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Abstract: The sand cat swarm optimization algorithm (SCSO) is a recently proposed metaheuristic
optimization algorithm. It stimulates the hunting behavior of the sand cat, which attacks or searches
for prey according to the sound frequency; each sand cat aims to catch better prey. Therefore, the
sand cat will search for a better location to catch better prey. In the SCSO algorithm, each sand cat
will gradually approach its prey, which makes the algorithm a strong exploitation ability. However,
in the later stage of the SCSO algorithm, each sand cat is prone to fall into the local optimum, making
it unable to find a better position. In order to improve the mobility of the sand cat and the exploration
ability of the algorithm. In this paper, a modified sand cat swarm optimization (MSCSO) algorithm is
proposed. The MSCSO algorithm adds a wandering strategy. When attacking or searching for prey,
the sand cat will walk to find a better position. The MSCSO algorithm with a wandering strategy
enhances the mobility of the sand cat and makes the algorithm have stronger global exploration
ability. After that, the lens opposition-based learning strategy is added to enhance the global property
of the algorithm so that the algorithm can converge faster. To evaluate the optimization effect of the
MSCSO algorithm, we used 23 standard benchmark functions and CEC2014 benchmark functions to
evaluate the optimization performance of the MSCSO algorithm. In the experiment, we analyzed
the data statistics, convergence curve, Wilcoxon rank sum test, and box graph. Experiments show
that the MSCSO algorithm with a walking strategy and a lens position-based learning strategy had
a stronger exploration ability. Finally, the MSCSO algorithm was used to test seven engineering
problems, which also verified the engineering practicability of the proposed algorithm.

Keywords: sand cat swarm optimization algorithm; sound frequency; exploitation ability; wandering
strategy; exploration ability; lens opposition-based learning strategy; engineering problem

MSC: 49K35

1. Introduction

With the development of science and technology, there are many difficulties in de-
scribing and dealing with complex problems. Among these problems, the solution cannot
be described in detail. And with the change in application scenarios, the solutions are
always different. Meta-heuristic algorithms (MAs) are constructed based on intuition or
experience. The optimization problem solved in an acceptable computing time or space
provides a feasible solution. This feasible solution cannot be predicted in advance. Many
engineering optimization problems often need the optimal solution in the complex and
colossal search space. Because of the complexity, nonlinearity, constraints, and modeling
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difficulties of practical engineering problems, seeking efficient optimization algorithms has
become an important research direction.

Inspired by human intelligence, the social behavior of biological groups, and laws
of natural phenomena, scholars have invented many Mas to solve complex optimization
problems. Mas have been used to solve various complex problems in the past few years.
Mas are mainly classified into the following four categories: (1) swarm-based algorithms,
(2) evolutionary-based algorithms, (3) physical-based algorithms, and (4) human-based
algorithms. As shown in Figure 1. The first category mainly simulates the social behavior
of population organisms such as birds, ants, and wolves. Particle Swarm Optimization
(PSO) [1] simulates the foraging behavior of birds. Ant Colony Optimization (ACO) [2]
simulates the behavior of ants in searching for food. Grey Wolf Optimization (GWO) [3]
simulated wolves’ hunting and leadership behavior. In addition, there are many excellent al-
gorithms represented by swarm-based algorithms. For example, the Remora Optimization
Algorithm (ROA) [4], Ant Lion Optimizer (ALO) [5], the Whale Optimization Algorithm
(WOA) [6], and Moth Flame Optimization (MFO) [7]. The second category simulates the
evolution process of organisms. The Genetic Algorithm (GA) [8] is inspired by Darwin’s
theory of evolution and simulates the evolution process of organisms. It is one of the most
representative algorithms in natural evolutionary-based algorithms. Similar algorithms
include Genetic Programming (GP) [9], Biogeography Based Optimizer (BBO) [10], the
Virulence Optimization Algorithm (VOA) [11], Evolutionary Programming (EP) [12], and
Differential Evolution (DE) [13]. The third category simulates the laws of physics. Sim-
ulated Annealing (SA) [14] simulated the principle of annealing. It starts from a higher
initial temperature and then decreases with the decrease of temperature parameters. Algo-
rithms based on this principle include the Sine Cosine Algorithm (SCA) [15], Multi-Verse
Optimization (MVO) [16], the Gravitational Search Algorithm (GSA) [17], the Black Hole
Algorithm (BH) [18], Thermal Exchange Optimization (TEO) [19], and Ray Optimization
(RO) [20]. The last category simulates human behavior. Teaching Learning Based Opti-
mization (TLBO) [21] simulates the teaching process of the class. The Group Teaching
Optimization Algorithm (GTOA) [22] simulates group learning behavior and divides stu-
dents in the class into groups for teaching. Similar algorithms include Harmony Search
(HS) [23], Social Group Optimization (SGO) [24], and the Exchanged Market Algorithm
(EMA) [25]. These algorithms are representative of MAs. They have a good effect on
solving optimization problems.
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Figure 1. Classification of meta-heuristic optimization algorithms.

The Sand Cat Swarm Optimization (SCSO) [26] is a meta-heuristic optimization algo-
rithm proposed in 2022. It is based on the idea of a swarm algorithm. The SCSO algorithm
simulates the hunting behavior of the sand cat. Each sand cat is sensitive to sound fre-
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quency. According to the sound frequency of the prey, the sand cat will choose to attack or
search for prey. In hunting, the sand cat will keep close to its prey. This will cause the sand
cat to fall into the local optimum in the later stage, reducing the optimization performance
of the algorithm. Li et al. proposed a sand cat swarm optimization algorithm based on
stochastic variation and elite collaboration (SE-SCSO) [27]. The SE-SCSO algorithm adds a
randomly changing elite cooperation strategy, which enables the algorithm to break away
from the local extremum, and improves the algorithm’s optimization seeking accuracy and
convergence speed. Jovanovic et al. proposed feature selection by an improved sand cat
swarm optimizer for intrusion detection [28]. They use extreme machine learning to test the
improved sand cat optimization algorithm (HSCSO). The HSCSO algorithm has achieved
good results in feature selection. The SCSO algorithm has insufficient convergence ability
and quickly falls into the local optimum. This paper proposes a modified sand cat swarm
optimization algorithm (MSCSO) for the above problem. Each sand cat has added different
wandering strategies when hunting in order to find a better position. When attacking
prey, the sand cat will walk according to the Levy flight walking (LFW) strategy. When
searching for prey, the sand cat uses the triangle walking (TW) strategy to wander. Sand
cats judge the distance between themselves and their prey and then use a Roulette Wheel
selection algorithm to choose the direction of walking, and finally obtain a new position
according to the trigonometric function calculation principle. Each sand cat searches for
a better location through its walk strategy, which enhances the mobility of the algorithm
and makes the MSCSO algorithm have a stronger global exploration ability. After that,
the global exploration capability of the MSCSO algorithm is further enhanced by lens
opposition-based learning (LOBL).

Through these two strategies, the global capability of the MSCSO algorithm is en-
hanced and the MSCSO algorithm can converge better. In the experimental part, we used
23 standard and CEC2014 benchmark functions to verify the optimization effect of the
MSCSO algorithm, and the tables, convergence curves, box charts, and Wilcoxon rank sum
tests of benchmark test functions were analyzed. Finally, in order to verify the engineering
practicability of the MSCSO algorithm, we selected six engineering problems to test the
optimization performance of the MSCSO algorithm. The results illustrate that the MSCSO
algorithm also performs well in solving optimization problems.

The main contributions of this paper are as follows:

• The original SCSO algorithm is improved by the wandering strategy and the optimiza-
tion performance of the original SCSO algorithm is enhanced.

• When searching for prey, the triangle walk (TW) strategy is added to expand the
search scope of the SCSO algorithm and improve the global exploration ability of
the algorithm.

• When attacking prey, the Levy flight walk (LFW) strategy is added to enable the sand
cat to walk around the prey, so that the sand cat can find a better position and improve
the optimization performance of the algorithm.

• Adding lens opposition-based learning (LOBL) to the MSCSO algorithm enhances the
global exploration ability of the algorithm

• The MSCSO algorithm is tested and compared with the other eight algorithms, which
proves that the MSCSO algorithm has a better optimization effect.

The structure of this article is as follows: The second part introduces the Restated
Work. The third part briefly introduces the SCSO algorithm. The fourth part describes
the improvement strategy of the MSCSO algorithm. The fifth and sixth parts give the
experimental results of the MSCSO algorithm on benchmark functions and engineering
problems. Finally, a summary is made in the seventh part.

2. Related Work

Meta-heuristic algorithms (MAs) are the improvement of the heuristic algorithm,
which is the combination of a random algorithm and a local search algorithm. They mainly
solve the optimal solution by simulating nature and human intelligence. The core of MAs
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is to balance the exploration and development capabilities of algorithms. MAs are widely
used in various optimization fields because of their simplicity, easy implementation, and
high accuracy of solution [29].

However, according to the NFL theorem [30], no MAs can solve all optimization
problems. For this reason, improving the known MAs to better solve different optimiza-
tion problems has become the research direction of many scholars. Many scholars have
conceived many good methods [31]. For the defects of different algorithms, many scholars
have proposed excellent solutions. For example, Mohammad H. Nadimi-Shahraki et al.
proposed a multi-trial vector-based differential evolution algorithm (MTDE). The MTDE
is distinguished by introducing an adaptive movement step designed based on a new
multi-trial vector approach (MTV), which combines different search strategies in the form
of trial vector producers (TVPs). The article uses the MTV method in the MTDE algorithm
through three TVPs and verifies that the MTDE algorithm is more effective in dealing with
different complex problems [32]. The Salp Swarm Algorithm (SSA) [33] simulated the
foraging behavior of the salp swarm. Each salp will follow the best Salp for foraging. The
algorithm has high convergence and coverage, and can approximate the optimal solution
for the population. However, being too close to the optimal solution leads to the decline
of the exploration ability of the SSA, which makes the algorithm difficult to converge in
the later period. Hongliang Zhang et al. proposed the ensemble mutation-driven salp
swarm algorithm with a restart mechanism (CMSRSSSA). The algorithm adds an ensem-
ble mutation strategy. In this strategy, they adopt mutation schemes based on DE rand
local mutation methods in Adaptive CoDE [34]. The exploration ability of the SSA was
enhanced by strengthening the communication between different salps. Secondly, a restart
mechanism is added, which enables individuals trapped in the local optimum to jump out
of the local optimum to obtain a better position. These two mechanisms greatly improve
the exploration ability of the SSA algorithm [35] The GWO algorithm lacks population
diversity, and it is difficult to balance the exploitation and exploration, leading to pre-
mature convergence of the algorithm. Mohammad H. Nadimi Shahraki et al. proposed
an improved Grey Wolf Optimizer (I-GWO). The I-GWO algorithm benefits from a new
movement strategy named a dimension learning-based hanging (DLH) search strategy
inherited from the individual hanging behavior of wolves in nature. The I-GWO algorithm
uses the DLH strategy to build a domain for each gray wolf so that neighboring gray wolves
can share information. This strategy balances the ability of the GWO algorithm exploration
and exploitation and enhances the diversity of the population [36]. The idea of the Remora
Optimization Algorithm (ROA) is that remora depends on powerful marine organisms to
forage. Different organisms forage in different situations with novel content but lack auton-
omy. Zheng et al. proposed an autonomous foraging mechanism [37]. Remora not only
depends on powerful marine organisms to find food but also can find food independently,
which is more in line with biological characteristics and has achieved good optimization
results. Mohammad H. Nadimi-Shahraki proposed a multi-trial vector-based moth-flame
optimization (MTV-MFO) algorithm. In the algorithm, the MFO movement strategy is
substituted by the multi-trial vector (MTV) approach to using a combination of different
movement strategies, each of which is adjusted to accomplish a particular behavior. The
MTV-MFO algorithm uses three different search strategies to improve the global search
ability, maintain the balance between exploration and exploitation, and prevent the original
MFO from premature convergence in the optimization process [38].

3. The Sand Cat Swarm Optimization Algorithm (SCSO)
3.1. Initialize Population

Each sand cat is a 1 × dim array in the dim dimension optimization problem. It
represents the solution to the problem, as shown in Figure 2. In a set of variable values
(Pos1, Pos2, . . . , Posdim), each Pos must lie between the lower and upper boundary. In
the initialization algorithm, an initialization matrix is created according to the size of the
problem (N × dim). In addition, the corresponding solution will be output in each iteration.
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The current solution will be replaced if the next output value is better. If no better solution
is found in the next iteration, the solution of this iteration will not be stored.
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3.2. Search for Prey (Exploration Stage)

The position of each sand cat is expressed as Posi. The SCSO algorithm benefits from
the hearing ability of sand cats in low-frequency detection. Each sand cat can sense the low
frequency below 2 kHz. Therefore, in mathematical modeling, the sensitivity rG is defined
by Formula (1), so that the sensitivity range of the dune cat is 2 to 0 kHz. In addition,
the parameter R is obtained according to Formula (2), and the algorithm exploration and
exploitation ability is controlled.

rG = SM − (
SM × t

T
) (1)

R = 2× rG × rand(0, 1)− rG (2)

where SM is 2, t is the current iteration number, and T is the maximum iteration number.
Each sand cat will randomly find a new location within the sensitivity range when

searching for prey. This is more conducive to the exploration and exploitation of algorithms.
To avoid falling into the local optimum, each sand cat’s sensitivity range (r) is different. As
shown in Formula (3).

r = rG × rand(0, 1) (3)

where rG is used for the guidance parameter r.
Each sand cat will search for the position of prey according to the optimal candidate

position (Posbc), current position (Posc(t)), and its sensitivity range (r). The specific Formula
is shown in (4).

Pos(t + 1) = r× (Posbc(t)− rand(0, 1)× Posc(t)) (4)

3.3. Attack Prey (Exploitation Stage)

The distance (Posrnd) between the sand cat and prey is shown by Formula (5) to
simulate the process of the sand cat attacking prey. Assume that the sensitivity range of
the sand cat is a circle, and the direction of movement uses the Roulette Wheel selection
algorithm to select a random angle (α). Since the random angle selected is between 0◦

and 360◦, its value is between −1 and 1. In this way, each sand cat can move in different
circumferential directions in the search space, as shown in Figure 3. Then, the prey is
attacked according to Formula (6). In this way, the dune cat can approach the hunting
position faster.

posrnd = |rand(0, 1)× posb(t)− posc(t)| (5)

pos(t + 1) = Posb(t)− r× Posrnd × cos(α) (6)



Mathematics 2022, 10, 4350 6 of 41

Mathematics 2022, 10, x FOR PEER REVIEW 6 of 48 
 

 

its value is between −1 and 1. In this way, each sand cat can move in different circumfer-

ential directions in the search space, as shown in Figure 3. Then, the prey is attacked ac-

cording to Formula (6). In this way, the dune cat can approach the hunting position faster. 

