × 10−3 | 6.17 × 10−3 | 7.68 × 10−3 | 3.15 × 10−1 | ||
F20 | 6 | min | −3.32 | −3.32 | −3.16 | −3.25 | −3.32 | −3.32 | −3.12 | −3.13 | −3.32 |
mean | −3.29 | −3.2 | −3.05 | −2.87 | −3.25 | −3.24 | −2.77 | −2.93 | −3.28 | ||
std | 5.54 × 10−2 | 1.47 × 10−1 | 9.24 × 10−2 | 2.62 × 10−1 | 9.14 × 10−2 | 9.84 × 10−2 | 5.08 × 10−1 | 4.13 × 10−1 | 5.8 × 10−2 | ||
F21 | 4 | min | −10.2 | −10.2 | −6.91 | −10.2 | −10.2 | −10.2 | −4.8 | −10.1 | −5.05 |
mean | −10.2 | −4.9 | −3.78 | −6.15 | −7.52 | −10.1 | −1.92 | −3.5 | −1.1 | ||
std | 2.08 × 10−6 | 1.94 | 1.4 | 2.66 | 2.92 | 2.75 × 10−2 | 1.56 | 3.9 | 1.11 | ||
F22 | 4 | min | −10.4 | −10.4 | −6.87 | −10.3 | −10.4 | −10.4 | −5.72 | −10.3 | −5.08 |
mean | −10.4 | −6.56 | −3.43 | −6.16 | −7.11 | −10.4 | −3.43 | −5.88 | −1.23 | ||
std | 4.87 × 10−6 | 2.6 | 1.41 | 2.22 | 3 | 3.04 × 10−2 | 1.77 | 4.43 | 8.7 × 10−1 | ||
F23 | 4 | min | −10.5 | −10.5 | −7.27 | −10.5 | −10.5 | −10.5 | −5.15 | −10.5 | −5.13 |
mean | −10.5 | −7.11 | −4 | −6.4 | −6.69 | −10.5 | −3.65 | −8.08 | −1.66 | ||
std | 1.97 × 10−6 | 2.95 | 1.77 | 3.16 | 3.3 | 2.27 × 10−2 | 2.02 | 3.96 | 1.09 |
F | dim | SCSO vs. MSCSO | AOA vs. MSCSO | BES vs. MSCSO | WOA vs. MSCSO | ROA vs. MSCSO | SCA vs. MSCSO | STOA vs. MSCSO | GA vs. MSCSO |
---|---|---|---|---|---|---|---|---|---|
F1 | 30 | 1.73 × 10−6 | 1.73 × 10−6 | 1 | 1.73 × 10−6 | 2.5 × 10−1 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
500 | 1.73 × 10−6 | 1.73 × 10−6 | 1 | 1.73 × 10−6 | 3.13 × 10−2 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | |
F2 | 30 | 1.73 × 10−6 | 1 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
500 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | |
F3 | 30 | 1.73 × 10−6 | 1.73 × 10−6 | 1 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
500 | 1.73 × 10−6 | 1.73 × 10−6 | 1.25 × 10−1 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | |
F4 | 30 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
500 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | |
F5 | 30 | 4.49 × 10−2 | 4.07 × 10−5 | 2.96 × 10−3 | 1.29 × 10−3 | 9.1 × 10−1 | 1.73 × 10−6 | 2.6 × 10−5 | 8.47 × 10−6 |
500 | 2.35 × 10−6 | 1.73 × 10−6 | 8.73 × 10−3 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | |
F6 | 30 | 4.29 × 10−6 | 1.73 × 10−6 | 1.66 × 10−2 | 7.51 × 10−5 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
500 | 1.73 × 10−6 | 1.73 × 10−6 | 7.69 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | |
F7 | 30 | 3.85 × 10−3 | 9.26 × 10−1 | 1.73 × 10−6 | 2.35 × 10−6 | 1.06 × 10−1 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
500 | 3.5 × 10−2 | 7.81 × 10−1 | 1.73 × 10−6 | 1.73 × 10−6 | 4.11 × 10−3 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | |
F8 | 30 | 1.02 × 10−5 | 1.73 × 10−6 | 4.73 × 10−6 | 1.92 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
500 | 4.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | |
F9 | 30 | 1 | 1 | 1 | 1 | 1 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
500 | 1 | 4.38 × 10−4 | 1 | 1 | 1 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | |
F10 | 30 | 1 | 1 | 1 | 8.19 × 10−6 | 1 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
500 | 1 | 1.73 × 10−6 | 5 × 10−1 | 1.87 × 10−6 | 1 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | |
F11 | 30 | 1 | 1.73 × 10−6 | 1 | 5 × 10−1 | 1 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