α
R

r

R

r

α

Rr

α

R r

α

 

α
R

r

R

r

α

Rr

α

R r

α

 

(a) (b) 

Figure 3. Location update mechanism of the SCSO algorithm. (a) The position of the sand cat group 

in t iteration; (b) The position of the sand cat group in t+1 iteration. 

| (0,1) ( ) ( ) |rnd b cpos rand pos t pos t=  −  (5) 

( 1) ( )  cos( )b rndpos t Pos t r Pos + = −    (6) 

3.4. Implementation of the SCSO Algorithm 

The SCSO algorithm regulates the exploration and exploitation of the algorithm by 

controlling the adaptive parameters rG and R. Formula (1), and shows that rG decreases 

linearly from 2 to 0 during iteration. Therefore, the parameter R is a random value of [−4, 

4]. The sand cat will attack prey when R is less than or equal to 1. Otherwise, the sand cat 

will search for prey, as shown in Formula (7). 

( ( ) (0,1) ( ))| | >1;exploration
( 1)

( ) cos( )          | | 1;exploitation

bc c

b rnd

r Pos t rand Pos t R
Pos t

Pos t Pos r R

 − 
+ 

−   

 (7) 

Formula (7) shows the location update of each sand cat during the exploration and 

exploitation stage. When R ≤ 1, the sand cat will attack its prey. Otherwise, the task of the 

sand cat is to find new prey in the global area. The pseudo-code is shown in Algorithm 1. 

Algorithm 1. Sand Cat Swarm Optimization Algorithm Pseudo-Code 

Initialize the population 

Calculate the fitness function based on the objective function 

Initialize the r, rG, and R 

While (t ≤ maximum iteration) 

 For each search agent 

  Obtain a random angle based on the Roulette Wheel Selection (0° ≤ α ≤ 360°) 

  If (abs(R) > 1) 

   Update the search agent position based on Formula (4) 

  Else 

   Update the search agent position based on Formula (6) 

 End 

T = t + 1 

End 

Figure 3. Location update mechanism of the SCSO algorithm. (a) The position of the sand cat group
in t iteration; (b) The position of the sand cat group in t + 1 iteration.

3.4. Implementation of the SCSO Algorithm

The SCSO algorithm regulates the exploration and exploitation of the algorithm by
controlling the adaptive parameters rG and R. Formula (1), and shows that rG decreases
linearly from 2 to 0 during iteration. Therefore, the parameter R is a random value of [−4, 4].
The sand cat will attack prey when R is less than or equal to 1. Otherwise, the sand cat will
search for prey, as shown in Formula (7).

Pos(t + 1)

{
r× (Posbc(t)− rand(0, 1)× Posc(t)) |R| > 1; exploration
Posb(t)− Posrnd × cos(α)× r |R| ≤ 1; exploitation

(7)

Formula (7) shows the location update of each sand cat during the exploration and
exploitation stage. When R ≤ 1, the sand cat will attack its prey. Otherwise, the task of the
sand cat is to find new prey in the global area. The pseudo-code is shown in Algorithm 1.

Algorithm 1. Sand Cat Swarm Optimization Algorithm Pseudo-Code

Initialize the population
Calculate the fitness function based on the objective function
Initialize the r, rG, and R
While (t ≤maximum iteration)

For each search agent
Obtain a random angle based on the Roulette Wheel Selection (0◦ ≤ α ≤ 360◦)
If (abs(R) > 1)

Update the search agent position based on Formula (4)
Else

Update the search agent position based on Formula (6)
End

T = t + 1
End

4. The Modified Sand Cat Swarm Optimization Algorithm (MSCSO)
4.1. Wandering Strategy
4.1.1. Triangle Walk Strategy

The triangle walk strategy is for the sand cats to walk around as they approach their
prey. First, obtain the distance L1 between the sand cat and its prey. Then, obtain the step
size range L2 of the sand cat. Then, define the sand cat’s walking direction (β) according to
Formula (10). L1 and L2 are shown in Formulas (8) and (9). After that, calculate the distance
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P between the position obtained by swimming and the prey by Formula (11). See Figure 4a
for details. Finally, the position of the sand cat is obtained by Formula (12).

L1 = posb(t)− posc(t) (8)

→
L2 = rand()×

→
L1 (9)

β= 2× π × rand() (10)

P = L1
2 + L2

2 − 2× L1 × L2 × cos(β) (11)

Posnew = posb(t) + r× P (12)

Among them, Posnew is the position obtained through the walking strategy.
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4.1.2. Levy Flight Walk Strategy

When attacking prey, the sand cat is very close to its prey. Levy flight is a very effective
mathematical method for providing random factors. Levy flight can provide a walking
method that conforms to Levy distribution. However, sometimes the step length of Levy’s
flight is too long. In order to better conform to the behavior of sand cats attacking prey,
the constant C = 0.35 is multiplied in Levy flight. This allows the sand cat to walk as close
to its prey as possible, as shown in Figure 4b. Levy’s flight walking strategy is shown in
Formula (13).

Posnew = posb(t) + (posb(t)− posc(t))× C× Levy (13)

4.2. Lens Opposition-Based Learning

The main idea of lens opposition-based learning comes from the principle of convex
lens imaging. The search range is expanded by generating a reverse position based on the
current coordinates [39], which can be seen in Figure 5. In two-dimensional coordinates,
the search range of the x-axis is (a, b) and the y-axis represents a convex lens. Suppose
that the projection of object A on the x-axis is x and the height is h. Through lens imaging,
the image on the other side is A*, A* is projected on the x-axis as x*, and the height is h*.
Through the above analysis, we can calculate the reverse projection x* of x.



Mathematics 2022, 10, 4350 8 of 41

Mathematics 2022, 10, x FOR PEER REVIEW 8 of 48 
 

 

current coordinates [39], which can be seen in Figure 5. In two-dimensional coordinates, 

the search range of the x-axis is (a, b) and the y-axis represents a convex lens. Suppose that 

the projection of object A on the x-axis is x and the height is h. Through lens imaging, the 

image on the other side is A*, A* is projected on the x-axis as x*, and the height is h*. 

Through the above analysis, we can calculate the reverse projection x* of x. 

a b

x*

h*
A*

o

A

x

h

y

x

 

Figure 5. Lens opposition-based learning diagram. 

In Figure 5, x takes o as the base point to obtain its corresponding reverse point x*, 

which can be obtained from the lens imaging principle. 

* *

( ) / 2

( ) / 2

a b x h

x a b h

+ −
=

− +
 (14) 

Let k = h/h* to obtain the Formula (15) based on lens opposition-based learning. 

*

2 2

j j j j j

j

a b a b x
x

k k

+ +
= + −  (15) 

where xj is the individual’s position in the jth dimension and xj* is the inverse solution of 

xj. aj and bj are the maximum and minimum boundaries of dimension j in the search space. 

4.3. Implementation of the MSCSO Algorithm 

Initialization: In the initialization phase, initialize the population size N, dimension 

dim, iteration number T, and initialize the population as shown in Formula (16). 

,
( )

i j j j j
pos ub lb rand lb= −  +  (16) 

where ubj is the upper bound of individual i in the j dimension, lbj is the lower bound of 

individual i in the j dimension, and rand is a random number of [0, 1]. 

Search for prey: The hunting behavior of the sand cat is affected by the parameter R. 

When |R| is greater than 1, it means that the prey is far away. At this time, the sand cat 

will search for prey according to the sensitivity range, as shown in Formula (4). 

Triangle walk strategy (TW): While the sand cat is searching for its prey, it can not 

only search for its prey according to sensitivity range. Through the triangular walk strat-

egy, the sand cat can choose the walking angle to randomly obtain new positions. The 

update is shown in Formula (12). 

Attack prey: When the parameter |R| is less than or equal to 1, this means that the 

sand cat is attacking its prey. Sand cats attack through the Roulette Wheel Selection algo-

rithm by selecting angles and sensitivity range (r). As shown in Formula (6) 

Levy flight walk strategy (LFW): In the stage of attacking prey, the sand cat is close 

to the optimal solution, which tends to lead to the population concentrating on the local 

optimal solution and being unable to find a better solution. Therefore, the levy flight can 

provide a walking method that conforms to levy distribution and make the sand cat more 

mobile. The specific implementation is shown in Formula (13). 

Lens Opposition-Based Learning (LOBL): In order to further enhance the explora-

tion ability of the MSCSO algorithm, lens opposition-based learning is added to further 

enhance the global exploration ability of the algorithm when updating the location. As 

shown in Formula (15). 

Update population position: The location is updated by comparing fitness values. 

When the fitness value obtained from the update is better, the original individual will be 

Figure 5. Lens opposition-based learning diagram.

In Figure 5, x takes o as the base point to obtain its corresponding reverse point x*,
which can be obtained from the lens imaging principle.

(a + b)/2− x
x∗ − (a + b)/2

=
h
h∗

(14)

Let k = h/h* to obtain the Formula (15) based on lens opposition-based learning.

x∗j =
aj + bj

2
+

aj + bj

2k
−

xj

k
(15)

where xj is the individual’s position in the jth dimension and xj* is the inverse solution of
xj. aj and bj are the maximum and minimum boundaries of dimension j in the search space.

4.3. Implementation of the MSCSO Algorithm

Initialization: In the initialization phase, initialize the population size N, dimension
dim, iteration number T, and initialize the population as shown in Formula (16).

posi,j = (ubj − lbj)× rand + lbj (16)

where ubj is the upper bound of individual i in the j dimension, lbj is the lower bound of
individual i in the j dimension, and rand is a random number of [0, 1].

Search for prey: The hunting behavior of the sand cat is affected by the parameter R.
When |R| is greater than 1, it means that the prey is far away. At this time, the sand cat
will search for prey according to the sensitivity range, as shown in Formula (4).

Triangle walk strategy (TW): While the sand cat is searching for its prey, it can not
only search for its prey according to sensitivity range. Through the triangular walk strategy,
the sand cat can choose the walking angle to randomly obtain new positions. The update is
shown in Formula (12).

Attack prey: When the parameter |R| is less than or equal to 1, this means that
the sand cat is attacking its prey. Sand cats attack through the Roulette Wheel Selection
algorithm by selecting angles and sensitivity range (r). As shown in Formula (6)

Levy flight walk strategy (LFW): In the stage of attacking prey, the sand cat is close
to the optimal solution, which tends to lead to the population concentrating on the local
optimal solution and being unable to find a better solution. Therefore, the levy flight can
provide a walking method that conforms to levy distribution and make the sand cat more
mobile. The specific implementation is shown in Formula (13).

Lens Opposition-Based Learning (LOBL): In order to further enhance the exploration
ability of the MSCSO algorithm, lens opposition-based learning is added to further enhance
the global exploration ability of the algorithm when updating the location. As shown in
Formula (15).

Update population position: The location is updated by comparing fitness values.
When the fitness value obtained from the update is better, the original individual will be
replaced. On the contrary, the fitness value of the original individual is better than that of
the newly acquired individual, and the original individual will be retained.

The pseudo-code of the MSCSO algorithm such as Algorithm 2.
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Algorithm 2. The Modified Sand Cat Swarm Optimization Algorithm Pseudo-Code

Initialize the population according to Formula (16)
Calculate the fitness function based on the objective function
Initialize the r, rG, and R
While (t ≤maximum iteration)

For each search agent
Obtain a random angle based on the Roulette Wheel Selection (0◦ ≤ α ≤ 360◦).
If (abs(R) > 1)

Update the search agent position based on Formula (4)
Use Formula (12) for the triangle walk strategy to obtain a new position

Else
Update the search agent position based on Formula (6)
Use Formula (13) to carry out the Levy flight walk strategy to obtain a new position

End
Conduct the lens opposition-based learning strategy according to Formula (15)
T = t + 1
End

The flow chart of the MSCSO algorithm is shown in Figure 6:

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 48 
 

 

replaced. On the contrary, the fitness value of the original individual is better than that of 

the newly acquired individual, and the original individual will be retained. 

The pseudo-code of the MSCSO algorithm such as Algorithm 2. 

Algorithm 2. The Modified Sand Cat Swarm Optimization Algorithm Pseudo-

Code 

Initialize the population according to Formula (16) 

Calculate the fitness function based on the objective function 

Initialize the r, rG, and R 

While (t ≤ maximum iteration) 

 For each search agent 

  Obtain a random angle based on the Roulette Wheel Selection (0° ≤ α ≤ 360°). 

  If (abs(R) > 1) 

   Update the search agent position based on Formula (4) 

   Use Formula (12) for the triangle walk strategy to obtain a new position 

  Else 

   Update the search agent position based on Formula (6) 

   Use Formula (13) to carry out the Levy flight walk strategy to obtain a new po-

sition 

 End 

Conduct the lens opposition-based learning strategy according to Formula (15) 

T = t + 1 

End 

 

The flow chart of the MSCSO algorithm is shown in Figure 6: 

Start
Initialize the population 

according to Formula (16)

Calculate fitness values for 

each individual

Roulette Wheel  Selection to 

set an angle (α)

|R|>1

Update to individual position 

based on Formula (6)

Update to individual position 

based on Formula (4)

Take the levy flight walk 

strategy to obtain a new 

position Posnew

Take a triangle walk strategy 

to get a new position Posnew

Carry out lens opposition 

based learning strategy and 

update sand cat position Posc

Compare the position 

obtained by walking with the 

updated position to obtain a 

better position Posc

Calculate fitness values for 

each individual

t>T

end

t=t+1
Wandering 

strategy

Lens Opposition-Based 
Learning strategy

yes

yes

 

Figure 6. Flowchart for the proposed MSCSO algorithm. 

4.4. Complexity Analysis 

The time complexity depends on the population size of the sand cat (N), the dimen-

sion of the given problem (dim), the number of iterations of the algorithm (T), and the 

evaluation cost required to solve the function (C). Therefore, the time complexity of the 

MSCSO algorithm is shown in Formula (17). 

(MGTOA) (define parameters) (population initialization)

                      (dunction evaluation cost) (location update)

O O O

O O

= +

+ +
 (17) 

Figure 6. Flowchart for the proposed MSCSO algorithm.