500 | 1 | 1.73 × 10−6 | 1 | 1 | 1 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | |
F12 | 30 | 1.73 × 10−6 | 1.73 × 10−6 | 2.99 × 10−1 | 8.97 × 10−2 | 5.29 × 10−4 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
500 | 2.13 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | |
F13 | 30 | 4.2 × 10−4 | 1.73 × 10−6 | 2.43 × 10−2 | 5.75 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 7.66 × 10−1 | 1.73 × 10−6 |
500 | 1.73 × 10−6 | 1.73 × 10−6 | 1.24 × 10−5 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | |
F14 | 2 | 8.61 × 10−1 | 1.36 × 10−5 | 9.92 × 10−1 | 3.82 × 10−1 | 9.1 × 10−1 | 5.98 × 10−2 | 1.53 × 10−1 | 1.64 × 10−5 |
F15 | 4 | 4.86 × 10−5 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.36 × 10−5 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F16 | 2 | 1.92 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 3.72 × 10−5 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F17 | 2 | 3.88 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F18 | 5 | 1.92 × 10−6 | 5.17 × 10−1 | 1.73 × 10−6 | 1.24 × 10−6 | 9.32 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F19 | 6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F20 | 3 | 6.04 × 10−3 | 1.73 × 10−6 | 1.73 × 10−6 | 9.84 × 10−3 | 8.22 × 10−3 | 1.73 × 10−6 | 4.29 × 10−6 | 4.07 × 10−2 |
F21 | 4 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F22 | 4 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F23 | 4 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
Name | NO. | Functions | Fmin |
---|---|---|---|
Unimodal Functions | CEC 1 | Rotated High Conditioned Elliptic Function | 100 |
CEC 2 | Rotated Bent Cigar Function | 200 | |
CEC 3 | Rotated Discus Function | 300 | |
Simple Multimodal Functions | CEC 4 | Shifted and Rotated Rosenbrock’s Function | 400 |
CEC 5 | Shifted and Rotated Ackley’s Function | 500 | |
CEC 6 | Shifted and Rotated Weierstrass Function | 600 | |
CEC 7 | Shifted and Rotated Griewank’s Function | 700 | |
CEC 8 | Shifted Rastrigin’s Function | 800 | |
CEC 9 | Shifted and Rotated Rastrigin’s Function | 900 | |
CEC 10 | Shifted Schwefel’s Function | 1000 | |
CEC 11 | Shifted and Rotated Schwefel’s Schwefel’s Function | 1100 | |
CEC 12 | Shifted and Rotated Katsuura Function | 1200 | |
CEC 13 | Shifted and Rotated HappyCat Function | 1300 | |
CEC 14 | Shifted and Rotated HGBat Function | 1400 | |
CEC 15 | Shifted and Rotated Expanded Griewank’splus Rosenbrock’s Function | 1500 | |
CEC 16 | Shifted and Rotated Expanded Scaffer’s F6 Function | 1600 | |
Hybrid Function 1 | CEC 17 | Hybrid Function 1 (N = 3) | 1700 |
CEC 18 | Hybrid Function 2 (N = 3) | 1800 | |
CEC 19 | Hybrid Function 3 (N = 4) | 1900 | |
CEC 20 | Hybrid Function 4 (N = 4) | 2000 | |
CEC 21 | Hybrid Function 5 (N = 5) | 2100 | |
CEC 22 | Hybrid Function 6 (N = 5) | 2200 | |
Composition Functions | CEC 23 | Composition Function 1 (N = 5) | 2300 |
CEC 24 | Composition Function 2 (N = 3) | 2400 | |
CEC 25 | Composition Function 3 (N = 3) | 2500 | |
CEC 26 | Composition Function 4 (N = 5) | 2600 | |
CEC 27 | Composition Function 5 (N = 5) | 2700 | |
CEC 28 | Composition Function 6 (N = 5) | 2800 | |
CEC 29 | Composition Function 7 (N = 3) | 2900 | |
CEC 30 | Composition Function 8 (N = 3) | 3000 | |
Search Range: [−100, 100]dim |
CEC | Metric | MSCSO | SCSO | AOA | BES | WOA | ROA | SCA | STOA | GA |
---|---|---|---|---|---|---|---|---|---|---|