4.4. Complexity Analysis

The time complexity depends on the population size of the sand cat (N), the dimension
of the given problem (dim), the number of iterations of the algorithm (T), and the evaluation
cost required to solve the function (C). Therefore, the time complexity of the MSCSO
algorithm is shown in Formula (17).

O(MGTOA) = O(define parameters) + O(population initialization)
+O(dunction evaluation cos t) + O(location update)

(17)

The specific definitions of each complexity are:

(1) The initialization parameter time is O(1).
(2) Initialization of population position time O(N × dim).
(3) Time required for sand cats to prey O(T × N × dim).
(4) Time required for position update of lens opposition-based learning O(T × N × dim).
(5) The cost time of the calculation function includes the calculation time cost of the

algorithm itself O(T × N × C), the calculation time cost of walk strategy O(T × N × C),
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and the calculation time cost of lens opposition-based learning O(T × N × C). Total
O(3 × T × N × C).

Therefore, the time complexity of the MSCSO algorithm is.

O(MSCSO) = O(1 + N × dim + 3× T × N × C + 2× T × N × dim) (18)

Because 1 << T × N × C, 1 << T × N × dim, N × dim << T × N × C, and N × dim <<
T × N × dim, Formula (18) can be simplified to Formula (19).

O(MSCSO) ∼= O(3× T × N × C + 2× T × N × dim) (19)

5. Experimental Results and Discussion

All the experiments in this paper are completed on the computer with the 11th Gen
Intel(R) Core(TM) i7-11700 processor with a primary frequency of 2.50 GHz, 16 GB memory,
and an operating system of 64-bit Windows 11 using matlab2021a.

To verify the optimization effect of the MSCSO algorithm, this paper uses 23 standard
benchmark functions and CEC2014 benchmark functions to verify the performance of
the MSCSO algorithm. To better show the optimization effect, the MSCSO algorithm is
compared with Sand Cat Swarm Optimization (SCSO) [26], the Arithmetic Optimization
Algorithm (AOA) [40], Bald Eagle Search (BES) [41], the Whale Optimization Algorithm
(WOA) [6], the Remora Optimization Algorithm (ROA) [4], the Sine Cosine Algorithm
(SCA) [15], the Sooty Tern Optimization Algorithm (STOA) [42], and Genetic Algorithms
(GA) [8]. The parameter settings of these algorithms are shown in Table 1.

Table 1. Parameter settings for the comparative algorithms.

Algorithm Parameters Value

GA

Type
Selection
Crossover

Mutation

Real coded
Roulette Wheel (proportionate)

Whole aritharithmetic
(Probability = 0.7)

Gaussian
(Probability = 0.01)

STOA Sa
b

[0, 2]
1

SCA α 2
ROA C 0.1

WOA

Coefficient vectors
→
A

Coefficient vectors
→
C

Helical parameter b
Helical parameter l

1
[−1, 1]

0.75
[−1, 1]

BES α
r

[1.5, 2.0]
[0, 1]

AOA

MOP_Max
MOP_Min

A
Mu

1
0.2
5

0.499

SCSO SM
Roulette Wheel selection

2
[0, 360]

MSCSO

C
SM

β
Roulette Wheel selection

0.35
2

[0, 2π]
[0, 360]

5.1. Experiments on the 23 Standard Benchmark Functions

The 23 standard benchmark functions are shown in Table 2. This benchmark contains
seven unimodal, six multimodal, and ten fixed-dimension multimodal functions. Where F
is the mathematical function, dim is the dimension, Range is the interval of the search space,
and Fmin is the optimal value the corresponding function can achieve, as seen in Figure 7. In
this experiment, set the population size N = 30, the spatial dimension dim = 30/500, and the
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maximum number of iterations T = 500. The MSCSO algorithm and the eight comparison
algorithms were independently run thirty times to obtain each algorithm’s best fitness,
average fitness, and standard deviation.

5.1.1. Result Statistics and Convergence Curve Analysis of the 23 Standard
Reference Functions

Table 3 shows the statistical results of nine algorithms in the twenty-three standard
benchmark functions. In the table, the MSCSO algorithm has obtained theoretical optimal
values in F1–F4. The BES obtained the theoretical optimal value in F1. The ROA also has
good convergence ability in F1. In the 30 dimensions, the AOA achieves the best in F2. In
F5–F6, the MSCSO algorithm’s best and mean are only next to the BES. In F7, the MSCSO
algorithm obtains the optimal fitness value and is very stable. In F8, the MSCSO algorithm
is inferior to the WOA, the ROA, and the BES algorithms, but superior to other comparison
algorithms. The MSCSO algorithm achieves theoretical optimum in F9–F11. Compared
with the SCSO algorithm, it has been dramatically improved. In F12–F13, the MSCSO
algorithm did not obtain the best fitness value, but it achieved a better fitness value. In
the 30 dimensions of F13, GA obtain better results, indicating that GA also have better
optimization effects. The function of F14–F23 is relatively simple, and it is easy to find a
better fitness value, but it also tests the optimization ability of the algorithm. The MSCSO
algorithm obtains the optimal fitness value in the combination function’s optimal fitness.
The above analysis proves that the SCSO has a better optimization effect in the MSCSO
algorithm with the TW, LFW, and LOBL strategies.

Table 2. Details of the 23 benchmark functions.

Type F dim Range Fmin

Unimodal
benchmark
functions

F1(x) = ∑n
i=1 x2

i 30/500 [−100, 100] 0
F2(x) = ∑n

i=1|xi |+ ∏n
i=1|xi | 30/500 [−10, 10] 0

F3(x) = ∑n
i=1 (∑

i
j−1 xj)

2 30/500 [−100, 100] 0
F4(x) = max{|xi |, 1 ≤ i ≤ n} 30/500 [−100, 100] 0

F5(x) = ∑n−1
i=1 [100(xi+1 − x2

i )
2
+ (xi − 1)2] 30/500 [−30, 30] 0

F6(x) = ∑n
i=1 (xi + 5)2 30/500 [−100, 100] 0

F7(x) = ∑n
i=1 i× x4

i + random[0, 1) 30/500 [−1.28, 1.28] 0

Multimodal
benchmark
functions

F8(x) = ∑n
i=1−xi sin(

√
|xi |) 30/500 [−500, 500] −418.9829 × dim

F9(x) = ∑n
i=1 [x

2
i − 10 cos(2πxi) + 10] 30/500 [−5.12, 5.12] 0

F10(x) = −20 exp(−0.2
√

1
n ∑n

i=1 x2
i − exp( 1

n ∑n
i=1 cos(2πxi)) + 20 + e) 30/500 [−32, 32] 0

F11(x) = 1
400 ∑n

i=1 x2
i −∏n

i=1 cos( xi√
i
) + 1 30/500 [−600, 600] 0

F12(x) = π
n

{
10 sin(πy1) + ∑n−1

i=1 (yi − 1)2[1 + 10 sin2(πyi+1)] + (yn − 1)2
}

+∑n
i=1 u(xi , 10, 100, 4), where yi = 1 + xi+1

4 ,

u(xi , a, k, m) =

 k(xi − a)m xi > a
0 − a < xi < a
k(−xi − a)m xi < −a

30/500 [−50, 50] 0

F13(x) = 0.1(sin2(3πx1) + ∑n
i=1 (xi − 1)2[1 + sin2(3πxi + 1)]

+(xn − 1)2[1 + sin2(2πxn)]) + ∑n
i=1 u(xi , 5, 100, 4)

30/500 [−50, 50] 0

Fixed-dimension
multimodal
benchmark
functions

F14(x) = ( 1
500 + ∑25

j=1
1

j+∑2
i=1 (xi−aij)

6 )
−1 2 [−65, 65] 1

F15(x) = ∑11
i=1

[
ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]2
4 [−5, 5] 0.00030

F16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + x4

2 2 [−5, 5] −1.0316

F17(x) = (x2 − 5.1
4π2 x2

1 +
5
π x1 − 6)

2
+ 10(1− 1

8π ) cos x1 + 10 2 [−5, 5] 0.398

F18(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 32

2)]

×[30 + (2x1 − 3x2)
2 × (18− 32x2 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)]

5 [−2, 2] 3

F19(x) = −∑4
i=1 ci exp(−∑3

j=1 aij(xj − pij)
2) 3 [−1, 2] −3.86

F20(x) = −∑4
i=1 ci exp(−∑6

j=1 aij(xj − pij)
2) 6 [0, 1] −3.32

F21(x) = −∑5
i=1 [(X− ai)(X− ai)

T + ci ]
−1 4 [0, 10] −10.1532

F22(x) = −∑7
i=1 [(X− ai)(X− ai)

T + ci ]
−1 4 [0, 10] −10.4028

F23(x) = −∑10
i=1 [(X− ai)(X− ai)

T + ci ]
−1 4 [0, 10] −10.5363
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Table 3. Statistical results of the 23 standard reference functions (we bold the data with good algorithm).

F dim Metric MSCSO SCSO AOA BES WOA ROA SCA STOA GA

F1

30
min 0 8.42 × 10−125 3.07 × 10−169 0 8.8 × 10−91 0 1.46 × 10−2 4.12 × 10−9 6.97 × 10−3

mean 0 3.70 × 10−111 9.15 × 10−20 0 2.43 × 10−73 1.43 × 10−322 9.48 6.54 × 10−7 2.29 × 10−2

std 0 2.01 × 10−110 5.01 × 10−19 0 1.01 × 10−72 0 14.4 1.03 × 10−6 7.21 × 10−3

500
min 0 1.64 × 10−110 5.6 × 10−1 0 6.15 × 10−83 0 9.67 × 104 1.31 68.7
mean 0 4.64 × 10−96 6.49 × 10−1 0 9.16 × 10−69 1.16 × 10−315 2 × 105 9.46 72
std 0 2.54 × 10−95 4.23 × 10−2 0 3.76 × 10−68 0 6.07 × 104 10.3 2.62

F2

30
min 0 3.02 × 10−65 0 4.66 × 10−229 9.23 × 10−57 1.46 × 10−180 2.06 × 10−4 5.75 × 10−7 3.60 × 10−1

mean 0 1.28 × 10−58 0 4.45 × 10−159 1.25 × 10−49 1.81 × 10−156 3.41 × 10−2 7.79 × 10−6 4.97 × 10−1

std 0 6.77 × 10−58 0 2.44 × 10−158 6.69 × 10−49 9.86 × 10−156 9.25 × 10−2 8.89 × 10−6 6.27 × 10−2

500
min 0 4.89 × 10−56 5.74 × 10−10 3.89 × 10−220 1 × 10−54 5.87 × 10−180 31.9 1.07 × 10−2 1.33 × 102

mean 0 7.07 × 10−50 1.44 × 10−3 2.40 × 10−160 1.24 × 10−48 1.82 × 10−161 1.21 × 102 1.26 × 10−1 1.4 × 102

std 0 3.81 × 10−49 2.22 × 10−3 1.32 × 10−159 6.21 × 10−48 9.02 × 10−161 69.6 1.04 × 10−1 2.59

F3

30
min 0 6.38 × 10−112 8.44 × 10−116 0 8.72 × 103 1.44 × 10−320 1.76 × 103 2.22 × 10−3 6.06 × 103

mean 0 2.52 × 10−98 4.35 × 10−3 3.67 × 10−23 4.15 × 104 6.51 × 10−280 9.64 × 103 5.12 × 10−1 2.28 × 104

std 0 1.31 × 10−97 9.38 × 10−3 2.01 × 10−22 1.32 × 104 0 6.10 × 103 2.26 8.15 × 103

500
min 0 1.53 × 10−98 15.5 0 1.23 × 107 4.22 × 10−297 4.34 × 106 2.31 × 105 4.66 × 105

mean 0 6.14 × 10−82 34.4 15.1 2.93 × 107 1.51 × 10−260 6.85 × 106 5.39 × 105 7.25 × 105

std 0 3.36 × 10−81 17.8 82.6 1.26 × 107 0 1.53 × 106 1.93 × 105 1.28 × 105

F4

30
min 0 1.99 × 10−54 1.31 × 10−48 8.59 × 10−232 4.54 2.98 × 10−176 20.9 1.39 × 10−2 2.23 × 10−1

mean 0 5.92 × 10−49 2.53 × 10−2 1.96 × 10−158 51.6 8.49 × 10−157 32.1 5.94 × 10−2 2.91 × 10−1

std 0 3.14 × 10−48 2.01 × 10−2 1.07 × 10−157 28.7 4.31 × 10−156 12.2 6.97 × 10−2 4.6 × 10−2

500
min 0 5.55 × 10−51 1.64 × 10−1 6.92 × 10−227 5.57 8.10 × 10−177 98.5 97.4 9.44 × 10−1

mean 0 3.65 × 10−44 1.78 × 10−1 4.41 × 10−153 73.7 4.30 × 10−156 99 98.6 9.69 × 10−1

std 0 1.84 × 10−43 1.52 × 10−2 2.41 × 10−152 28.9 2.33 × 10−155 2.8 × 10−1 6 × 10−1 1.17 × 10−2

F5

30
min 24.5 26.2 27.7 5.99 × 10−1 27.2 26.1 88.5 27.3 17
mean 27.1 27.9 28.4 25.2 27.9 27 2.62 × 104 28.1 67.5
std 1.37 9.07 × 10−1 3.21 × 10−1 8.94 5.15 × 10−1 5.78 × 10−1 4.94 × 104 4.74 × 10−1 30.6

500
min 4.96 × 102 4.98 × 102 4.99 × 102 1.01 4.96 × 102 4.94 × 102 1.02 × 109 2.63 × 103 4.87 × 103

mean 4.97 × 102 4.98 × 102 4.99 × 102 4.66 × 102 4.96 × 102 4.95 × 102 2.01 × 109 1.56 × 104 5.14 × 103

std 4.8 × 10−1 1.95 × 10−1 6.6 × 10−2 1.14 × 102 4.84 × 10−1 2.98 × 10−1 4.52 × 108 1.63 × 104 1.46 × 102

F6

30
min 9.9 × 10−6 1.13 2.71 1.61 × 10−3 1.19 × 10−1 2.86 × 10−2 5.14 2.02 7.75
mean 7.21 × 10−1 2.09 3.19 2.33 4.95 × 10−1 1.34 × 10−1 23.5 2.69 8.07
std 3.38 × 10−1 6.99 × 10−1 3.4 × 10−1 3.44 3.07 × 10−1 1.17 × 10−1 64.5 5.22 × 10−1 1.18 × 10−1

500
min 60.6 99 1.14 × 102 5.72 × 10−5 16.7 6.07 9.69 × 104 1.14 × 102 3.31 × 102

mean 85.7 1.06 × 102 1.16 × 102 22 32.1 16.2 2.25 × 105 1.23 × 102 3.42 × 102

std 7.37 3.21 1.11 46.9 10.3 6.15 5.95 × 104 8.4 4.69
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Table 3. Cont.

F dim Metric MSCSO SCSO AOA BES WOA ROA SCA STOA GA

F7

30
min 1.11 × 10−6 3.21 × 10−6 6.35 × 10−6 9.28 × 10−4 4.29 × 10−5 5.79 × 10−6 1.16 × 10−2 2.03 × 10−3 7.19 × 10−2

mean 6.98 × 10−5 1.95 × 10−4 8.25 × 10−5 7.35 × 10−3 3.88 × 10−3 1.44 × 10−4 1.11 × 10−1 6.07 × 10−3 1.73 × 10−1

std 7.4 × 10−5 2.66 × 10−4 7.76 × 10−5 4.37 × 10−3 3.49 × 10−3 1.42 × 10−4 1.17 × 10−1 2.82 × 10−3 5.63 × 10−2

500
min 9.26 × 10−7 3.18 × 10−6 5.76 × 10−6 1.59 × 10−3 2.45 × 10−4 1.1 × 10−5 8.79 × 103 2.15 × 10−1 3.89 × 103

mean 6.66 × 10−5 3.09 × 10−4 1.04 × 10−4 5.15 × 10−3 4.1 × 10−3 1.73 × 10−4 1.52 × 104 4.62 × 10−1 4.46 × 103

std 5.99 × 10−5 4.23 × 10−4 1.09 × 10−4 3.19 × 10−3 4.75 × 10−3 1.7 × 10−4 3.81 × 103 2.53 × 10−1 2.77 × 102

F8

30
min −9.12 × 103 −7.99 × 103 −6.03 × 103 −1.25 × 104 −1.26 × 104 −1.26 × 104 −4.49 × 103 −6.35 × 103 −5.71 × 103

mean −7.99 × 103 −6.56 × 103 −5.25 × 103 −9.66 × 103 −1 × 104 −1.23 × 104 −3.79 × 103 −5.37 × 103 −4.66 × 103

std 5.05 × 102 9.09 × 102 4.7 × 102 2.05 × 103 1.76 × 103 4.17 × 102 2.65 × 102 5.59 × 102 6.4 × 102

500
min −8.43 × 104 −6.91 × 104 −2.6 × 104 −2.05 × 105 −2.09 × 105 −2.09 × 105 −1.84 × 104 −3.09 × 104 −3.67 × 104

mean −7.36 × 104 −5.93 × 104 −2.3 × 104 −1.6 × 105 −1.74 × 105 −2.07 × 105 −1.58 × 104 −2.53 × 104 −3.31 × 104

std 4.2 × 103 6.73 × 103 1.5 × 103 2.65 × 104 2.64 × 104 6.23 × 103 1.71 × 103 3.86 × 103 1.36 × 103

F9

30
min 0 0 0 0 0 0 1.05 × 10−2 3 × 10−8 9.71 × 10−1

mean 0 0 0 0 1.89 × 10−15 0 40.6 10.2 2.6
std 0 0 0 0 1.04 × 10−14 0 34.1 14.5 7.95 × 10−1

500
min 0 0 0 0 0 0 4.53 × 102 1.35 × 10−2 2.25 × 103

mean 0 0 5.45 × 10−6 0 6.06 × 10−14 0 1.29 × 103 25.9 2.39 × 103

std 0 0 7.17 × 10−6 0 2.31 × 10−13 0 5.38 × 102 30.1 58.1

F10

30
min 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 2.65 × 10−2 20 8.76 × 10−2

mean 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 5.15 × 10−15 8.88 × 10−16 14.1 20 1.36 × 10−1

std 0 0 0 0 2.36 × 10−15 0 8.69 1.6 × 10−3 3.13 × 10−2

500
min 8.88 × 10−16 8.88 × 10−16 7.33 × 10−3 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 10.2 20 2.86
mean 8.88 × 10−16 8.88 × 10−16 8.08 × 10−3 8.88 × 10−16 4.91 × 10−15 8.88 × 10−16 18.9 20 2.9
std 0 0 3.38 × 10−4 0 2.59 × 10−15 0 3.67 4.72 × 10−5 2.74 × 10−2

F11

30
min 0 0 3.81 × 10−2 0 0 0 3.69 × 10−1 3.47 × 10−8 4.14 × 10−4

mean 0 0 2.6 × 10−1 0 1.49 × 10−2 0 9.24 × 10−1 3.32 × 10−2 2.11 × 10−2

std 0 0 1.67 × 10−1 0 4.6 × 10−2 0 3.27 × 10−1 4.76 × 10−2 1.07 × 10−1

500
min 0 0 6.39 × 103 0 0 0 8.3 × 102 1.61 × 10−1 2.18 × 10−1

mean 0 0 1 × 104 0 0 0 1.65 × 103 7.19 × 10−1 2.6 × 10−1

std 0 0 2.67 × 103 0 0 0 7.49 × 102 3.62 × 10−1 9.74 × 10−2

F12

30
min 3.26 × 10−6 4.27 × 10−2 4.35 × 10−1 6.17 × 10−5 6.98 × 10−3 1.92 × 10−3 1.92 8.13 × 10−2 1.61
mean 2.46 × 10−2 1.19 × 10−1 5.21 × 10−1 1.52 × 10−1 2.52 × 10−2 1.02 × 10−2 4.06 × 105 2.8 × 10−1 1.73
std 1.98 × 10−2 6.52 × 10−2 5.16 × 10−2 3.83 × 10−1 2.24 × 10−2 9.82 × 10−3 1.64 × 106 1.5 × 10−1 3.77 × 10−2

500
min 3.4 × 10−1 6.38 × 10−1 1.06 3.69 × 10−6 4.62 × 10−2 8.46 × 10−3 4.91 × 109 2.01 2.74
mean 5.03 × 10−1 7.74 × 10−1 1.08 1.63 × 10−1 1.01 × 10−1 4.4 × 10−2 5.79 × 109 4.89 2.81
std 6.85 × 10−2 6.54 × 10−2 8.88 × 10−3 4.16 × 10−1 4.49 × 10−2 2.8 × 10−2 1.26 × 109 3.07 3.7 × 10−2
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Table 3. Cont.

F dim Metric MSCSO SCSO AOA BES WOA ROA SCA STOA GA

F13

30
min 2.02 × 10−1 2.03 2.58 9 × 10−5 2.2 × 10−1 2.39 × 10−2 3.1 1.63 1.73 × 10−3

mean 1.52 2.38 2.83 1.42 5.16 × 10−1 2.12 × 10−1 1.01 × 105 1.94 4.96 × 10−3

std 7.43 × 10−1 4.55 × 10−1 1.19 × 10−1 1.49 2.23 × 10−1 1.36 × 10−1 3.66 × 105 2.23 × 10−1 3.54 × 10−3

500
min 48.9 49.71 50.1 1.06 × 10−3 9.85 1.84 6.27 × 109 1.05 × 102 10.2
mean 49.4 49.8 50.2 14.1 18.6 7.45 9.85 × 109 1.74 × 102 11
std 1.7 × 10−1 7.01 × 10−2 3.82 × 10−2 21.8 5.86 3.89 1.83 × 109 76.3 3.72 × 10−1

F14 2
min 9.98 × 10−1 9.98 × 10−1 1.99 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 1
mean 4.13 5.76 9.13 3.26 2.9 4.45 1.46 1.98 9.68
std 3.99 4.36 4.04 1.45 3.08 4.7 8.53 × 10−1 1.91 3.61

F15 4
min 3.07 × 10−4 3.07 × 10−4 3.8 × 10−4 5.61 × 10−4 3.09 × 10−4 3.09 × 10−4 6.11 × 10−4 3.2 × 10−4 4.07 × 10−4

mean 3.42 × 10−4 4.39 × 10−4 1.62 × 10−2 6.14 × 10−3 7.34 × 10−4 4.81 × 10−4 1.11 × 10−3 2.31 × 10−3 1.78 × 10−2

std 1.68 × 10−4 3.2 × 10−4 2.63 × 10−2 7.26 × 10−3 5 × 10−4 2.47 × 10−4 3.61 × 10−4 4.92 × 10−3 2.5 × 10−2

F16 2
min −1.03 −1.03 −1.03 −1.03 −1.03 −1.03 −1.03 −1.03 −1.03
mean −1.03 −1.03 −1.03 −9.97 × 10−1 −1.03 −1.03 −1.03 −1.03 −1
std 7.84 × 10−12 9.12 × 10−10 1.57 × 10−7 1.65 × 10−1 1.72 × 10−9 7.67 × 10−8 4.86 × 10−5 2.26 × 10−6 1.43 × 10−2

F17 2
min 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.99 × 10−1

mean 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 5.31 × 10−1 3.98 × 10−1 3.98 × 10−1 3.99 × 10−1 3.98 × 10−1 1.15
std 2.83 × 10−10 2.78 × 10−8 8.39 × 10−8 2.11 × 10−1 1.08 × 10−5 7.56 × 10−6 1.62 × 10−3 9.87 × 10−5 6.38 × 10−1

F18 5
min 3 3 3 3.01 3 3 3 3 3.1
mean 3 3 8.4 6.41 3 3 3 3 24.2
std 2.59 × 10−7 1.1 × 10−5 11 10.4 1.07 × 10−4 1.25 × 10−4 2.05 × 10−4 2.27 × 10−4 21.3

F19 3
min −3.86 −3.86 −3.86 −3.85 −3.86 −3.86 −3.86 −3.86 −3.86
mean −3.86 −3.86 −3.85 −3.7 −3.86 −3.86 −3.85 −3.86 −3.71
std 1.82 × 10−8 4.3 × 10−3 4.49 × 10−3 2.17 × 10−1 4.36 × 10−3 2.5 × 10−3 6.17 × 10−3 7.68 × 10−3 3.15 × 10−1

F20 6
min −3.32 −3.32 −3.16 −3.25 −3.32 −3.32 −3.12 −3.13 −3.32
mean −3.29 −3.2 −3.05 −2.87 −3.25 −3.24 −2.77 −2.93 −3.28
std 5.54 × 10−2 1.47 × 10−1 9.24 × 10−2 2.62 × 10−1 9.14 × 10−2 9.84 × 10−2 5.08 × 10−1 4.13 × 10−1 5.8 × 10−2

F21 4
min −10.2 −10.2 −6.91 −10.2 −10.2 −10.2 −4.8 −10.1 −5.05
mean −10.2 −4.9 −3.78 −6.15 −7.52 −10.1 −1.92 −3.5 −1.1
std 2.08 × 10−6 1.94 1.4 2.66 2.92 2.75 × 10−2 1.56 3.9 1.11

F22 4
min −10.4 −10.4 −6.87 −10.3 −10.4 −10.4 −5.72 −10.3 −5.08
mean −10.4 −6.56 −3.43 −6.16 −7.11 −10.4 −3.43 −5.88 −1.23
std 4.87 × 10−6 2.6 1.41 2.22 3 3.04 × 10−2 1.77 4.43 8.7 × 10−1

F23 4
min −10.5 −10.5 −7.27 −10.5 −10.5 −10.5 −5.15 −10.5 −5.13
mean −10.5 −7.11 −4 −6.4 −6.69 −10.5 −3.65 −8.08 −1.66
std 1.97 × 10−6 2.95 1.77 3.16 3.3 2.27 × 10−2 2.02 3.96 1.09



Mathematics 2022, 10, 4350 16 of 41

The Table 3 analysis cannot fully prove the optimization effect of the MSCSO algorithm
in the 23 standard benchmark functions. In order to better understand the optimization
effect of MSCSO, Figures 8–10 show the convergence curves of each algorithm. It can be
seen from the image that the MSCSO algorithm has a strong convergence ability in F1–F4,
and the optimal value is found quickly. There is a small gap between algorithms in F5. In
F6 and F12 of Figure 8, the MSCSO algorithm can jump out of the local optimum in the later
stage so that the algorithm can converge better. Because the walking strategy is added, the
sand cat group has stronger mobility, which makes the sand cat have a stronger walking
ability. The exploration ability of the MSCSO algorithm is enhanced by lens opposition-
based learning. It can be concluded that the MSCSO algorithm has a better optimization
effect than the SCSO algorithm in these functions. In F7, the MSCSO algorithm can quickly
find a very excellent fitness value. This shows that the exploration ability of the MSCSO
algorithm has been enhanced and better solutions can be found. In F9–F11, the MSCSO
algorithm can quickly find the optimal value compared with other comparison algorithms.
In F14–F23, these algorithms can find a better fitness value. These algorithms have good
optimization effects, but the MSCSO algorithm can also find very good fitness values. It
can be seen from F14, F15, F21, F22, and F23 that the MSCSO algorithm is more excellent.
According to the comprehensive analysis of tables and images, the MSCSO algorithm is
more stable and can find better values.

5.1.2. Analysis of the Wilcoxon Rank Sum Test Results

The Wilcoxon rank sum test is a nonparametric statistical test that can find more
complex data distribution. Table 3 gives the best fitness value, average value, and standard
deviation of each algorithm but does not compare with the results of multiple algorithms.
Therefore, the Wilcoxon rank sum test is required for further verification and testing.
Table 4 shows the experimental results of the MSCSO algorithm and eight other different
algorithms running thirty times in the twenty-three standard benchmark functions. The
significance level is 5%. Less than 5% indicates a significant difference between the two
algorithms. It can be seen from the table that most test results are less than 5%, but some
results are more than 5%. There are many results equal to one in F9–F11. This is because
many algorithms can find the optimal value in F9–F11, resulting in the consistency of the
final optimal fitness value. The MSCSO and BES algorithms have many results greater than
5% in unimodal functions, which shows that these two algorithms have good convergence
ability in unimodal functions. Many algorithms can find a better value in F14 because
the function is relatively simple. In the rest of the functions, the MSCSO algorithm has a
significant difference compared with other algorithms. The MSCSO algorithm has generally
achieved good results in the Wilcoxon rank sum test.

The above experimental analysis shows that the MSCSO algorithm has a good op-
timization effect in the 23 standard benchmark functions. Compared with the SCSO
algorithm, it has excellent improvement. Compared with other comparison algorithms, it
also has more significant advantages.