CEC 1 | min | 1.1 × 105 | 3.11 × 105 | 5.86 × 106 | 1.49 × 107 | 1.57 × 106 | 8.09 × 105 | 3.25 × 106 | 6.71 × 105 | 4.74 × 106 |
mean | 4.85 × 106 | 8.49 × 106 | 7.06 × 107 | 9.19 × 107 | 1.33 × 107 | 1.84 × 107 | 1.18 × 107 | 5.27 × 106 | 7.96 × 107 | |
std | 4.17 × 106 | 5.21 × 106 | 7.92 × 107 | 3.95 × 107 | 9.26 × 106 | 1.3 × 107 | 4.46 × 106 | 4.54 × 106 | 7.05 × 107 | |
CEC 2 | min | 3.42 × 102 | 4.8 × 103 | 2.91 × 109 | 3.55 × 108 | 1.09 × 106 | 1.03 × 107 | 5.93 × 108 | 1.89 × 106 | 1.94 × 109 |
mean | 1.98 × 107 | 9.73 × 107 | 6.65 × 109 | 2.5 × 109 | 3.72 × 107 | 8.66 × 108 | 1.04 × 109 | 4.73 × 108 | 4.25 × 109 | |
std | 6.8 × 107 | 3.3 × 108 | 2.1 × 109 | 1.69 × 109 | 5.70 × 107 | 8.71 × 108 | 3.64 × 108 | 4.5 × 108 | 1.37 × 109 | |
CEC 3 | min | 6.28 × 102 | 1.58 × 103 | 1.08 × 104 | 1.32 × 104 | 1.32 × 104 | 2.14 × 103 | 2.09 × 103 | 2.66 × 103 | 8.27 × 103 |
mean | 3.91 × 103 | 6.51 × 103 | 1.82 × 104 | 6.91 × 104 | 5.52 × 104 | 7.73 × 103 | 1.15 × 104 | 1.41 × 104 | 3.91 × 105 | |
std | 3.26 × 103 | 3.43 × 103 | 4.6 × 103 | 7.61 × 104 | 2.82 × 104 | 3.64 × 103 | 8.21 × 103 | 8.94 × 103 | 6.95 × 105 | |
CEC 4 | min | 4 × 102 | 4.02 × 102 | 5.4 × 102 | 4.96 × 102 | 4.05 × 102 | 4.2 × 102 | 4.47 × 102 | 4.19 × 102 | 5.19 × 102 |
mean | 4.3 × 102 | 4.42 × 102 | 1.7 × 103 | 9.18 × 102 | 4.65 × 102 | 4.79 × 102 | 4.9 × 102 | 4.54 × 102 | 1.02 × 103 | |
std | 32.7 | 25.5 | 7.75 × 102 | 3.03 × 102 | 44.4 | 55.5 | 32.8 | 32.4 | 4.24 × 102 | |
CEC 5 | min | 5.2 × 102 | 5.2 × 102 | 5.2 × 102 | 5.2 × 102 | 5.20 × 102 | 5.2 × 102 | 5.2 × 102 | 5.2 × 102 | 5.2 × 102 |
mean | 5.2 × 102 | 5.2 × 102 | 5.2 × 102 | 5.2 × 102 | 5.20 × 102 | 5.2 × 102 | 5.2 × 102 | 5.2 × 102 | 5.2 × 102 | |
std | 6.61 × 10−2 | 1.11 × 10−1 | 5.24 × 10−2 | 1.32 × 10−1 | 1.44 × 10−1 | 1.25 × 10−1 | 7.51 × 10−2 | 9.08 × 10−2 | 2.36 × 10−1 | |
CEC 6 | min | 6.01 × 102 | 6.04 × 102 | 6.08 × 102 | 6.05 × 102 | 6.05 × 102 | 6.04 × 102 | 6.05 × 102 | 6.04 × 102 | 6.07 × 102 |
mean | 6.05 × 102 | 6.06 × 102 | 6.1 × 102 | 6.09 × 102 | 6.09 × 102 | 6.07 × 102 | 6.08 × 102 | 6.08 × 102 | 6.09 × 102 | |
std | 1.9 | 1.54 | 9.85 × 10−1 | 1.89 | 1.83 | 1.6 | 1.25 | 1.47 | 1.3 | |
CEC 7 | min | 7 × 102 | 7 × 102 | 7.43 × 102 | 7.19 × 102 | 7.01 × 102 | 7.01 × 102 | 7.08 × 102 | 7.01 × 102 | 7.35 × 102 |
mean | 7.01 × 102 | 7.02 × 102 | 8.44 × 102 | 7.57 × 102 | 7.02 × 102 | 7.05 × 102 | 7.14 × 102 | 7.05 × 102 | 7.79 × 102 | |
std | 6.16 × 10−1 | 2.4 | 51.8 | 32.9 | 5.19 × 10−1 | 5.96 | 3.35 | 4.2 | 31.6 | |
CEC 8 | min | 8.03 × 102 | 8.09 × 102 | 8.24 × 102 | 8.38 × 102 | 8.13 × 102 | 8.16 × 102 | 8.29 × 102 | 8.12 × 102 | 8.57 × 102 |
mean | 8.18 × 102 | 8.34 × 102 | 8.52 × 102 | 8.69 × 102 | 8.48 × 102 | 8.39 × 102 | 8.48 × 102 | 8.26 × 102 | 8.79 × 102 | |
std | 7.87 | 12.4 | 14.3 | 16.6 | 19.3 | 11.7 | 7.8 | 9.67 | 14.9 | |
CEC 9 | min | 9.16 × 102 | 9.14 × 102 | 9.24 × 102 | 9.48 × 102 | 9.2 × 102 | 9.15 × 102 | 9.37 × 102 | 9.12 × 102 | 9.47 × 102 |
mean | 9.34 × 102 | 9.37 × 102 | 9.45 × 102 | 9.66 × 102 | 9.52 × 102 | 9.44 × 102 | 9.49 × 102 | 9.32 × 102 | 9.74 × 102 | |
std | 11.8 | 9.09 | 9.26 | 12.4 | 21 | 11 | 8.29 | 10.1 | 13.5 | |
CEC 10 | min | 1.04 × 103 | 1.47 × 103 | 1.14 × 103 | 1.75 × 103 | 1.07 × 103 | 1.11 × 103 | 1.77 × 103 | 1.46 × 103 | 1.44 × 103 |
mean | 1.22 × 103 | 1.79 × 103 | 1.74 × 103 | 2.3 × 103 | 1.72 × 103 | 1.7 × 103 | 2.16 × 103 | 1.83 × 103 | 1.97 × 103 | |
std | 1.89 × 102 | 1.85 × 102 | 2.34 × 102 | 2.75 × 102 | 2.49 × 102 | 2.64 × 102 | 1.87 × 102 | 2.21 × 102 | 2.59 × 102 | |
CEC 11 | min | 1.15 × 103 | 1.64 × 103 | 1.65 × 103 | 2.32 × 103 | 1.94 × 103 | 1.75 × 103 | 2.22 × 103 | 1.78 × 103 | 2.15 × 103 |
mean | 1.84 × 103 | 2.04 × 103 | 2.08 × 103 | 2.77 × 103 | 2.25 × 103 | 2.18 × 103 | 2.58 × 103 | 2.26 × 103 | 2.89 × 103 | |
std | 2.95 × 102 | 3.18 × 102 | 3.49 × 102 | 2.47 × 102 | 3.45 × 102 | 3.57 × 102 | 2.25 × 102 | 3.52 × 102 | 3.49 × 102 | |
CEC 12 | min | 1.2 × 103 | 1.2 × 103 | 1.2 × 103 | 1.2 × 103 | 1.2 × 103 | 1.2 × 103 | 1.2 × 103 | 1.2 × 103 | 1.2 × 103 |
mean | 1.2 × 103 | 1.2 × 103 | 1.2 × 103 | 1.2 × 103 | 1.2 × 103 | 1.2 × 103 | 1.2 × 103 | 1.2 × 103 | 1.2 × 103 | |
std | 1.5 × 10−1 | 3 × 10−1 | 2.71 × 10−1 | 3.7 × 10−1 | 4.86 × 10−1 | 3.37 × 10−1 | 3.12 × 10−1 | 3.86 × 10−1 | 6.82 × 10−1 | |
CEC 13 | min | 1.3 × 103 | 1.3 × 103 | 1.3 × 103 | 1.3 × 103 | 1.3 × 103 | 1.3 × 103 | 1.3 × 103 | 1.3 × 103 | 1.3 × 103 |
mean | 1.3 × 103 | 1.3 × 103 | 1.3 × 103 | 1.3 × 103 | 1.3 × 103 | 1.3 × 103 | 1.3 × 103 | 1.3 × 103 | 1.3 × 103 | |
std | 1.29 × 10−1 | 3.81 × 10−1 | 1.16 | 1.23 | 2.23 × 10−1 | 7.01 × 10−1 | 1.23 × 10−1 | 2.19 × 10−1 | 9.89 × 10−1 | |
CEC 14 | min | 1.4 × 103 | 1.4 × 103 | 1.41 × 103 | 1.41 × 103 | 1.4 × 103 | 1.4 × 103 | 1.4 × 103 | 1.4 × 103 | 1.4 × 103 |
mean | 1.4 × 103 | 1.4 × 103 | 1.43 × 103 | 1.42 × 103 | 1.4 × 103 | 1.4 × 103 | 1.4 × 103 | 1.4 × 103 | 1.41 × 103 | |
std | 2.31 × 10−1 | 1.11 | 11.1 | 9.56 | 3.18 × 10−1 | 5 | 5.64 × 10−1 | 1.05 | 6.66 | |
CEC 15 | min | 1.5 × 103 | 1.5 × 103 | 1.62 × 103 | 1.54 × 103 | 1.5 × 103 | 1.5 × 103 | 1.51 × 103 | 1.5 × 103 | 1.52 × 103 |
mean | 1.5 × 103 | 1.52 × 103 | 5.06 × 103 | 3.09 × 103 | 1.51 × 103 | 1.68 × 103 | 1.52 × 103 | 1.52 × 103 | 4.88 × 103 | |
std | 1.2 | 89.1 | 5.61 × 103 | 3.39 × 103 | 9.82 | 6.46 × 102 | 54.4 | 94 | 5.41 × 103 | |
CEC 16 | min | 1.6 × 103 | 1.6 × 103 | 1.6 × 103 | 1.6 × 103 | 1.6 × 103 | 1.6 × 103 | 1.6 × 103 | 1.6 × 103 | 1.6 × 103 |
mean | 1.6 × 103 | 1.6 × 103 | 1.6 × 103 | 1.6 × 103 | 1.6 × 103 | 1.6 × 103 | 1.6 × 103 | 1.6 × 103 | 1.6 × 103 | |
std | 3.67 × 10−1 | 4.48 × 10−1 | 3.03 × 10−1 | 3.16 × 10−1 | 4.77 × 10−1 | 3.7 × 10−1 | 2.66 × 10−1 | 3.87 × 10−1 | 2.91 × 10−1 | |
CEC 17 | min | 1.95 × 103 | 3.16 × 103 | 6.99 × 104 | 2.27 × 104 | 1.05 × 104 | 3.88 × 103 | 1.87 × 104 | 7.62 × 103 | 5.18 × 105 |
mean | 6.66 × 103 | 4.9 × 104 | 5.22 × 105 | 9.41 × 105 | 3.7 × 105 | 1.24 × 105 | 8.44 × 104 | 1.57 × 105 | 8.93 × 106 | |
std | 3.29 × 103 | 1.34 × 105 | 3.95 × 105 | 1.63 × 106 | 6.73 × 105 | 1.89 × 105 | 1.41 × 105 | 2.04 × 105 | 1.64 × 107 | |
CEC 18 | min | 1.88 × 103 | 3 × 103 | 2.6 × 103 | 8.21 × 103 | 2.58 × 103 | 2.98 × 103 | 1.1 × 104 | 3.04 × 103 | 1.45 × 104 |
mean | 1 × 104 | 1.52 × 104 | 1.4 × 104 | 1.6 × 106 | 1.67 × 104 | 1.22 × 104 | 6.31 × 104 | 1.92 × 104 | 3.29 × 107 | |
std | 5.84 × 103 | 9.62 × 103 | 9.68 × 103 | 5.46 × 106 | 1.42 × 104 | 9.04 × 103 | 9.88 × 104 | 1.62 × 104 | 4.42 × 107 | |
CEC 19 | min | 1.9 × 103 | 1.9 × 103 | 1.91 × 103 | 1.91 × 103 | 1.9 × 103 | 1.9 × 103 | 1.91 × 103 | 1.9 × 103 | 1.91 × 103 |
mean | 1.9 × 103 | 1.9 × 103 | 1.94 × 103 | 1.91 × 103 | 1.91 × 103 | 1.91 × 10+ | 1.91 × 103 | 1.9 × 103 | 1.93 × 103 | |