5.2. Experiments on the CEC2014 Benchmark Function

The 23 standard benchmark functions are simple test functions, which are insufficient
to prove the MSCSO algorithm’s optimization performance fully. In order to thoroughly
verify the optimization effect of the MSCSO algorithm, the CEC2014 benchmark function
is used for testing in this section. Table 5 shows the specific introduction of the CEC2014
benchmark functions. Set the number of individuals of each algorithm N = 30, the maximum
number of iterations T = 500, and the dimension dim = 10. Eight algorithms run thirty times
independently to obtain each algorithm’s best, average, and standard deviation.
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Table 4. Experimental results of the Wilcoxon rank−sum test on the 23 standard benchmark functions (We bold the good data).

F dim
SCSO

vs.
MSCSO

AOA
vs.

MSCSO

BES
vs.

MSCSO

WOA
vs.

MSCSO

ROA
vs.

MSCSO

SCA
vs.

MSCSO

STOA
vs.

MSCSO

GA
vs.

MSCSO

F1
30 1.73 × 10−6 1.73 × 10−6 1 1.73 × 10−6 2.5 × 10−1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

500 1.73 × 10−6 1.73 × 10−6 1 1.73 × 10−6 3.13 × 10−2 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F2
30 1.73 × 10−6 1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

500 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F3
30 1.73 × 10−6 1.73 × 10−6 1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

500 1.73 × 10−6 1.73 × 10−6 1.25 × 10−1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F4
30 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

500 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F5
30 4.49 × 10−2 4.07 × 10−5 2.96 × 10−3 1.29 × 10−3 9.1 × 10−1 1.73 × 10−6 2.6 × 10−5 8.47 × 10−6

500 2.35 × 10−6 1.73 × 10−6 8.73 × 10−3 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F6
30 4.29 × 10−6 1.73 × 10−6 1.66 × 10−2 7.51 × 10−5 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

500 1.73 × 10−6 1.73 × 10−6 7.69 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F7
30 3.85 × 10−3 9.26 × 10−1 1.73 × 10−6 2.35 × 10−6 1.06 × 10−1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

500 3.5 × 10−2 7.81 × 10−1 1.73 × 10−6 1.73 × 10−6 4.11 × 10−3 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F8
30 1.02 × 10−5 1.73 × 10−6 4.73 × 10−6 1.92 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

500 4.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F9
30 1 1 1 1 1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

500 1 4.38 × 10−4 1 1 1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F10
30 1 1 1 8.19 × 10−6 1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

500 1 1.73 × 10−6 5 × 10−1 1.87 × 10−6 1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F11
30 1 1.73 × 10−6 1 5 × 10−1 1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

500 1 1.73 × 10−6 1 1 1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F12
30 1.73 × 10−6 1.73 × 10−6 2.99 × 10−1 8.97 × 10−2 5.29 × 10−4 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

500 2.13 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F13
30 4.2 × 10−4 1.73 × 10−6 2.43 × 10−2 5.75 × 10−6 1.73 × 10−6 1.73 × 10−6 7.66 × 10−1 1.73 × 10−6

500 1.73 × 10−6 1.73 × 10−6 1.24 × 10−5 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F14 2 8.61 × 10−1 1.36 × 10−5 9.92 × 10−1 3.82 × 10−1 9.1 × 10−1 5.98 × 10−2 1.53 × 10−1 1.64 × 10−5

F15 4 4.86 × 10−5 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.36 × 10−5 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F16 2 1.92 × 10−6 1.73 × 10−6 1.73 × 10−6 3.72 × 10−5 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F17 2 3.88 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F18 5 1.92 × 10−6 5.17 × 10−1 1.73 × 10−6 1.24 × 10−6 9.32 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F19 6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F20 3 6.04 × 10−3 1.73 × 10−6 1.73 × 10−6 9.84 × 10−3 8.22 × 10−3 1.73 × 10−6 4.29 × 10−6 4.07 × 10−2

F21 4 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F22 4 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F23 4 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6
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Table 5. Details of 30 CEC2014 benchmark functions.

Name NO. Functions Fmin

Unimodal
Functions

CEC 1 Rotated High Conditioned Elliptic Function 100
CEC 2 Rotated Bent Cigar Function 200
CEC 3 Rotated Discus Function 300

Simple
Multimodal
Functions

CEC 4 Shifted and Rotated Rosenbrock’s Function 400
CEC 5 Shifted and Rotated Ackley’s Function 500
CEC 6 Shifted and Rotated Weierstrass Function 600
CEC 7 Shifted and Rotated Griewank’s Function 700
CEC 8 Shifted Rastrigin’s Function 800
CEC 9 Shifted and Rotated Rastrigin’s Function 900

CEC 10 Shifted Schwefel’s Function 1000
CEC 11 Shifted and Rotated Schwefel’s Schwefel’s Function 1100
CEC 12 Shifted and Rotated Katsuura Function 1200
CEC 13 Shifted and Rotated HappyCat Function 1300
CEC 14 Shifted and Rotated HGBat Function 1400

CEC 15 Shifted and Rotated Expanded Griewank’splus
Rosenbrock’s Function 1500

CEC 16 Shifted and Rotated Expanded Scaffer’s F6 Function 1600

Hybrid
Function 1

CEC 17 Hybrid Function 1 (N = 3) 1700
CEC 18 Hybrid Function 2 (N = 3) 1800
CEC 19 Hybrid Function 3 (N = 4) 1900
CEC 20 Hybrid Function 4 (N = 4) 2000
CEC 21 Hybrid Function 5 (N = 5) 2100
CEC 22 Hybrid Function 6 (N = 5) 2200

Composition
Functions

CEC 23 Composition Function 1 (N = 5) 2300
CEC 24 Composition Function 2 (N = 3) 2400
CEC 25 Composition Function 3 (N = 3) 2500
CEC 26 Composition Function 4 (N = 5) 2600
CEC 27 Composition Function 5 (N = 5) 2700
CEC 28 Composition Function 6 (N = 5) 2800
CEC 29 Composition Function 7 (N = 3) 2900
CEC 30 Composition Function 8 (N = 3) 3000

Search Range: [−100, 100]dim

5.2.1. The CEC2014 Benchmark Function Results Statistics and Image Analysis

Table 6 shows the statistical results of the benchmark functions of the MSCSO algo-
rithm and the eight comparison algorithms in CEC2014. The data in the table refer to
literature [43]. From the table data, it can be concluded that the MSCSO algorithm has
achieved good results in the CEC2014 benchmark function. In CEC1–CEC3, the MSCSO al-
gorithm can obtain a better fitness value compared with other comparison algorithms. Only
in CEC2 is the stability inferior to the WOA. In CEC4–CEC8, the MSCSO algorithm can
obtain a better fitness value, but its stability is not enough. Because the MSCSO algorithm
may find a better solution through the walking strategy, but it is not necessarily able to find
a better fitness value. However, the solution found is generally superior to other algorithms.
In CEC9, the STOA algorithm can obtain a better fitness value. In CEC10–CEC16, the
MSCSO algorithm obtains a better fitness value. Only part of the standard deviation of
the function is insufficient. In CEC17–CEC30, the MSCSO algorithm has a very significant
optimization effect. The standard deviation of CEC22 and CEC27 is lower than that of the
SCA and ROA. The average fitness value and standard deviation of CEC24 are insufficient.
Among other functions, the MSCSO algorithm achieves the optimal value. According to
the analysis in Table 6, the addition of a walking strategy and a lens position-based learning
improves the exploration ability of the algorithm, making the MSCSO algorithm have a
stronger optimization ability.
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Table 6. CEC2014 Algorithm Results of the Benchmark Function.

CEC Metric MSCSO SCSO AOA BES WOA ROA SCA STOA GA

CEC 1
min 1.1 × 105 3.11 × 105 5.86 × 106 1.49 × 107 1.57 × 106 8.09 × 105 3.25 × 106 6.71 × 105 4.74 × 106

mean 4.85 × 106 8.49 × 106 7.06 × 107 9.19 × 107 1.33 × 107 1.84 × 107 1.18 × 107 5.27 × 106 7.96 × 107

std 4.17 × 106 5.21 × 106 7.92 × 107 3.95 × 107 9.26 × 106 1.3 × 107 4.46 × 106 4.54 × 106 7.05 × 107

CEC 2
min 3.42 × 102 4.8 × 103 2.91 × 109 3.55 × 108 1.09 × 106 1.03 × 107 5.93 × 108 1.89 × 106 1.94 × 109

mean 1.98 × 107 9.73 × 107 6.65 × 109 2.5 × 109 3.72 × 107 8.66 × 108 1.04 × 109 4.73 × 108 4.25 × 109

std 6.8 × 107 3.3 × 108 2.1 × 109 1.69 × 109 5.70 × 107 8.71 × 108 3.64 × 108 4.5 × 108 1.37 × 109

CEC 3
min 6.28 × 102 1.58 × 103 1.08 × 104 1.32 × 104 1.32 × 104 2.14 × 103 2.09 × 103 2.66 × 103 8.27 × 103

mean 3.91 × 103 6.51 × 103 1.82 × 104 6.91 × 104 5.52 × 104 7.73 × 103 1.15 × 104 1.41 × 104 3.91 × 105

std 3.26 × 103 3.43 × 103 4.6 × 103 7.61 × 104 2.82 × 104 3.64 × 103 8.21 × 103 8.94 × 103 6.95 × 105

CEC 4
min 4 × 102 4.02 × 102 5.4 × 102 4.96 × 102 4.05 × 102 4.2 × 102 4.47 × 102 4.19 × 102 5.19 × 102

mean 4.3 × 102 4.42 × 102 1.7 × 103 9.18 × 102 4.65 × 102 4.79 × 102 4.9 × 102 4.54 × 102 1.02 × 103

std 32.7 25.5 7.75 × 102 3.03 × 102 44.4 55.5 32.8 32.4 4.24 × 102

CEC 5
min 5.2 × 102 5.2 × 102 5.2 × 102 5.2 × 102 5.20 × 102 5.2 × 102 5.2 × 102 5.2 × 102 5.2 × 102

mean 5.2 × 102 5.2 × 102 5.2 × 102 5.2 × 102 5.20 × 102 5.2 × 102 5.2 × 102 5.2 × 102 5.2 × 102

std 6.61 × 10−2 1.11 × 10−1 5.24 × 10−2 1.32 × 10−1 1.44 × 10−1 1.25 × 10−1 7.51 × 10−2 9.08 × 10−2 2.36 × 10−1

CEC 6
min 6.01 × 102 6.04 × 102 6.08 × 102 6.05 × 102 6.05 × 102 6.04 × 102 6.05 × 102 6.04 × 102 6.07 × 102

mean 6.05 × 102 6.06 × 102 6.1 × 102 6.09 × 102 6.09 × 102 6.07 × 102 6.08 × 102 6.08 × 102 6.09 × 102

std 1.9 1.54 9.85 × 10−1 1.89 1.83 1.6 1.25 1.47 1.3

CEC 7
min 7 × 102 7 × 102 7.43 × 102 7.19 × 102 7.01 × 102 7.01 × 102 7.08 × 102 7.01 × 102 7.35 × 102

mean 7.01 × 102 7.02 × 102 8.44 × 102 7.57 × 102 7.02 × 102 7.05 × 102 7.14 × 102 7.05 × 102 7.79 × 102

std 6.16 × 10−1 2.4 51.8 32.9 5.19 × 10−1 5.96 3.35 4.2 31.6

CEC 8
min 8.03 × 102 8.09 × 102 8.24 × 102 8.38 × 102 8.13 × 102 8.16 × 102 8.29 × 102 8.12 × 102 8.57 × 102

mean 8.18 × 102 8.34 × 102 8.52 × 102 8.69 × 102 8.48 × 102 8.39 × 102 8.48 × 102 8.26 × 102 8.79 × 102

std 7.87 12.4 14.3 16.6 19.3 11.7 7.8 9.67 14.9

CEC 9
min 9.16 × 102 9.14 × 102 9.24 × 102 9.48 × 102 9.2 × 102 9.15 × 102 9.37 × 102 9.12 × 102 9.47 × 102

mean 9.34 × 102 9.37 × 102 9.45 × 102 9.66 × 102 9.52 × 102 9.44 × 102 9.49 × 102 9.32 × 102 9.74 × 102

std 11.8 9.09 9.26 12.4 21 11 8.29 10.1 13.5

CEC 10
min 1.04 × 103 1.47 × 103 1.14 × 103 1.75 × 103 1.07 × 103 1.11 × 103 1.77 × 103 1.46 × 103 1.44 × 103

mean 1.22 × 103 1.79 × 103 1.74 × 103 2.3 × 103 1.72 × 103 1.7 × 103 2.16 × 103 1.83 × 103 1.97 × 103

std 1.89 × 102 1.85 × 102 2.34 × 102 2.75 × 102 2.49 × 102 2.64 × 102 1.87 × 102 2.21 × 102 2.59 × 102

CEC 11
min 1.15 × 103 1.64 × 103 1.65 × 103 2.32 × 103 1.94 × 103 1.75 × 103 2.22 × 103 1.78 × 103 2.15 × 103

mean 1.84 × 103 2.04 × 103 2.08 × 103 2.77 × 103 2.25 × 103 2.18 × 103 2.58 × 103 2.26 × 103 2.89 × 103

std 2.95 × 102 3.18 × 102 3.49 × 102 2.47 × 102 3.45 × 102 3.57 × 102 2.25 × 102 3.52 × 102 3.49 × 102

CEC 12
min 1.2 × 103 1.2 × 103 1.2 × 103 1.2 × 103 1.2 × 103 1.2 × 103 1.2 × 103 1.2 × 103 1.2 × 103

mean 1.2 × 103 1.2 × 103 1.2 × 103 1.2 × 103 1.2 × 103 1.2 × 103 1.2 × 103 1.2 × 103 1.2 × 103

std 1.5 × 10−1 3 × 10−1 2.71 × 10−1 3.7 × 10−1 4.86 × 10−1 3.37 × 10−1 3.12 × 10−1 3.86 × 10−1 6.82 × 10−1
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Table 6. Cont.