std | 6.93 × 10−1 | 1.41 | 28.6 | 10.4 | 2.23 | 12.7 | 1.35 | 1.24 | 22.8 | |
CEC 20 | min | 2.04 × 103 | 2.67 × 103 | 5.66 × 103 | 4.3 × 103 | 2.57 × 103 | 2.27 × 103 | 2.9 × 103 | 2.55 × 103 | 7.6 × 103 |
mean | 5.83 × 103 | 8.12 × 103 | 1.38 × 104 | 1.12 × 105 | 1.5 × 104 | 1.04 × 104 | 9.66 × 103 | 1.4 × 104 | 1.53 × 107 | |
std | 3.17 × 103 | 4.05 × 103 | 1.03 × 104 | 4.47 × 105 | 1.25 × 104 | 5.03 × 103 | 7.32 × 103 | 9.73 × 103 | 2.34 × 107 | |
CEC 21 | min | 2.29 × 103 | 3.19 × 103 | 7.03 × 103 | 4.92 × 103 | 1.25 × 104 | 3.16 × 103 | 7. × 103 | 3.64 × 103 | 7.7 × 104 |
mean | 7.85 × 103 | 1.08 × 104 | 1.57 × 106 | 3.77 × 105 | 1.05 × 106 | 5.54 × 105 | 2.05 × 104 | 1.42 × 104 | 3.13 × 106 | |
std | 4.57 × 103 | 6.58 × 103 | 2.3 × 106 | 8.68 × 105 | 3.05 × 106 | 2.97 × 106 | 1.12 × 104 | 1.05 × 104 | 3.71 × 106 | |
CEC 22 | min | 2.22 × 103 | 2.24 × 103 | 2.28 × 103 | 2.26 × 103 | 2.23 × 103 | 2.23 × 103 | 2.26 × 103 | 2.24 × 103 | 2.32 × 103 |
mean | 2.25 × 103 | 2.32 × 103 | 2.42 × 103 | 2.42 × 103 | 2.33 × 103 | 2.31 × 103 | 2.3 × 103 | 2.29 × 103 | 2.67 × 103 | |
std | 47.9 | 66.5 | 1.12 × 102 | 1.11 × 102 | 97.1 | 79.7 | 43 | 62.4 | 1.74 × 102 | |
CEC 23 | min | 2.5 × 103 | 2.5 × 103 | 2.5 × 103 | 2.5 × 103 | 2.5 × 103 | 2.5 × 103 | 2.64 × 103 | 2.63 × 103 | 2.5 × 103 |
mean | 2.5 × 103 | 2.5 × 103 | 2.5 × 103 | 2.6 × 103 | 2.64 × 103 | 2.5 × 103 | 2.65 × 103 | 2.65 × 103 | 2.7 × 103 | |
std | 0 | 0 | 0 | 1.03 × 102 | 28.7 | 0 | 9.08 | 10.4 | 1.12 × 102 | |
CEC 24 | min | 2.52 × 103 | 2.56 × 103 | 2.55 × 103 | 2.57 × 103 | 2.54 × 103 | 2.56 × 103 | 2.55 × 103 | 2.53 × 103 | 2.56 × 103 |
mean | 2.59 × 103 | 2.6 × 103 | 2.59 × 103 | 2.59 × 103 | 2.59 × 103 | 2.6 × 103 | 2.56 × 103 | 2.55 × 103 | 2.6 × 103 | |
std | 23.9 | 7.09 | 20.3 | 14.3 | 28 | 7.1 | 10.1 | 20.6 | 17.8 | |
CEC 25 | min | 2.64 × 103 | 2.7 × 103 | 2.7 × 103 | 2.69 × 103 | 2.69 × 103 | 2.7 × 103 | 2.69 × 103 | 2.7 × 103 | 2.69 × 103 |
mean | 2.7 × 103 | 2.7 × 103 | 2.7 × 103 | 2.7 × 103 | 2.7 × 103 | 2.7 × 103 | 2.7 × 103 | 2.7 × 103 | 2.71 × 103 | |
std | 0 | 0 | 1.89 | 7.13 | 5.95 | 8.37 | 8.8 | 1.34 | 4.6 | |
CEC 26 | min | 2.7 × 103 | 2.7 × 103 | 2.7 × 103 | 2.7 × 103 | 2.7 × 103 | 2.7 × 103 | 2.7 × 103 | 2.7 × 103 | 2.7 × 103 |
mean | 2.7 × 103 | 2.7 × 103 | 2.72 × 103 | 2.7 × 103 | 2.7 × 103 | 2.7 × 103 | 2.7 × 103 | 2.7 × 103 | 2.71 × 103 | |
std | 1.01 × 10−1 | 3.82 × 10−1 | 29.5 | 1.39 | 18.2 | 18.1 | 2.12 × 10−1 | 1.34 × 10−1 | 25 | |
CEC 27 | min | 2.7 × 103 | 2.71 × 103 | 2.9 × 103 | 2.86 × 103 | 3.1 × 103 | 2.9 × 103 | 2.73 × 103 | 3.1 × 103 | 2.75 × 103 |
mean | 2.89 × 103 | 2.89 × 103 | 2.92 × 103 | 3.14 × 103 | 3.14 × 103 | 2.9 × 103 | 3.02 × 103 | 3.17 × 103 | 3.2 × 103 | |
std | 35.1 | 35.4 | 89.2 | 1.76 × 102 | 1.37 × 102 | 0 | 1.63 × 102 | 65.1 | 1.47 × 102 | |
CEC 28 | min | 3 × 103 | 3 × 103 | 3 × 103 | 3 × 103 | 3.23 × 103 | 3 × 103 | 3.24 × 103 | 3.17 × 103 | 3.54 × 103 |
mean | 3 × 103 | 3 × 103 | 3.06 × 103 | 3.34 × 103 | 3.45 × 103 | 3 × 103 | 3.3 × 103 | 3.19 × 103 | 3.88 × 103 | |
std | 0 | 0 | 2.35 × 102 | 2.35 × 102 | 1.87 × 102 | 0 | 72.7 | 12 | 2.2 × 102 | |
CEC 29 | min | 3.1 × 103 | 3.1 × 103 | 3.1 × 103 | 5.19 × 103 | 3.46 × 103 | 3.36 × 103 | 4.47 × 103 | 3.65 × 103 | 5.62 × 103 |
mean | 3.62 × 103 | 2.03 × 105 | 2.29 × 106 | 1.06 × 106 | 4.86 × 105 | 2.42 × 105 | 2.46 × 104 | 6.52 × 103 | 8.91 × 106 | |