CEC Metric MSCSO SCSO AOA BES WOA ROA SCA STOA GA

CEC 13
min 1.3 × 103 1.3 × 103 1.3 × 103 1.3 × 103 1.3 × 103 1.3 × 103 1.3 × 103 1.3 × 103 1.3 × 103

mean 1.3 × 103 1.3 × 103 1.3 × 103 1.3 × 103 1.3 × 103 1.3 × 103 1.3 × 103 1.3 × 103 1.3 × 103

std 1.29 × 10−1 3.81 × 10−1 1.16 1.23 2.23 × 10−1 7.01 × 10−1 1.23 × 10−1 2.19 × 10−1 9.89 × 10−1

CEC 14
min 1.4 × 103 1.4 × 103 1.41 × 103 1.41 × 103 1.4 × 103 1.4 × 103 1.4 × 103 1.4 × 103 1.4 × 103

mean 1.4 × 103 1.4 × 103 1.43 × 103 1.42 × 103 1.4 × 103 1.4 × 103 1.4 × 103 1.4 × 103 1.41 × 103

std 2.31 × 10−1 1.11 11.1 9.56 3.18 × 10−1 5 5.64 × 10−1 1.05 6.66

CEC 15
min 1.5 × 103 1.5 × 103 1.62 × 103 1.54 × 103 1.5 × 103 1.5 × 103 1.51 × 103 1.5 × 103 1.52 × 103

mean 1.5 × 103 1.52 × 103 5.06 × 103 3.09 × 103 1.51 × 103 1.68 × 103 1.52 × 103 1.52 × 103 4.88 × 103

std 1.2 89.1 5.61 × 103 3.39 × 103 9.82 6.46 × 102 54.4 94 5.41 × 103

CEC 16
min 1.6 × 103 1.6 × 103 1.6 × 103 1.6 × 103 1.6 × 103 1.6 × 103 1.6 × 103 1.6 × 103 1.6 × 103

mean 1.6 × 103 1.6 × 103 1.6 × 103 1.6 × 103 1.6 × 103 1.6 × 103 1.6 × 103 1.6 × 103 1.6 × 103

std 3.67 × 10−1 4.48 × 10−1 3.03 × 10−1 3.16 × 10−1 4.77 × 10−1 3.7 × 10−1 2.66 × 10−1 3.87 × 10−1 2.91 × 10−1

CEC 17
min 1.95 × 103 3.16 × 103 6.99 × 104 2.27 × 104 1.05 × 104 3.88 × 103 1.87 × 104 7.62 × 103 5.18 × 105

mean 6.66 × 103 4.9 × 104 5.22 × 105 9.41 × 105 3.7 × 105 1.24 × 105 8.44 × 104 1.57 × 105 8.93 × 106

std 3.29 × 103 1.34 × 105 3.95 × 105 1.63 × 106 6.73 × 105 1.89 × 105 1.41 × 105 2.04 × 105 1.64 × 107

CEC 18
min 1.88 × 103 3 × 103 2.6 × 103 8.21 × 103 2.58 × 103 2.98 × 103 1.1 × 104 3.04 × 103 1.45 × 104

mean 1 × 104 1.52 × 104 1.4 × 104 1.6 × 106 1.67 × 104 1.22 × 104 6.31 × 104 1.92 × 104 3.29 × 107

std 5.84 × 103 9.62 × 103 9.68 × 103 5.46 × 106 1.42 × 104 9.04 × 103 9.88 × 104 1.62 × 104 4.42 × 107

CEC 19
min 1.9 × 103 1.9 × 103 1.91 × 103 1.91 × 103 1.9 × 103 1.9 × 103 1.91 × 103 1.9 × 103 1.91 × 103

mean 1.9 × 103 1.9 × 103 1.94 × 103 1.91 × 103 1.91 × 103 1.91 × 10+ 1.91 × 103 1.9 × 103 1.93 × 103

std 6.93 × 10−1 1.41 28.6 10.4 2.23 12.7 1.35 1.24 22.8

CEC 20
min 2.04 × 103 2.67 × 103 5.66 × 103 4.3 × 103 2.57 × 103 2.27 × 103 2.9 × 103 2.55 × 103 7.6 × 103

mean 5.83 × 103 8.12 × 103 1.38 × 104 1.12 × 105 1.5 × 104 1.04 × 104 9.66 × 103 1.4 × 104 1.53 × 107

std 3.17 × 103 4.05 × 103 1.03 × 104 4.47 × 105 1.25 × 104 5.03 × 103 7.32 × 103 9.73 × 103 2.34 × 107

CEC 21
min 2.29 × 103 3.19 × 103 7.03 × 103 4.92 × 103 1.25 × 104 3.16 × 103 7. × 103 3.64 × 103 7.7 × 104

mean 7.85 × 103 1.08 × 104 1.57 × 106 3.77 × 105 1.05 × 106 5.54 × 105 2.05 × 104 1.42 × 104 3.13 × 106

std 4.57 × 103 6.58 × 103 2.3 × 106 8.68 × 105 3.05 × 106 2.97 × 106 1.12 × 104 1.05 × 104 3.71 × 106

CEC 22
min 2.22 × 103 2.24 × 103 2.28 × 103 2.26 × 103 2.23 × 103 2.23 × 103 2.26 × 103 2.24 × 103 2.32 × 103

mean 2.25 × 103 2.32 × 103 2.42 × 103 2.42 × 103 2.33 × 103 2.31 × 103 2.3 × 103 2.29 × 103 2.67 × 103

std 47.9 66.5 1.12 × 102 1.11 × 102 97.1 79.7 43 62.4 1.74 × 102

CEC 23
min 2.5 × 103 2.5 × 103 2.5 × 103 2.5 × 103 2.5 × 103 2.5 × 103 2.64 × 103 2.63 × 103 2.5 × 103

mean 2.5 × 103 2.5 × 103 2.5 × 103 2.6 × 103 2.64 × 103 2.5 × 103 2.65 × 103 2.65 × 103 2.7 × 103

std 0 0 0 1.03 × 102 28.7 0 9.08 10.4 1.12 × 102

CEC 24
min 2.52 × 103 2.56 × 103 2.55 × 103 2.57 × 103 2.54 × 103 2.56 × 103 2.55 × 103 2.53 × 103 2.56 × 103

mean 2.59 × 103 2.6 × 103 2.59 × 103 2.59 × 103 2.59 × 103 2.6 × 103 2.56 × 103 2.55 × 103 2.6 × 103

std 23.9 7.09 20.3 14.3 28 7.1 10.1 20.6 17.8
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Table 6. Cont.

CEC Metric MSCSO SCSO AOA BES WOA ROA SCA STOA GA

CEC 25
min 2.64 × 103 2.7 × 103 2.7 × 103 2.69 × 103 2.69 × 103 2.7 × 103 2.69 × 103 2.7 × 103 2.69 × 103

mean 2.7 × 103 2.7 × 103 2.7 × 103 2.7 × 103 2.7 × 103 2.7 × 103 2.7 × 103 2.7 × 103 2.71 × 103

std 0 0 1.89 7.13 5.95 8.37 8.8 1.34 4.6

CEC 26
min 2.7 × 103 2.7 × 103 2.7 × 103 2.7 × 103 2.7 × 103 2.7 × 103 2.7 × 103 2.7 × 103 2.7 × 103

mean 2.7 × 103 2.7 × 103 2.72 × 103 2.7 × 103 2.7 × 103 2.7 × 103 2.7 × 103 2.7 × 103 2.71 × 103

std 1.01 × 10−1 3.82 × 10−1 29.5 1.39 18.2 18.1 2.12 × 10−1 1.34 × 10−1 25

CEC 27
min 2.7 × 103 2.71 × 103 2.9 × 103 2.86 × 103 3.1 × 103 2.9 × 103 2.73 × 103 3.1 × 103 2.75 × 103

mean 2.89 × 103 2.89 × 103 2.92 × 103 3.14 × 103 3.14 × 103 2.9 × 103 3.02 × 103 3.17 × 103 3.2 × 103

std 35.1 35.4 89.2 1.76 × 102 1.37 × 102 0 1.63 × 102 65.1 1.47 × 102

CEC 28
min 3 × 103 3 × 103 3 × 103 3 × 103 3.23 × 103 3 × 103 3.24 × 103 3.17 × 103 3.54 × 103

mean 3 × 103 3 × 103 3.06 × 103 3.34 × 103 3.45 × 103 3 × 103 3.3 × 103 3.19 × 103 3.88 × 103

std 0 0 2.35 × 102 2.35 × 102 1.87 × 102 0 72.7 12 2.2 × 102

CEC 29
min 3.1 × 103 3.1 × 103 3.1 × 103 5.19 × 103 3.46 × 103 3.36 × 103 4.47 × 103 3.65 × 103 5.62 × 103

mean 3.62 × 103 2.03 × 105 2.29 × 106 1.06 × 106 4.86 × 105 2.42 × 105 2.46 × 104 6.52 × 103 8.91 × 106

std 3.94 × 102 6.07 × 105 7.64 × 106 1.65 × 106 1.16 × 106 6.18 × 105 2.69 × 104 4.52 × 103 1.42 × 107

CEC 30
min 3.2 × 103 3.94 × 103 3.2 × 103 5.33 × 103 4.19 × 103 3.94 × 103 4.41 × 103 3.72 × 103 1.01 × 104

mean 4.21 × 103 5.11 × 103 5.72 × 104 3.49 × 104 7.96 × 103 5.21 × 103 5.59 × 103 4.32 × 103 6.06 × 104

std 4.93 × 102 9.05 × 102 9.2 × 104 8.4 × 104 7.98 × 103 1.28 × 103 1.25 × 103 6.61 × 102 8.71 × 104



Mathematics 2022, 10, 4350 25 of 41

Figure 11 shows the convergence curve of the MSCSO algorithm and eight comparison
algorithms in the CEC2014 benchmark function. It can be seen that the MSCSO algorithm
has better convergence ability. In the unimodal functions of CEC1–CEC3, the MSCSO
algorithm can find a better location and converge constantly. The SCSO algorithm is easy
to fall into the local optimum. The convergence curve of other comparison algorithms
is still inferior to the MSCSO algorithm. In simple multimodal functions, the MSCSO
algorithm also has better global optimization capability. From the convergence curve of
CEC4–CEC17, it can be seen that the MSCSO algorithm can find a better position in many
functions and converge quickly. The MSCSO with the TW, LFW, and LOBL has a stronger
exploration ability. They can jump out of the local optimum and obtain a better fitness
value. In CEC17–CEC30, many algorithms are trapped in local optima, resulting in the
algorithm not being able to converge better. However, the MSCSO algorithm can find a
better location in CEC17, CEC18, CEC20, CEC21, CEC24, and CEC25, which makes the
algorithm converge better to the best solution.
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5.2.2. Analysis of Box Plot Results

A box chart is a statistical chart that uses five statistics in data: minimum, upper
quartile, median, lower quartile, and maximum to describe data. The box chart’s top- and
bottom-line segments represent the data’s maximum and minimum values, respectively.
The upper and lower segments of the box chart represent the third quartile and the first
quartile, respectively. The thick line in the middle of the box chart represents the median of
the data. It can intuitively display the abnormal value of the data, the dispersion degree
of distribution, and the symmetry of the data. Figure 12 is a block diagram obtained after
thirty independent operations of nine algorithms. It can be seen that the MSCSO algorithm
is very narrow and keeps the lowest point. Compared with the SCSO algorithm, the
MSCSO algorithm can obtain low box graphs. Compared with GA, the MSCSO algorithm
has a better optimization effect. Some of the box charts have little difference because it is
easy to find a good value in the function, resulting in a small variance. In general, the box
graph of the MSCSO algorithm has achieved better results.

5.2.3. Analysis of the Wilcoxon Rank Sum Test Results

The MSCSO algorithm has achieved good results in the CEC2014 benchmark function
through the above analysis. Table 7 shows that the similarity between the MSCSO algorithm
and the seven comparison algorithms is low, mostly less than 5%. However, Hybrid
Function 1 and Composition Functions are partially greater than 5%. This means that
the fitness values obtained by the eight comparison algorithms in these functions are not
significantly different from those of the MSCSO algorithm. Many 1 of CEC23 and CEC28
occur, which means that the MSCSO algorithm achieves the same fitness values as these
comparison algorithms. Some of the other functions are greater than 5%. This means that
in these functions, the difference between the values obtained by the MSCSO algorithm
and the comparison algorithm is not obvious, and the difference between the fitness values
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obtained by the MSCSO algorithm and the comparison algorithm is small. However, most
of them are less than 5%, which indicates that the MSCSO algorithm differs significantly
from the comparison algorithm in most functions.
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Table 7. CEC2014 Experimental Results of the Wilcoxon Rank Sum Test on Benchmark Functions.

CEC
SCSO

vs.
MSCSO

AOA
vs.

MSCSO

BES
vs.

MSCSO

WOA
vs.

MSCSO

ROA
vs.

MSCSO

SCA
vs.

MSCSO

STOA
vs.

MSCSO

GA
vs.

MSCSO

CEC 1 2.84 × 10−5 1.73 × 10−6 1.73 × 10−6 7.51 × 10−5 1.8 × 10−5 6.89 × 10−5 4.28 × 10−2 1.73 × 10−6

CEC 2 9.63 × 10−4 1.73 × 10−6 1.92 × 10−6 1.25 × 10−4 1.73 × 10−6 2.6 × 10−6 2.6 × 10−5 1.92 × 10−6

CEC 3 4.45 × 10−5 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 2.16 × 10−5 2.35 × 10−6 2.88 × 10−6 1.73 × 10−6

CEC 4 8.61 × 10−1 1.73 × 10−6 1.73 × 10−6 4.2 × 10−4 6.34 × 10−6 2.6 × 10−6 1.49 × 10−5 1.73 × 10−6

CEC 5 1.71 × 10−3 5.22 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.92 × 10−6

CEC 6 1.66 × 10−2 1.92 × 10−6 1.73 × 10−6 4.29 × 10−6 9.71 × 10−5 6.34 × 10−6 1.13 × 10−5 1.73 × 10−6

CEC 7 8.19 × 10−5 1.73 × 10−6 1.73 × 10−6 1.13 × 10−5 2.6 × 10−6 1.73 × 10−6 1.92 × 10−6 1.73 × 10−6

CEC 8 9.32 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 2.13 × 10−6 1.73 × 10−6 2.41 × 10−4 1.73 × 10−6

CEC 9 2.18 × 10−2 2.58 × 10−3 1.73 × 10−6 9.63 × 10−4 7.71 × 10−4 2.35 × 10−6 9.27 × 10−3 1.92 × 10−6

CEC 10 2.35 × 10−6 1.92 × 10−6 1.73 × 10−6 3.18 × 10−6 3.88 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

CEC 11 4.49 × 10−2 1.6 × 10−4 3.18 × 10−6 2.37 × 10−5 9.71 × 10−5 1.73 × 10−6 2.84 × 10−5 1.73 × 10−6

CEC 12 3.88 × 10−4 1.73 × 10−6 1.92 × 10−6 1.73 × 10−6 1.92 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

CEC 13 3.87 × 10−2 1.73 × 10−6 1.92 × 10−6 5.45 × 10−2 3.68 × 10−2 1.64 × 10−5 8.31 × 10−4 1.73 × 10−6

CEC 14 9.59 × 10−1 1.73 × 10−6 1.73 × 10−6 2.7 × 10−2 2.07 × 10−2 5.22 × 10−6 1.53 × 10−1 1.73 × 10−6

CEC 15 1.04 × 10−3 1.73 × 10−6 1.73 × 10−6 5.22 × 10−6 5.75 × 10−6 1.73 × 10−6 7.51 × 10−5 1.73 × 10−6
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Table 7. Cont.