std | 3.94 × 102 | 6.07 × 105 | 7.64 × 106 | 1.65 × 106 | 1.16 × 106 | 6.18 × 105 | 2.69 × 104 | 4.52 × 103 | 1.42 × 107 | |
CEC 30 | min | 3.2 × 103 | 3.94 × 103 | 3.2 × 103 | 5.33 × 103 | 4.19 × 103 | 3.94 × 103 | 4.41 × 103 | 3.72 × 103 | 1.01 × 104 |
mean | 4.21 × 103 | 5.11 × 103 | 5.72 × 104 | 3.49 × 104 | 7.96 × 103 | 5.21 × 103 | 5.59 × 103 | 4.32 × 103 | 6.06 × 104 | |
std | 4.93 × 102 | 9.05 × 102 | 9.2 × 104 | 8.4 × 104 | 7.98 × 103 | 1.28 × 103 | 1.25 × 103 | 6.61 × 102 | 8.71 × 104 |
CEC | SCSO vs. MSCSO | AOA vs. MSCSO | BES vs. MSCSO | WOA vs. MSCSO | ROA vs. MSCSO | SCA vs. MSCSO | STOA vs. MSCSO | GA vs. MSCSO |
---|---|---|---|---|---|---|---|---|
CEC 1 | 2.84 × 10−5 | 1.73 × 10−6 | 1.73 × 10−6 | 7.51 × 10−5 | 1.8 × 10−5 | 6.89 × 10−5 | 4.28 × 10−2 | 1.73 × 10−6 |
CEC 2 | 9.63 × 10−4 | 1.73 × 10−6 | 1.92 × 10−6 | 1.25 × 10−4 | 1.73 × 10−6 | 2.6 × 10−6 | 2.6 × 10−5 | 1.92 × 10−6 |
CEC 3 | 4.45 × 10−5 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 2.16 × 10−5 | 2.35 × 10−6 | 2.88 × 10−6 | 1.73 × 10−6 |
CEC 4 | 8.61 × 10−1 | 1.73 × 10−6 | 1.73 × 10−6 | 4.2 × 10−4 | 6.34 × 10−6 | 2.6 × 10−6 | 1.49 × 10−5 | 1.73 × 10−6 |
CEC 5 | 1.71 × 10−3 | 5.22 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.92 × 10−6 |
CEC 6 | 1.66 × 10−2 | 1.92 × 10−6 | 1.73 × 10−6 | 4.29 × 10−6 | 9.71 × 10−5 | 6.34 × 10−6 | 1.13 × 10−5 | 1.73 × 10−6 |
CEC 7 | 8.19 × 10−5 | 1.73 × 10−6 | 1.73 × 10−6 | 1.13 × 10−5 | 2.6 × 10−6 | 1.73 × 10−6 | 1.92 × 10−6 | 1.73 × 10−6 |
CEC 8 | 9.32 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 2.13 × 10−6 | 1.73 × 10−6 | 2.41 × 10−4 | 1.73 × 10−6 |
CEC 9 | 2.18 × 10−2 | 2.58 × 10−3 | 1.73 × 10−6 | 9.63 × 10−4 | 7.71 × 10−4 | 2.35 × 10−6 | 9.27 × 10−3 | 1.92 × 10−6 |
CEC 10 | 2.35 × 10−6 | 1.92 × 10−6 | 1.73 × 10−6 | 3.18 × 10−6 | 3.88 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
CEC 11 | 4.49 × 10−2 | 1.6 × 10−4 | 3.18 × 10−6 | 2.37 × 10−5 | 9.71 × 10−5 | 1.73 × 10−6 | 2.84 × 10−5 | 1.73 × 10−6 |
CEC 12 | 3.88 × 10−4 | 1.73 × 10−6 | 1.92 × 10−6 | 1.73 × 10−6 | 1.92 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
CEC 13 | 3.87 × 10−2 | 1.73 × 10−6 | 1.92 × 10−6 | 5.45 × 10−2 | 3.68 × 10−2 | 1.64 × 10−5 | 8.31 × 10−4 | 1.73 × 10−6 |
CEC 14 | 9.59 × 10−1 | 1.73 × 10−6 | 1.73 × 10−6 | 2.7 × 10−2 | 2.07 × 10−2 | 5.22 × 10−6 | 1.53 × 10−1 | 1.73 × 10−6 |
CEC 15 | 1.04 × 10−3 | 1.73 × 10−6 | 1.73 × 10−6 | 5.22 × 10−6 | 5.75 × 10−6 | 1.73 × 10−6 | 7.51 × 10−5 | 1.73 × 10−6 |
CEC 16 | 2.58 × 10−3 | 2.88 × 10−6 | 2.16 × 10−5 | 7.69 × 10−6 | 4.07 × 10−2 | 1.92 × 10−6 | 1.02 × 10−5 | 1.73 × 10−6 |
CEC 17 | 7.66 × 10−1 | 3.52 × 10−6 | 3.41 × 10−5 | 1.36 × 10−5 | 4.72 × 10−2 | 3.11 × 10−5 | 2.84 × 10−5 | 1.73 × 10−6 |
CEC 18 | 3.82 × 10−1 | 5.04 × 10−1 | 1.73 × 10−6 | 1.06 × 10−1 | 1.31 × 10−1 | 8.92 × 10−5 | 1.02 × 10−1 | 1.92 × 10−6 |
CEC 19 | 2.58 × 10−3 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 5.22 × 10−6 | 1.73 × 10−6 | 3.59 × 10−4 | 1.73 × 10−6 |
CEC 20 | 7.27 × 10−3 | 1.29 × 10−3 | 2.41 × 10−3 | 7.51 × 10−5 | 3.38 × 10−3 | 6.42 × 10−3 | 1.96 × 10−2 | 1.73 × 10−6 |
CEC 21 | 7.27 × 10−3 | 1.02 × 10−5 | 3.18 × 10−6 | 1.92 × 10−6 | 6.87 × 10−2 | 1.85 × 10−2 | 1.85 × 10−2 | 1.73 × 10−6 |
CEC 22 | 2.58 × 10−3 | 3.88 × 10−6 | 1.24 × 10−5 | 6.16 × 10−4 | 5.45 × 10−2 | 2.18 × 10−2 | 3.16 × 10−2 | 1.73 × 10−6 |