CEC
SCSO

vs.
MSCSO

AOA
vs.

MSCSO

BES
vs.

MSCSO

WOA
vs.

MSCSO

ROA
vs.

MSCSO

SCA
vs.

MSCSO

STOA
vs.

MSCSO

GA
vs.

MSCSO

CEC 16 2.58 × 10−3 2.88 × 10−6 2.16 × 10−5 7.69 × 10−6 4.07 × 10−2 1.92 × 10−6 1.02 × 10−5 1.73 × 10−6

CEC 17 7.66 × 10−1 3.52 × 10−6 3.41 × 10−5 1.36 × 10−5 4.72 × 10−2 3.11 × 10−5 2.84 × 10−5 1.73 × 10−6

CEC 18 3.82 × 10−1 5.04 × 10−1 1.73 × 10−6 1.06 × 10−1 1.31 × 10−1 8.92 × 10−5 1.02 × 10−1 1.92 × 10−6

CEC 19 2.58 × 10−3 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 5.22 × 10−6 1.73 × 10−6 3.59 × 10−4 1.73 × 10−6

CEC 20 7.27 × 10−3 1.29 × 10−3 2.41 × 10−3 7.51 × 10−5 3.38 × 10−3 6.42 × 10−3 1.96 × 10−2 1.73 × 10−6

CEC 21 7.27 × 10−3 1.02 × 10−5 3.18 × 10−6 1.92 × 10−6 6.87 × 10−2 1.85 × 10−2 1.85 × 10−2 1.73 × 10−6

CEC 22 2.58 × 10−3 3.88 × 10−6 1.24 × 10−5 6.16 × 10−4 5.45 × 10−2 2.18 × 10−2 3.16 × 10−2 1.73 × 10−6

CEC 23 1 1 4.38 × 10−4 8.3 × 10−6 1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

CEC 24 3.34 × 10−4 1.81 × 10−2 5.2 × 10−1 3.09 × 10−1 4.69 × 10−2 4.45 × 10−5 3.52 × 10−6 8.29 × 10−1

CEC 25 5 × 10−1 6.25 × 10−1 1.34 × 10−1 8.2 × 10−1 1.56 × 10−2 2.35 × 10−6 1.73 × 10−6 3.72 × 10−5

CEC 26 9.37 × 10−2 1.73 × 10−6 2.13 × 10−6 1.96 × 10−2 4.53 × 10−4 1.92 × 10−6 4.49 × 10−2 1.73 × 10−6

CEC 27 8.75 × 10−1 1.56 × 10−2 9.15 × 10−5 1.36 × 10−5 8.75 × 10−1 5.31 × 10−5 1.73 × 10−6 1.73 × 10−6

CEC 28 1 1 3.79 × 10−6 1.73 × 10−6 1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

CEC 29 7.73 × 10−3 8.94 × 10−1 2.13 × 10−6 4.72 × 10−2 4.68 × 10−3 3.11 × 10−5 1.36 × 10−4 1.73 × 10−6

CEC 30 1.83 × 10−3 2.56 × 10−6 2.88 × 10−6 5.22 × 10−6 2.22 × 10−4 3.06 × 10−4 9.43 × 10−1 1.73 × 10−6

6. Constrained Engineering Design Problems

In the fifth part, the optimization performance of the MSCSO algorithm is verified to
verify the practical effect of the MSCSO algorithm in engineering problems. In this paper,
seven engineering problems are selected for testing. The specific experimental results are
as follows.

6.1. Pressure Vessel Design Problem

The purpose of pressure vessel design is to minimize the total cost of a cylinder-shaped
pressure vessel. The schematic diagram of the pressure vessel is shown in Figure 13. The
variables in question are shell thickness Ts, head thickness Th, inner radius R, and vessel
length L. The minimum cost of the pressure vessel is obtained through constraints.
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Consider:
→
x = [x1 x2 x3 x4] = [Ts Th R L] (20)

Objective function:

f
(→

x
)
= 0.6224x1x2x3 + 1.7781x2x2

3 + 3.1661x2
1x4 + 19.84x2

1x3 (21)

Subject to:
g1(
→
x ) = −x1 + 0.0193x3 ≤ 0 (22)

g2(
→
x ) = −x3 + 0.00954x3 ≤ 0 (23)
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g3(
→
x ) = −πx2

3x4 +
4
3

πx3
3
+ 1, 296, 000 ≤ 0 (24)

g4(
→
x ) = −x4 − 240 ≤ 0 (25)

Variable range:

0 ≤ x1 ≤ 99, 0 ≤ x2 ≤ 99, 10 ≤ x3 ≤ 200, 10 ≤ x4 ≤ 200 (26)

The results of pressure vessel design problems are shown in Table 8. It shows that
the MSCSO algorithm has a good effect in solving the engineering problem. As can be
seen in the table, the MSCSO algorithm obtains Ts = 0.742406, Th = 0.370292, R = 40.31962,
and L = 200, resulting in the minimum cost of 5734.915. Among the other comparison
algorithms, eight have achieved cost values greater than 6000, and four have less than 6000.
The resulting costs are greater than those of the MSCSO algorithm.

Table 8. Experimental results of the pressure vessel design.

Algorithm Ts Th R L Best Cost

MSCSO 0.742406 0.370292 40.31962 200 5734.915
MGTOA [43] 0.754364 0.366375 40.42809 198.5652 5752.402458

CPSO [44] 0.8125 0.4375 42.0913 176.7465 6061.0777
HPSO [45] 0.8125 0.4375 42.0984 176.6366 6059.7143
GWO [3] 0.8125 0.4345 42.08918 176.7587 6059.5639
CS [46] 0.8125 0.4375 42.09845 176.6366 6059.714335
AO [47] 1.054 0.182806 59.6219 39.805 5949.2258

EROA [48] 0.84343 0.400762 44.786 145.9578 5935.7301
WOA [6] 0.8125 0.4375 42.09827 176.639 6059.741

GA [8] 0.8125 0.4375 42.0974 176.6541 6059.94634
MVO [16] 0.8125 0.4375 42.09074 176.7387 6060.8066
ACO [2] 0.8125 0.4375 42.10362 176.5727 6059.0888

6.2. Speed Reducer Design Problem

The goal of the speed reducer design is to find the minimum mass of the reducer to
meet four design constraints: bending stress of gear teeth, covering stress, lateral deflection
of shaft, and stress in the shaft. This problem has seven variables, namely the width of
the tooth surface x1, the gear module x2, the number of teeth on the pinion x3, the length
of the first shaft between bearings x4, the length of the second shaft between bearings x5
the diameter of the first shaft x6, and the diameter of the second shaft x7. The schematic
diagram of variables is shown in Figure 14.
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Figure 14. Model of the speed reducer design.

The mathematical formulation of this problem is shown below:
Consider:

x = [x1 x2 x3 x4 x5 x6 x7] (27)
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Objective function:

f (
→
x ) = 07854× x1 × x2

2 × (3.3333× x3
2 + 14.9334× x3−

43.0934)− 1.508× x1 × (x6
2 + x7

2) + 7.4777× x6
3 + x7

3+
0.7854× x4 × x6

2 + x5 × x7
2

(28)

Subject to:

g1(
→
x ) =

27
x1 × x22 × x3

− 1 ≤ 0 (29)

g2(
→
x ) =

397.5
x1 × x22 × x32 − 1 ≤ 0 (30)

g3(
→
x ) =

1.93× x4
3

x2 × x3 × x64 − 1 ≤ 0 (31)

g4(
→
x ) =

1.93× x5
3

x2 × x3 × x74 − 1 ≤ 0 (32)

g5(
→
x ) =

1
110× x63 ×

√
(

745× x4

x2 × x3
)

2
+ 16.9× 106 − 1 ≤ 0 (33)

g6(
→
x ) =

1
85× x73 ×

√
(

745× x5

x2 × x3
)

2
+ 16.9× 106 − 1 ≤ 0 (34)

g7(
→
x ) =

x2 × x3

40
− 1 ≤ 0 (35)

g8(
→
x ) =

5× x2

x1
− 1 ≤ 0 (36)

g9(
→
x ) =

x1

12× x2
− 1 ≤ 0 (37)

g10(
→
x ) =

1.5× x6 + 1.9
x4

− 1 ≤ 0 (38)

g11(
→
x ) =

1.1× x7 + 1.9
x5

− 1 ≤ 0 (39)

Boundaries:

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3,
7.3 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5 ≤ x7 ≤ 5.5

(40)

In Table 9, the MSCSO algorithm finally obtained a weight of 2995.438. The first one is
obtained in the comparison algorithm. Compared with other algorithms, it has particular
improvement.

Table 9. Experimental results of the speed reducer design.

Algorithm
Optimal Values for Variables Optimal

Weightx1 x2 x3 x4 x5 x6 x7

MSCSO 3.497592 0.7 17 7.3 7.8 3.350043 5.285504 2995.438
AOA [40] 3.50384 0.7 17 7.3 7.72933 3.35649 5.2867 2997.9157
MFO [7] 3.497455 0.7 17 7.82775 7.712457 3.351787 5.286352 2998.94083
CS [46] 3.5015 0.7 17 7.605 7.8181 3.352 5.2875 3000.981

RSA [49] 3.50279 0.7 17 7.30812 7.74715 3.35067 5.28675 2996.5157
HS [23] 3.520124 0.7 17 8.37 7.8 3.36697 5.288719 3029.002
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6.3. Welded Beam Design Problem

The design problem of the welded beam is to minimize the cost of the welded beam
under four decision variables and seven constraints. This problem has four variables: weld
width h, connecting beam length l, beam height t, and connecting beam thickness b. See
Figure 15 for details.

Mathematics 2022, 10, x FOR PEER REVIEW 38 of 48 
 

 

2 64

5 3

6 2 3

7451
( ) ( ) 16.9 10 1 0

110

x
g x

x x x


=  +  − 

 
 

(33) 

2 65

6 3

7 2 3

7451
( ) ( ) 16.9 10 1 0

85

x
g x

x x x


=  +  − 

 
 

(34) 

2 3

7
( ) 1 0

40

x x
g x


= − 

 

(35) 

2

8

1

5
( ) 1 0

x
g x

x


= − 

 

(36) 

1

9

2

( ) 1 0
12

x
g x

x
= − 


 

(37) 

6

10

4

1.5 1.9
( ) 1 0

x
g x

x

 +
= − 

 

(38) 

7

11

5

1.1 1.9
( ) 1 0

x
g x

x

 +
= − 

 
(39) 

Boundaries: 

1 2 3 4

5 6 7

2.6 3.6,0.7 0.8,17 28,7.3 8.3,

7.3 8.3,2.9 3.9,5 5.5

x x x x

x x x

       

     
 (40) 

In Table 9, the MSCSO algorithm finally obtained a weight of 2995.438. The first one 

is obtained in the comparison algorithm. Compared with other algorithms, it has particu-

lar improvement. 

Table 9. Experimental results of the speed reducer design. 

Algorithm 
Optimal Values for Variables Optimal 

Weight x1 x2 x3 x4 x5 x6 x7 

MSCSO 3.497592 0.7 17 7.3 7.8 3.350043 5.285504 2995.438 

AOA [40] 3.50384 0.7 17 7.3 7.72933 3.35649 5.2867 2997.9157 

MFO [7] 3.497455 0.7 17 7.82775 7.712457 3.351787 5.286352 2998.94083 

CS [46] 3.5015 0.7 17 7.605 7.8181 3.352 5.2875 3000.981 

RSA [49] 3.50279 0.7 17 7.30812 7.74715 3.35067 5.28675 2996.5157 

HS [23] 3.520124 0.7 17 8.37 7.8 3.36697 5.288719 3029.002 

6.3. Welded Beam Design Problem 

The design problem of the welded beam is to minimize the cost of the welded beam 

under four decision variables and seven constraints. This problem has four variables: weld 

width h, connecting beam length l, beam height t, and connecting beam thickness b. See 

Figure 15 for details. 

 Figure 15. Model of the welded beam design.

The mathematical formulation of this problem is shown below:
Consider:

x = [x1 x2 x3 x4] = [h l t b] (41)

Objective function:

f (x) = 1.10471x2
1x2 + 0.04811x3x4(14.0 + x2) (42)

Subject to:
g1

(→
x
)
= τ

(→
x
)
− τmax ≤ 0 (43)

g2

(→
x
)
= σ

(→
x
)
− σmax ≤ 0 (44)

g3

(→
x
)
= δ

(→
x
)
− δmax ≤ 0 (45)

g4

(→
x
)
= x1 − x4 ≤ 0 (46)

g5

(→
x
)
= P− Pc

(→
x
)
≤ 0 (47)

g6

(→
x
)
= 0.125− x1 ≤ 0 (48)

g7

(→
x
)
= 1.10471x2

1 + 0.04811x3x4(14.0 + x2)− 0.5 ≤ 0 (49)

where:

τ
(→

x
)
=

√
(τ′)2 + 2τ′τ”

x2

2R
+ (τ”), τ′ =

P√
2x1x2

, τ” =
MR

J
, (50)

M = P
(

L +
x2

2

)
, R =

√
x2

2
4

+

(
x1 + x3

2

)2
, σ
(→

x
)
=

6PL
x4x2

3
, (51)

J = 2

{√
2x1x2

[
x2

x
4

+

(
x1 + x3

2

)2
]}

, δ
(→

x
)
=

6PL3

Ex4x2
3

, (52)

Pc

(→
x
)
=

4.013E
√

x2
3x6

4
0

L2 ,

(
1− x3

2L

√
E

4G

)
,

(
1− x3

2L

√
E

4G

)
, (53)

P = 6000lb, L = 14 in, δmax = 0.25in, E = 30× 106 psi, (54)

τmax = 13, 600 psi, and σmax = 30, 000 psi (55)
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Boundaries:
0.1 ≤ xi ≤ 2, i = 1, 4; 0.1 ≤ xi ≤ 10, i = 2.3 (56)

The results of the welded beam design problems are shown in Table 10. The weld
width h = 0.205723, connecting beam length l = 3.253494, beam height t = 9.036686, and
connecting beam thickness b = 0.205731 obtained by the MSCSO algorithm. Compared with
other algorithms, the MSCSO algorithm obtains the minimum weight. The final weight is
1.695309.