CEC 23 | 1 | 1 | 4.38 × 10−4 | 8.3 × 10−6 | 1 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
CEC 24 | 3.34 × 10−4 | 1.81 × 10−2 | 5.2 × 10−1 | 3.09 × 10−1 | 4.69 × 10−2 | 4.45 × 10−5 | 3.52 × 10−6 | 8.29 × 10−1 |
CEC 25 | 5 × 10−1 | 6.25 × 10−1 | 1.34 × 10−1 | 8.2 × 10−1 | 1.56 × 10−2 | 2.35 × 10−6 | 1.73 × 10−6 | 3.72 × 10−5 |
CEC 26 | 9.37 × 10−2 | 1.73 × 10−6 | 2.13 × 10−6 | 1.96 × 10−2 | 4.53 × 10−4 | 1.92 × 10−6 | 4.49 × 10−2 | 1.73 × 10−6 |
CEC 27 | 8.75 × 10−1 | 1.56 × 10−2 | 9.15 × 10−5 | 1.36 × 10−5 | 8.75 × 10−1 | 5.31 × 10−5 | 1.73 × 10−6 | 1.73 × 10−6 |
CEC 28 | 1 | 1 | 3.79 × 10−6 | 1.73 × 10−6 | 1 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
CEC 29 | 7.73 × 10−3 | 8.94 × 10−1 | 2.13 × 10−6 | 4.72 × 10−2 | 4.68 × 10−3 | 3.11 × 10−5 | 1.36 × 10−4 | 1.73 × 10−6 |
CEC 30 | 1.83 × 10−3 | 2.56 × 10−6 | 2.88 × 10−6 | 5.22 × 10−6 | 2.22 × 10−4 | 3.06 × 10−4 | 9.43 × 10−1 | 1.73 × 10−6 |
Algorithm | Ts | Th | R | L | Best Cost |
---|---|---|---|---|---|
MSCSO | 0.742406 | 0.370292 | 40.31962 | 200 | 5734.915 |
MGTOA [43] | 0.754364 | 0.366375 | 40.42809 | 198.5652 | 5752.402458 |
CPSO [44] | 0.8125 | 0.4375 | 42.0913 | 176.7465 | 6061.0777 |
HPSO [45] | 0.8125 | 0.4375 | 42.0984 | 176.6366 | 6059.7143 |
GWO [3] | 0.8125 | 0.4345 | 42.08918 | 176.7587 | 6059.5639 |
CS [46] | 0.8125 | 0.4375 | 42.09845 | 176.6366 | 6059.714335 |
AO [47] | 1.054 | 0.182806 | 59.6219 | 39.805 | 5949.2258 |
EROA [48] | 0.84343 | 0.400762 | 44.786 | 145.9578 | 5935.7301 |
WOA [6] | 0.8125 | 0.4375 | 42.09827 | 176.639 | 6059.741 |
GA [8] | 0.8125 | 0.4375 | 42.0974 | 176.6541 | 6059.94634 |
MVO [16] | 0.8125 | 0.4375 | 42.09074 | 176.7387 | 6060.8066 |
ACO [2] | 0.8125 | 0.4375 | 42.10362 | 176.5727 | 6059.0888 |
Algorithm | Optimal Values for Variables | Optimal Weight | ||||||
---|---|---|---|---|---|---|---|---|
x1 | x2 | x3 | x4 | x5 | x6 | x7 | ||
MSCSO | 3.497592 | 0.7 | 17 | 7.3 | 7.8 | 3.350043 | 5.285504 | 2995.438 |
AOA [40] | 3.50384 | 0.7 | 17 | 7.3 | 7.72933 | 3.35649 | 5.2867 | 2997.9157 |
MFO [7] | 3.497455 | 0.7 | 17 | 7.82775 | 7.712457 | 3.351787 | 5.286352 | 2998.94083 |
CS [46] | 3.5015 | 0.7 | 17 | 7.605 | 7.8181 | 3.352 | 5.2875 | 3000.981 |
RSA [49] | 3.50279 | 0.7 | 17 | 7.30812 | 7.74715 | 3.35067 | 5.28675 | 2996.5157 |
HS [23] | 3.520124 | 0.7 | 17 | 8.37 | 7.8 | 3.36697 | 5.288719 | 3029.002 |
Algorithm | h | l | t | b | Best Weight |
---|---|---|---|---|---|
MSCSO | 0.205723 | 3.253494 | 9.036686 | 0.205731 | 1.695309 |
TSA [50] | 0.244157 | 6.223066 | 8.29555 | 0.244405 | 2.38241101 |
WOA [6] | 0.20536 | 3.48293 | 9.03746 | 0.206276 | 1.730499 |
ROA [4] | 0.200077 | 3.365754 | 9.011182 | 0.206893 | 1.706447 |
GWO [3] | 0.205676 | 3.478377 | 9.03681 | 0.205778 | 1.72624 |
GA [8] | 0.1829 | 4.0483 | 9.3666 | 0.2059 | 1.8242 |
MFO [7] | 0.2057 | 3.4703 | 9.0364 | 0.2057 | 1.72452 |
MVO [16] | 0.205463 | 3.473193 | 9.044502 | 0.205695 | 1.72645 |
GSA [17] | 0.182129 | 3.856979 | 10 | 0.202376 | 1.879952 |
RO [20] | 0.203687 | 3.528467 | 9.004233 | 0.207241 | 1.735344 |
MROA [51] | 0.2062185 | 3.254893 | 9.020003 | 0.206489 | 1.699058 |
Algorithm | d | D | V | Best Weight |
---|---|---|---|---|
MSCSO | 0.05 | 0.374433 | 8.546579 | 0.009872 |
MFO [7] | 0.051994 | 0.364109 | 10.86842 | 0.012667 |
SSA [33] | 0.051207 | 0.345215 | 12.00403 | 0.012676 |
ES [52] | 0.051989 | 0.363965 | 10.89052 | 0.012681 |
PSO [1] | 0.051728 | 0.357644 | 11.24454 | 0.012675 |
EROA [48] | 0.053799 | 0.46951 | 5.811 | 0.010614 |
HHO [53] | 0.051796 | 0.359305 | 11.13886 | 0.012665 |
HS [23] | 0.051154 | 0.349871 | 12.07643 | 0.012671 |
MVO [16] | 0.05251 | 0.37602 | 10.33513 | 0.01279 |
GA [8] | 0.05148 | 0.351661 | 11.6322 | 0.012705 |
GWO [3] | 0.05169 | 0.356737 | 11.28885 | 0.012666 |
DE [13] | 0.051609 | 0.354714 | 11.41083 | 0.01267 |
Algorithm | Optimal Values for Variables | Optimum Weight | ||||
---|---|---|---|---|---|---|
x1 | x2 | x3 | x4 | x5 | ||
MSCSO | 6.01265 | 5.315452 | 4.492016 | 3.501096 | 2.152481 | 1.33995853466334 |
WOA [6] | 5.1261 | 5.6188 | 5.0952 | 3.9329 | 2.3219 | 1.37873150673956 |
BWO [54] | 6.2094 | 6.2094 | 6.2094 | 6.2094 | 6.2094 | 1.93736251728534 |
PSO [1] | 6.0040 | 5.2950 | 4.4915 | 3.5125 | 2.1710 | 1.33998298081255 |
GSA [17] | 5.6052 | 4.9553 | 5.6619 | 3.1959 | 3.2026 | 1.41155753917296 |
ERHHO [55] | 6.0509 | 5.2639 | 4.514 | 3.4605 | 2.1878 | 1.3402 |
Algorithm | Optimal Values for Variables | Optimum Weight | ||||
---|---|---|---|---|---|---|
x1 | x2 | x3 | x4 | x5 | ||
MSCSO | 70 | 90 | 1 | 637.791 | 2 | 0.235242 |
TLBO [21] | 70 | 90 | 1 | 810 | 3 | 0.313656611 |
WCA [56] | 70 | 90 | 1 | 910 | 3 | 0.313656 |
MVO [16] | 70 | 90 | 1 | 910 | 3 | 0.313656 |
CMVO [57] | 70 | 90 | 1 | 910 | 3 | 0.313656 |
MFO [7] | 70 | 90 | 1 | 910 | 3 | 0.313656 |
RSA [49] | 70.0347 | 90.0349 | 1 | 801.7285 | 2.974 | 0.31176 |
Algorithm | MSCSO | ROA [4] | MPA [58] | ROLGWO [59] | HHOCM [60] | MALO [61] |
---|---|---|---|---|---|---|
x1 | 0.500111598 | 0.5 | 0.5 | 0.501255 | 0.500164 | 0.5 |
x2 | 1.228268972 | 1.22942 | 1.22823 | 1.245551 | 1.248612 | 1.2281 |
x3 | 0.500012764 | 0.5 | 0.5 | 0.500046 | 0.659558 | 0.5 |
x4 | 1.202547678 | 1.21197 | 1.2049 | 1.180254 | 1.098515 | 1.2126 |
x5 | 0.500193341 | 0.5 | 0.5 | 0.500035 | 0.757989 | 0.5 |
x6 | 1.052807602 | 1.37798 | 1.2393 | 1.16588 | 0.767268 | 1.308 |
x7 | 0.500029525 | 0.50005 | 0.5 | 0.500088 | 0.500055 | 0.5 |
x8 | 0.34499308 | 0.34489 | 0.34498 | 0.344895 | 0.343105 | 0.3449 |
x9 | 0.335951909 | 0.19263 | 0.192 | 0.299583 | 0.192032 | 0.2804 |
x10 | 0.461176886 | 0.62239 | 0.44035 | 3.59508 | 2.898805 | 0.4242 |
x11 | 1.050120991 | - | 1.78504 | 2.29018 | - | 4.6565 |
Best Weight | 23.19085116 | 23.23544 | 23.19982 | 23.22243 | 24.48358 | 23.2294 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, D.; Rao, H.; Wen, C.; Jia, H.; Liu, Q.; Abualigah, L. Modified Sand Cat Swarm Optimization Algorithm for Solving Constrained Engineering Optimization Problems. Mathematics 2022, 10, 4350. https://doi.org/10.3390/math10224350
Wu D, Rao H, Wen C, Jia H, Liu Q, Abualigah L. Modified Sand Cat Swarm Optimization Algorithm for Solving Constrained Engineering Optimization Problems. Mathematics. 2022; 10(22):4350. https://doi.org/10.3390/math10224350
Chicago/Turabian StyleWu, Di, Honghua Rao, Changsheng Wen, Heming Jia, Qingxin Liu, and Laith Abualigah. 2022. "Modified Sand Cat Swarm Optimization Algorithm for Solving Constrained Engineering Optimization Problems" Mathematics 10, no. 22: 4350. https://doi.org/10.3390/math10224350
APA StyleWu, D., Rao, H., Wen, C., Jia, H., Liu, Q., & Abualigah, L. (2022). Modified Sand Cat Swarm Optimization Algorithm for Solving Constrained Engineering Optimization Problems. Mathematics, 10(22), 4350. https://doi.org/10.3390/math10224350