Table 10. Experimental results of the welded beam design.

Algorithm h l t b Best Weight

MSCSO 0.205723 3.253494 9.036686 0.205731 1.695309
TSA [50] 0.244157 6.223066 8.29555 0.244405 2.38241101
WOA [6] 0.20536 3.48293 9.03746 0.206276 1.730499
ROA [4] 0.200077 3.365754 9.011182 0.206893 1.706447
GWO [3] 0.205676 3.478377 9.03681 0.205778 1.72624

GA [8] 0.1829 4.0483 9.3666 0.2059 1.8242
MFO [7] 0.2057 3.4703 9.0364 0.2057 1.72452

MVO [16] 0.205463 3.473193 9.044502 0.205695 1.72645
GSA [17] 0.182129 3.856979 10 0.202376 1.879952
RO [20] 0.203687 3.528467 9.004233 0.207241 1.735344

MROA [51] 0.2062185 3.254893 9.020003 0.206489 1.699058

6.4. Tension/Compression Spring Design Problem

The tension/compression spring design’s purpose is to reduce the spring’s mass
through three variables and four constraints. Constraints include minimum deviation (g1),
shear stress (g2), impact frequency (g3), and outer diameter limit (g4). The corresponding
variables include wire diameter d, average coil diameter D, and effective coil number N.
f (x) is the minimum spring mass. See Figure 16 for details.
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The mathematical formulation of this problem is shown below:
Consider:

x = [x1 x2 x3] = [d D N] (57)

Objective function:
f (x) = (x3 + 2)× x2 × x2

1 (58)

Subject to:

g1(x) = 1−
x3 × x3

2
71, 785× x4

1
≤ 0 (59)

g2(x) =
4× x2

2 − x1 × x2

12, 566× x4
1

+
1

5108× x2
1
− 1 ≤ 0 (60)

g3(x) = 1− 140.45× x1

x2
2 × x3

≤ 0 (61)
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g4(x) =
x1 + x2

1.5
− 1 ≤ 0 (62)

Boundaries:
0.05 ≤ x1 ≤ 2.0; 0.25 ≤ x2 ≤ 1.3;
2.0 ≤ x3 ≤ 15.0

(63)

As can be seen in Table 11, the weight obtained by each algorithm is relatively small.
This extensively tests the accuracy of the algorithm in solving engineering problems. The
MSCSO algorithm achieves a minimum weight of 0.009872 among these algorithms. It
shows that the MSCSO algorithm is more accurate in solving the engineering problem.

Table 11. Experimental results of the tension/compression spring design.

Algorithm d D V Best Weight

MSCSO 0.05 0.374433 8.546579 0.009872
MFO [7] 0.051994 0.364109 10.86842 0.012667
SSA [33] 0.051207 0.345215 12.00403 0.012676
ES [52] 0.051989 0.363965 10.89052 0.012681
PSO [1] 0.051728 0.357644 11.24454 0.012675

EROA [48] 0.053799 0.46951 5.811 0.010614
HHO [53] 0.051796 0.359305 11.13886 0.012665

HS [23] 0.051154 0.349871 12.07643 0.012671
MVO [16] 0.05251 0.37602 10.33513 0.01279

GA [8] 0.05148 0.351661 11.6322 0.012705
GWO [3] 0.05169 0.356737 11.28885 0.012666
DE [13] 0.051609 0.354714 11.41083 0.01267

6.5. Cantilever Beam Design Problem

The optimization purpose of the cantilever beam design is to minimize the weight
of the cantilever, given the following decision variables: the height or width of five hol-
low square blocks with constant thickness. The model of the cantilever beam is shown
in Figure 17.
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The mathematical formulation of this problem is shown below:
Consider:

x = [x1 x2 x3 x4 x5] (64)

Objective function:

f (x) = 0.0624(x1 + x2 + x3 + x4 + x5) (65)

Subject to:

g(x) =
61
x3

1
+

37
x3

2
+

19
x3

3
+

7
x3

4
+

1
x3

5
− 1 ≤ 0 (66)
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Boundaries:
0.01 ≤ xi ≤ 100(i = 1, 2, · · · 5) (67)

The statistical table of the cantilever beam design is shown in Table 12. The xi(i = 1, 2,
· · · , 5) obtained by the MSCSO algorithm decreases gradually, which conforms to the design
of the cantilever beam and, finally, a minimum weight of 1.33995853466334 is obtained.
Compared with the data of other algorithms, the data obtained by the MSCSO algorithm
are more consistent with the characteristics of the engineering problem.

Table 12. Experimental results of the cantilever beam design.

Algorithm
Optimal Values for Variables Optimum

Weightx1 x2 x3 x4 x5

MSCSO 6.01265 5.315452 4.492016 3.501096 2.152481 1.33995853466334
WOA [6] 5.1261 5.6188 5.0952 3.9329 2.3219 1.37873150673956
BWO [54] 6.2094 6.2094 6.2094 6.2094 6.2094 1.93736251728534
PSO [1] 6.0040 5.2950 4.4915 3.5125 2.1710 1.33998298081255

GSA [17] 5.6052 4.9553 5.6619 3.1959 3.2026 1.41155753917296
ERHHO [55] 6.0509 5.2639 4.514 3.4605 2.1878 1.3402

6.6. Multiple Disc Clutch Brake Problem

The purpose of the multiple disc clutch brake problem is to find five related variable
values of the minimum mass multi-plate brake under eight constraints. The five variables
are inner radius ri, outer radius ro, brake disc thickness t, driving force F, and surface
friction number Z. The specific model is shown in Figure 18.
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The mathematical formulation of this problem is shown below:
Consider:

x = [x1 x2 x3 x4 x5] = [ri ro t F Z] (68)

Objective function:

f (x) = II
(

r2
o − r2

i

)
t(Z + 1)ρ (ρ = 0 .0000078) (69)

Subject to:
g1(x) = ro − ri − ∆r ≥ 0 (70)

g2(x) = lmax − (Z + 1)(t + δ) ≥ 0 (71)

g3(x) = Pmax − Prz ≥ 0 (72)
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g4(x) = Pmaxνsr max − Przυsr ≥ 0 (73)

g5(x) = νsr max − υsr ≥ 0 (74)

g6(x) = Tmax − T ≥ 0 (75)

g7(x) = Mh − sMs ≥ 0 (76)

g8(x) = T ≥ 0 (77)

Variable range:

60 ≤ x1 ≤ 80, 90 ≤ x2 ≤ 110, 1 ≤ x3 ≤ 3,
600 ≤ x4 ≤ 1000, 2 ≤ x5 ≤ 9

(78)

Other parameters:

Mh =
2
3

µFZ
r3

o − r2
i

r2
o − r3

i
, Prz =

F
II
(
r2

o − r2
i
) , (79)

υrz =
2II
(
r3

o − r3
i
)

90
(
r2

o − r2
i
) , T =

IzII n

30
(

Mh + M f

) (80)

∆r = 20 mm, Iz = 55 kgmm2, Pmax = 1 MPa, Fmax = 1000 N, (81)

Tmax = 15 s, µ = 0.5, s = 1.5, Ms = 40 Nm, M f = 3 Nm, (82)

n = 250 rpm, υsr max = 10 m/s, lmax = 30 mm (83)

In Table 13, the weight obtained by the MSCSO algorithm is 0.235242. Compared with
other algorithms, the first algorithm is obtained. Other algorithms also have some effect,
but the weight obtained is more excellent. It is proved that the MSCSO algorithm has a
good effect on this problem.

Table 13. Experimental results of the multiple disc clutch brake.

Algorithm
Optimal Values for Variables Optimum

Weightx1 x2 x3 x4 x5

MSCSO 70 90 1 637.791 2 0.235242
TLBO [21] 70 90 1 810 3 0.313656611
WCA [56] 70 90 1 910 3 0.313656
MVO [16] 70 90 1 910 3 0.313656

CMVO
[57] 70 90 1 910 3 0.313656

MFO [7] 70 90 1 910 3 0.313656
RSA [49] 70.0347 90.0349 1 801.7285 2.974 0.31176

6.7. Car Crashworthiness Design Problem

This problem also belongs to a minimal problem with eleven variables, subject to
ten constraints. Figure 19 shows the finite element model of this problem. The decision
variables are, respectively, the internal thickness of the B-pillar, the thickness of B-pillar
reinforcement, the internal thickness of the floor, the thickness of the cross beam, the
thickness of the door beam, the thickness of the door belt line reinforcement, the thickness
of the roof longitudinal beam, the internal material of the B-pillar, the internal material of
the floor, the height of the obstacle, and the impact position of the obstacle. The constraints
are, respectively, the abdominal load, the upper viscosity standard, the middle viscosity
standard, the lower viscosity standard, the upper rib deflection, the middle rib deflection,
the lower rib deflection pubic symphysis force, B-pillar midpoint speed, and B-pillar front
door speed.
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Figure 19. The car crashworthiness design.

The mathematical formulation of this problem is shown below:
Minimize:

f (
→
x ) = Weight, (84)

Subject to:
g1(
→
x ) = Fa(load in abdomen) ≤ 1 kN, (85)

g2(
→
x ) = V × Cu(dummy upper chest) ≤ 0.32 m/s, (86)

g3(
→
x ) = V × Cm(dummy middle chest) ≤ 0.32 m/s, (87)

g4(
→
x ) = V × Cl(dummy lower chest) ≤ 0.32 m/s, (88)

g5(
→
x ) = ∆ur(upper rib deflection) ≤ 32 mm, (89)

g6(
→
x ) = ∆mr(middle rib deflection) ≤ 32 mm, (90)

g7(
→
x ) = ∆lr(lower rib deflection) ≤ 32 mm, (91)

g8(
→
x ) = F(Public force)p ≤ 4 kN, (92)

g9(
→
x ) = VMBP(Velocity of V−

Pillar at middle point) ≤ 9.9 mm/ms,
(93)

g10(
→
x ) = VFD(Velocity of front door at V−

Pillar) ≤ 15.7 mm/ms,
(94)

Variable Range:

0.5 ≤ x1 − x7 ≤ 1.5, x8, x9 ∈ (0.192, 0.345),−30 ≤ x10, x11 ≤ 30, (95)

Table 14 shows the statistical results of the car crash worthiness design problem. From
the table data, it can be concluded that the MSCSO algorithm can obtain a better solution to
this problem. The MSCSO algorithm can obtain more precise unknowns in variable solving.
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Table 14. Experimental results of the car crashworthiness design.

Algorithm MSCSO ROA [4] MPA [58] ROLGWO [59] HHOCM [60] MALO [61]

x1 0.500111598 0.5 0.5 0.501255 0.500164 0.5
x2 1.228268972 1.22942 1.22823 1.245551 1.248612 1.2281
x3 0.500012764 0.5 0.5 0.500046 0.659558 0.5
x4 1.202547678 1.21197 1.2049 1.180254 1.098515 1.2126
x5 0.500193341 0.5 0.5 0.500035 0.757989 0.5
x6 1.052807602 1.37798 1.2393 1.16588 0.767268 1.308
x7 0.500029525 0.50005 0.5 0.500088 0.500055 0.5
x8 0.34499308 0.34489 0.34498 0.344895 0.343105 0.3449
x9 0.335951909 0.19263 0.192 0.299583 0.192032 0.2804
x10 0.461176886 0.62239 0.44035 3.59508 2.898805 0.4242
x11 1.050120991 - 1.78504 2.29018 - 4.6565

Best Weight 23.19085116 23.23544 23.19982 23.22243 24.48358 23.2294

7. Conclusions

The sand cat swarm optimization algorithm (SCSO) is a recently proposed population
intelligence optimization algorithm. The SCSO algorithm simulates the hunting process of
sand cats. Each sand cat will gradually move close to its prey, but the SCSO algorithm has
insufficient exploration ability in the later stage, and it is easy to fall into local optimization,
leading to difficulties in the convergence of the algorithm. To solve this problem, this
paper proposes a modified sand cat swarm optimization algorithm (MSCSO). The core
of the MSCSO algorithm is to use the wandering strategy when sand cats are hunting.
When searching for prey, in order to increase the search range of the sand cat group,
the triangle walking (TW) strategy is used to further search for a better position in the
search range. The TW strategy first calculates the distance from the prey, then selects the
walking direction through the Roulette Wheel Selection, and finally obtains the walking
step length. This method increases the exploration ability of the SCSO algorithm and makes
the MSCSO algorithm more global. In order to find a better position when the sand cat
attacks its prey, it walks through the Levy flight walking (LFW) strategy. After adding the
wandering strategy, the global exploration ability of the SCSO algorithm is enhanced. Then,
the lens alternative-based learning (LBOL) strategy is added to enhance the optimization
effect of the SCSO algorithm. The following conclusions can be drawn from the results of
experimental performance evaluation and statistical analysis:

- According to the experimental image analysis, the proposed TW, FLW, and LBOL
enhance the global exploration ability of the MSCSO algorithm.

- According to the experimental statistics, the proposed TW, FLW, and LBOL enhance
the optimization performance of the MSCSO algorithm and can find better solutions
in most functions.

- In engineering problems, the MSCSO algorithm has obtained better solutions than
many other algorithms. It is proved that MSCSO has a good effect in solving engineer-
ing problems.

The MSCSO algorithm has strong exploration ability and can jump out of local opti-
mization to prevent premature convergence of the algorithm. However, the exploitation
ability of the MSCSO algorithm is relatively reduced, and the algorithm is difficult to
converge faster when finding a better location. However, compared with SCSO, it is greatly
improved. In a future work, we will strengthen the exploitation capability of the MSCSO al-
gorithm and apply it to UAV 3D path planning, text clustering, feature selection, scheduling
in cloud computing, parameter estimation, image segmentation, intrusion detection, etc.
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